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Abstract Data recorded from multiple sources sometimes exhibit non-instantaneous cou-
plings. For simple data sets, cross-correlograms may reveal the coupling dynamics. But
when dealing with high-dimensional multivariate data there is no such measure as the cross-
correlogram. We propose a simple algorithm based on Kernel Canonical Correlation Analy-
sis (kCCA) that computes a multivariate temporal filter which links one data modality to
another one. The filters can be used to compute a multivariate extension of the cross-
correlogram, the canonical correlogram, between data sources that have different dimen-
sionalities and temporal resolutions. The canonical correlogram reflects the coupling dy-
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namics between the two sources. The temporal filter reveals which features in the data give
rise to these couplings and when they do so. We present results from simulations and neu-
roscientific experiments showing that tkCCA yields easily interpretable temporal filters and
correlograms. In the experiments, we simultaneously performed electrode recordings and
functional magnetic resonance imaging (fMRI) in primary visual cortex of the non-human
primate. While electrode recordings reflect brain activity directly, fMRI provides only an
indirect view of neural activity via the Blood Oxygen Level Dependent (BOLD) response.
Thus it is crucial for our understanding and the interpretation of fMRI signals in general to
relate them to direct measures of neural activity acquired with electrodes. The results com-
puted by tkCCA confirm recent models of the hemodynamic response to neural activity and
allow for a more detailed analysis of neurovascular coupling dynamics.

Keywords Canonical correlation analysis · CCA · kCCA · tkCCA · Neurovascular
coupling

1 Introduction

With the advent of modern brain imaging techniques, such as functional magnetic reso-
nance imaging (fMRI), it became feasible to measure neural activity in the whole brain non-
invasively (Ogawa et al. 1990). Despite its relatively young age, fMRI is nowadays one of
the most often used techniques in clinical or experimental neuroscience studies. Combina-
tions of fMRI with machine learning methods (Norman et al. 2006) improved the specificity
of fMRI analysis methods to an extent that some studies set out to use fMRI and machine
learning techniques in the context of lie detection (Langleben et al. 2005) or mind reading
of hidden intentions (Haynes et al. 2007). However, the relationship between the blood-
oxygen level dependent (BOLD) signal measured with fMRI and the underlying brain activ-
ity is still not fully understood (Logothetis 2008). The most straightforward—yet technically
challenging—way to investigate this relationship, the so called neurovascular coupling, is
to simultaneously measure the electrophysiological activity of the neurons and the fMRI
response (Logothetis et al. 2001). Brain activity, that is the change in the electrical charge
across the neurons’ cell membranes, is reflected directly in the invasive electrophysiological
measurements. Changes in neuronal activity correlate with the level of blood oxygenation
which can be measured non-invasively using fMRI. The two methods, invasive electrophys-
iology and non-invasive fMRI, thus provide two views on brain activity, the former directly,
the latter indirectly via the hemodynamic response. While the electrophysiological signal
is measured at high temporal resolution, the fMRI signal has a low temporal resolution,
due to both technical and physiological reasons. The spatial resolution of electrophysiolog-
ical data can be high, but in these simultaneous recordings it is typically measured only at
one electrode. In contrast, the fMRI signal measures the BOLD signal potentially in the
whole brain, yielding data with some ten thousands of dimensions, i.e. voxels. When in-
vestigating the relationship between these two signals, there are two main problems: first
the data is inherently multivariate (with different dimensionalities for each modality), and
secondly the coupling is not instantaneous. Canonical Correlation Analysis (CCA) solves
the first problem by computing a filter for each variable that maximizes the correlation be-
tween the two signals. CCA (Hotelling 1936) works by recursively computing maximally
correlated projections of a pair of data sources, where each projection is uncorrelated with
the previous projection. The projection directions then reveal the features of the two sources
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that are most corelated. The second problem could be solved by looking at the full cross-
correlogram instead of just the correlation coefficient between the sources. However, for
multivariate data it is not clear how to compute such a correlogram, as the filters for each
source might change as a function of the timelag τ . In this work we present an algorithm that
tackles both problems at the same time. It can deal with delayed couplings between sources
and is well suited for high dimensional data as it is based on kernel canonical correlation
analysis. Kernel canonical correlation analysis (see Akaho 2001; Bach and Jordan 2002;
Fukumizu et al. 2007, for a review on kCCA see Shawe-Taylor and Cristianini 2004, for a
general review of the ‘kernel trick’ see Schölkopf and Smola 2001 or Müller et al. 2001)
has been widely applied in finding dependencies between random variables in high, or even
infinite, dimensions. Using CCA in its kernelized form allows us to avoid dealing with co-
variance matrices on very high dimensional data (as is the case with fMRI), which can be
computationally prohibitive and numerically unstable. When using linear kernels the pro-
jections found by kCCA can be easily interpreted in the respective data space. kCCA with
linear kernels has been successfully applied to analyze dependencies between electrophysi-
ological data and visual stimuli (Macke et al. 2008) or between fMRI data and emotionally
salient stimuli (Hardoon et al. 2007) to name just two examples. In both examples the cor-
relation between the measured brain signal and an experimentally controlled stimulus is
maximized. If the coupling between the data sources has some delay, it is advantageous to
account for that when using CCA. Previous attempts to include temporal structure in a CCA
framework are presented in (Friman et al. 2002) and (Macke et al. 2008). In the first case,
only one data source is considered (timeseries of fMRI images) and its auto-correlation is
maximized by applying linear kCCA to time shifted versions of the data. In (Macke et al.
2008), the authors employ CCA for mapping receptive fields of early visual neurons. Tempo-
ral structure of the correlations between the visual stimulus and the cell activity is accounted
for by appending to each sample of neural activity its temporal context after stimulus on-
set.

While the aforementioned approaches do incorporate the temporal structure of the de-
pendencies to some extent, the temporal dynamics of canonical correlations between mul-
tiple sources have not yet been accounted for in association with kCCA methods. Instead
of estimating stationary projections as in standard kCCA, the proposed algorithm computes
a multivariate temporal filter that maximizes the correlation between the two data sources
over a certain time window. The temporal filter can be interpreted as a convolution on either
data source and the filter coefficients can give valuable insights in the temporal coupling
dynamics between the data sources.1 Moreover, the filters can be used to compute a gener-
alization of the cross-correlogram via CCA, which we denote the canonical correlogram.
We begin our paper in Sect. 2 with an overview of linear kCCA. In Sect. 2.3, we generalize
the original CCA algorithm to take into account time structure in a way that leads to easily
interpretable results. Finally, in Sect. 3, we provide experimental results of our approach on
both real and artificial datasets.

1In the case of neurovascular coupling the relationship is commonly referred to as the hemodynamic response

function (HRF) (see for instance Logothetis and Wandell 2004 or Friston et al. 2000); while the neurons in
early visual areas of the brain respond immediately after visual stimulation, the BOLD response to a stimulus
peaks only 4–6 seconds afterwards; to correct for this time lag when correlating fMRI data with experimental
stimuli, the stimulus timecourse is often delayed in time with respect to the fMRI signal so that stimuli and
BOLD response appear roughly simultaneously; a popular alternative is to convolve the stimulus timeseries
with a temporal filter modeling the dynamics of a generic HRF.
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2 Temporal kernel canonical correlation analysis

2.1 Instantaneous canonical correlation analysis

For two multivariate variables x ∈ R
M and y ∈ R

N , Canonical Correlation Analysis (CCA)
estimates two normalized linear filters wx ∈ R

M and wy ∈ R
N , called canonical variates,

such that the correlation between the projections w⊤
x x and w⊤

y y is maximized (see e.g. (An-
derson 1958) for a review):

argmax
wx ,wy

w⊤
x Cxywy

s.t. w⊤
x Cxxwx = 1, (1)

w⊤
y Cyywy = 1,

where Cxx ∈ R
M×M and Cyy ∈ R

N×N denote the respective auto-covariance matrices and
Cxy ∈ R

M×N the crosscovariance matrix between x and y. If the number of dimensions is
larger than the number of samples, it becomes more efficient and numerically more stable
to optimize the filters wx and wy using kernel methods, i.e. kernel CCA (Akaho 2001;
Bach and Jordan 2002; Fukumizu et al. 2007). For centered data, i.e.

∑

x =
∑

y = 0, the
linear kernel matrices KX and KY are given as the inner product of the data matrices X =
[x1, x2, x3, . . . , xL] ∈ R

M×L and Y = [y1, y2, y3, . . . , yL] ∈ R
N×L:

KX = X⊤X,
(2)

KY = Y ⊤Y.

The filters in the input space of each variable are then given as a linear expansion of the data
points

wx = Xα,
(3)

wy = Yβ,

where the vectors α ∈ R
L and β ∈ R

L are the solution of the generalized eigenvalue problem
in kernel space:

[

0 KXKY

KY KX 0

]

[

α

β

]

= ρ

[

K2
X 0

0 K2
Y

]

[

α

β

]

. (4)

Note that even though in this paper we use only linear kernels, all technical considerations
are equally valid for general (i.e. nonlinear) kernels; however the interpretation of the vari-
ates becomes more difficult. For example, in fMRI the linear filters wy can easily be visual-
ized as field pattern in voxel space. The interpretation of nonlinear CCA projections is not
always that straightforward, but depending on the problem they can give valuable insights,
too. Also, for the sake of simplicity, we considered only the largest eigenvalue ρ. However,
the whole subsequent analysis can be performed with the following eigenvalues in the same
manner. The eigenvalue ρ is the correlation coefficient between the projections w⊤

x X and
w⊤

y Y . As the eigenspectrum of (4) is symmetric, we just pick the largest positive value and
neglect its negative counterpart.
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In practice, to prevent kCCA from overfitting, it is often necessary to regularize the kernel
matrices. A number of different types of regularization have been proposed (Shawe-Taylor
and Cristianini 2004; Bach and Jordan 2002; Fukumizu et al. 2007); in this paper, the for-
mulation of (Fukumizu et al. 2007) has been adopted, however in the experiments presented
in Sect. 3.3 the diverse nature of the two data sources makes it necessary to have separate
regularization parameters κX and κY for the respective kernels; the regularized version of
the generalized eigenvalue problem is then:

[

0 KXKY

KY KX 0

]

[

α

β

]

= ρ

[

K2
X + κXKX 0

0 K2
Y + κY KY

]

[

α

β

]

. (5)

The values for κX and κY can be chosen using e.g. a resampling-based procedure that opti-
mizes the distance to randomized surrogates of the data (see Sect. 2.5 for details).

2.2 Time-shifted kernel CCA

When the dependencies between signals exhibit temporal dynamics it is often more inter-
esting to look at time-shifted instead of instantaneous canonical correlations. If there is
some kind of delayed coupling between the signals or they both reflect the same underly-
ing process, but with different delay τ , the canonical correlation between the two sources
will be higher if the signals are shifted in time relative to each other. For time-shifted kernel

CCA, one would simply replace the kernel of one signal, say KX , by the kernel Kτ = X⊤
τ Xτ ,

where Xτ denotes the respective signal, time-shifted by the delay τ . Since only relative time
shifts between the signals matter, the other kernel stays untouched. The canonical variates
are recovered analogously to (3):

wx(τ ) = Xτατ ,
(6)

wy(τ ) = Yβτ .

Note that even though only one signal is shifted in time, both canonical variates do depend
on τ , due to the τ -dependency of the expansion coefficients ατ , βτ . With this type of time-
shifted kCCA it is possible to probe the signals and their canonical correlations for different
time delays.

Note that for CCA the number of samples has to be equal for all data sources. When
the data sources have different temporal resolutions, this implies that one source has to be
downsampled. If X has the higher resolution, it can be shifted in small increments before

downsampling, which means that the temporal resolution of the variates is upper bounded
only by the sampling rate of X and does not depend on Y .2

In principle, calculating the time-shifted CCA sequentially for multiple time shifts
τ ∈ {τ1, τ2, . . . , τT } would allow to compute an entire canonical correlogram between the
data sources for a given time window, along with the corresponding τ -dependent canonical

2If X has a temporal resolution of 1 Hz (sample duration of 1 second) and Y a resolution of 0.25 Hz (sample
duration of 4 seconds), we can shift X in increments of 1 s before downsampling it to 0.25 Hz. If, on the
other hand, X had the lower sampling rate and Y the higher one, we could shift X only in increments of 4s,
yielding larger gaps between possible time shifts τ . This means that the temporal resolution of the variates is
upper bounded only by the sampling rate of X and does not depend on Y ; the sliding window approach will
not allow to resolve high frequency ‘fine structure’, but still allows to locate e.g. maxima or minima of the
correlation with a slow signal with a good precision.
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variates. We will refer to this approach in the following as sequential time shifted kCCA or
sequential ts-kCCA. However, this approach has some inherent problems. In real applica-
tions like fMRI data analysis finding the correct regularization parameters κX and κY turns
out to be crucial. In general, parameter tuning by cross validation or resampling will de-
mand different optimal parameters for different τ . Using different regularizers, however,
would spoil the comparability of the canonical correlations and the canonical variates ob-
tained for different time lags. In order to have an interpretable correlogram, the regularizers
must be fixed for all τ . One might employ some heuristics for finding the right τ to optimize
the parameters and use that parameter set for all other time lags, for instance if one has a

priori knowledge about the nature of the data sources and their coupling. But in general it is
not obvious what is the right choice for a common regularizer.3

While this problem might take a back seat if the range of optimal κX and κY is not too
large, there are two more severe problems that affect the temporal coherence of the canonical
variates. The first reason for temporal incoherence is that kernel CCA always picks the
largest positive eigenvalue from the symmetric eigenspectrum, so the canonical components
(i.e. the projections of the data matrices onto the canonical variates) are always positively
correlated. kCCA simply chooses the sign of the canonical variates accordingly, but it only
takes into account relative signs (between variables). This means that if the variates wx(τ1)

and wy(τ1) are a solution at time shift τ1, then the variates −wx(τ1) and −wy(τ1) form
a completely equivalent solution. Thus kCCA does not distinguish the absolute sign of the
canonical variates but retrieves the relative sign between the two, rendering the absolute sign
of a single variate completely arbitrary. If we start a new kCCA run on the next time shift τ2,
there is no guarantee that the choice of sign matches the one at the previous time step. In fact
it turns out that kCCA sometimes produces sudden sign flips between neighboring τ -values.
This problem could be tackled using heuristics such as enforing smoothness of the canonical
variates over time. Starting from wx(τ1), one could fix the sign of each time-lagged variate
wx(τk) with k ≥ 2 by setting

wx(τk) ← wx(τk) sign
(

wx(τk−1)
⊤wx(τk)

)

. (7)

This makes sure that the angle between adjacent variate vectors is smaller than 90 degrees.
Note that this heuristic will fail when the estimates of the variates w(τ) are very noisy. In
some cases however, this will lead to a sensible temporal structure of the canonical variates,
as the results in Sect. 3.2.2 show. The second reason for the incoherent evolution of the
variates in τ are indeterminacies that can occur at certain time shifts due to degenerate
eigenvalues. If for some τ -values the first eigenvalue comes very close or even equal to the
second eigenvalue, the very notion of ‘largest eigenvalue’ loses its meaning, since every
vector in the space spanned by these eigenvectors is a solution with identical eigenvalue. In
this case, kCCA picks an arbitrary vector from that eigenspace which will cause jumps in
the canonical variates.

2.3 Temporal kernel CCA

In the previous section we have seen that in general a sequential kCCA will not yield solu-
tions that are coherent for different τ with respect to the signs and the regularization across
time lags. If a temporal interpretation of the results is intended, i.e. an interpretation of the

3A comparison with alternative regularization strategies, e.g. presented in (Hardoon et al. 2004), would be an
interesting topic of future research but is beyond the scope of this work.
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evolution of canonical correlation and canonical variates over τ , this poses severe problems.
Even though it is sometimes possible to correct for these temporal incoherencies afterwards
by some heuristics or visual inspection, this endeavor is tedious (and error prone) even for
simple data sets; for data sources like fMRI it will quickly become unfeasible. To obtain tem-
porally coherent filters from the start, we therefore propose a temporal kernel CCA (tkCCA)

to solve the kCCA for all time shifts τ at once.
We have seen that CCA and linear kernel CCA estimate filters wx and wy such that the

canonical components w⊤
x X and w⊤

y Y are maximally correlated. In application domains
like the simultaneous measurement of electrophysiology and fMRI, the highest correlation
is obtained at some time shift between the two modalities. In general we have to assume that
there is not just a fixed delay, but a temporal filter that links one modality with the other one.
In particular, the translation from neural activity to the BOLD signal is often modeled by a
hemodynamic response filter (see e.g. Friston et al. 2000). We will therefore generalize the
CCA optimization problem by allowing wx to be an arbitrary spatio-temporal filter:

max
wx (τ ),wy

Corr

(

∑

τ

wx(τ )⊤Xτ ,w
⊤
y Y

)

. (8)

To maximize this correlation, we embed the data set X into a higher dimensional space
where the different dimensions are occupied by copies of the original data, each shifted in
time by a different τ from a set {τ1, τ2, . . . , τT } of delays:

X̃ =

⎡

⎢

⎢

⎢

⎣

Xτ1

Xτ2

...

XτT

⎤

⎥

⎥

⎥

⎦

∈ R
MT ×L. (9)

By using the same time-delay embedding for the wx(τ ),

w̃x =

⎡

⎢

⎢

⎢

⎣

wx(τ1)

wx(τ2)
...

wx(τT )

⎤

⎥

⎥

⎥

⎦

(10)

we reduce the optimization problem in (8) to an ordinary CCA problem in the embedded
space:

φ = max
w̃x ,wy

Corr
(

w̃⊤
x X̃,w⊤

y Y
)

. (11)

The kCCA can now be calculated for the kernels K̃X = X̃⊤X̃ and KY = Y ⊤Y , i.e. be-
tween the embedded version X̃ of one source and the unchanged version Y of the other
one. The temporal resolution of the correlogram is solely determined by the spacing of the
τ -values, in particular it can be higher than the temporal resolution of the signals in Y . Note
that the embedded kernel K̃x is of the same size as the kernel Kx . Thus after the kernel
K̃X has been computed tkCCA is computationally not more demanding than normal kCCA.
Consequently the solution of embedded tkCCA is much faster to obtain than in the sequen-
tial time shifted kCCA. Another important advantage is that crossvalidation procedures or
bootstrap resamplings can operate on the already computed kernel, which speeds up these
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computations further. Since tkCCA just leads to a single eigenvalue equation of the type
given by (5), neither the canonical correlation ρ nor the corresponding vectors α and β de-
pend on τ . However, it is easy to recover the τ -dependent filter wx(τ ). In analogy to (3) we
obtain

w̃x = X̃α,
(12)

wy = Yβ

and the delay-dependent canonical variates wx(τ ) are just given by the respective parts of
w̃x :

wx(τ ) = Xτα. (13)

The canonical correlogram can now be calculated as the cross-correlation function between
the canonical components (i.e. the data sets projected onto the filters wx(τ ) and wy ):

ρ(τ) = Corr
(

wx(τ )⊤Xτ ,w
⊤
y Y

)

= wx(τ )⊤XτY
⊤wy

wx(τ )⊤XτX⊤
τ wx(τ ) · w⊤

y YY ⊤wy

= α⊤KτKY β

α⊤K2
τ α · β⊤K2

Y β
. (14)

By design, the proposed tkCCA method does not suffer from the problems of temporal
inconsistency sketched in Sect. 2.2. It is worth mentioning that the estimated canonical cor-
relogram is different from a usual correlogram between two one-dimensional time signals
in the sense that it is always positive.4 This is due to the already mentioned fact that kCCA
is ignorant with respect to the sign of the correlation; possible negative correlations between
the signals are encoded in the relative sign of the canonical variates. So, to interpret the
results of tkCCA, one always has to take into account both the canonical correlogram ρ(τ)

and the corresponding canonical variates wx(τ ) and wy . Just as an aside, while the great
majority of work on CCA considers the solution of CCA simply as projection directions
that maximize the correlation between the sources, an alternative perspective is presented
in (Bach and Jordan 2006), where the authors propose a generative model for the solutions
of CCA. It would be interesting to explore this generative model perspective for tkCCA as
well.

2.4 Other possible approaches

One could think of alternatives to the presented approaches of temporal kCCA employing
generalizations of kCCA to more than two variables, so called multi-way CCA (see Ket-
tenring 1971 for CCA and e.g. Bach and Jordan 2002 for the kCCA version). Using an
implementation based on multi-way CCA as in Friman et al. 2002 (see also Sect. 1) with
slight modifications could also yield canonical variates that might reveal temporal structure

4Since the ρ(τ) are not directly calculated by kCCA, but by (14), this is not strictly true, i.e. only up to noise
fluctuations.
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in the couplings.5 Essentially the modifications would involve computation of a multi-way
kCCA where the first variable is one version of either of the two data sources and the other T

variables are time shifted versions of the respective other data source, for instance one kernel
KF for the fMRI data and T kernels for the time shifted electrophysiology. The optimiza-
tion could be formulated analogously to (Bach and Jordan 2002) and performing incomplete
Cholesky decompositions on the kernel matrices can reduce the eigenvalue problem to a
tractable size.

Unfortunately this multi-way formulation has a serious drawback: Time shifted versions
of one data source are treated as separate variables, each having the same importance as
the other data source. This means that if the auto-correlations of the time shifted signal are
high, the canonical correlation can be maximized using mainly the auto-correlation from one
data source and neglecting the cross correlation terms with the other data source. We per-
formed all simulations presented in the following section with a multi-way temporal kCCA
version in order to confirm these points. As we are not interested in the auto-correlation
of one data source but rather the coupling over time between two data sources, multi-way
kCCA with time lagged versions of one source as additional variables is not a favorable
option.

2.5 Optimization of regularization parameters

In simulations as well as in applications on real data it is important to select good regular-
ization parameters κY and κX . If the regularizers are chosen too small, the tkCCA shows
overfitting effects, resulting in high canonical correlations even for time series without cor-
relations, if the regularizers are too large, the existing correlation structure in the data is
suppressed. We therefore picked the regularizers by a surrogate data technique: For each set
of regularization parameters (one for each variable) we performed tkCCA first on the true
data and then on a surrogate data set, which contains the same samples as the true data but
the time order of samples has been randomly permuted in one data source.6 Since the cor-
relation structure is destroyed by reshuffling, the canonical correlation φ̂ on the surrogate
data will be different (i.e. smaller) than the canonical correlation φ on the true data. We
also tried standard cross-validation for hyperparameter optimization, but the reshuffling is
easier to implement, computationally cheaper and performs as well as cross-validation. The
regularizers are now chosen such that this difference is as pronounced as possible:

(κ∗
X, κ∗

Y ) = argmax
κX ,κY

E[(φ − φ̂)2]. (15)

We approximated this expectation by an average over ten randomly shuffled surrogates and
optimized the parameters over a range from 100–10−4. Note that for this model selection
procedure we do not need to compute the full canonical correlogram ρ(τ) but only the
canonical correlation in the embedded space φ.

5The work presented in (Friman et al. 2002) is actually just a two-way CCA, as there is only one time shifted
timeseries involved; however, it can be easily extended to more than one time lag in a framework such as the
one presented in (Bach and Jordan 2002).
6Since only relative time dependencies between the two modalities matter, only one data set has to be shuf-
fled.
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3 Simulations and experiments

In the following, we apply the proposed tkCCA method to both simulated and real ex-
perimental data. After a short toy data example in Sect. 3.1 highlighting the main advan-
tages of tkCCA, we proceed with more realistic simulations illustrating the effect of auto-
correlations (Sect. 3.2.3) and different coupling parameters (Sect. 3.2.4 and 3.2.5) on the
tkCCA result. Finally in Sect. 3.3 we apply tkCCA on simultaneous recordings of neural and
hemodynamic activity and discuss how tkCCA reflects the neurovascular coupling mecha-
nisms.

3.1 A simple illustration of the tkCCA method

Before we apply tkCCA to the more complex data from simulated and real experiments, we
illustrate the algorithm and its results on the following simple example. From the univariate
time series s(t) (depicted in Fig. 1, panel A, top) we create two bivariate signals x(t) and
y(t), one of them containing a time-lagged version of s(t):

x(t) = α s(t) + ǫ

[

n1(t)

n2(t)

]

, (16)

y(t) = β s(t − τ ∗) + ǫ

[

n3(t)

n4(t)

]

, (17)

where the vectors α,β ∈ R
2 mix s(t) into the different dimensions of the signals x(t) and

y(t) and ni(t) ∼ N (0,1) are Gaussian i.i.d. sources. The signals x(t) and y(t) represent
measurements obtained by different modalities. In the simulations, τ ∗ was set to 6 and
α = β = [0.1 0.9]⊤ and the noise level to ǫ = 0.15. We then used sequential time-shifted
kCCA and tkCCA in order to recover temporal filters that reflect the dependencies hidden
in the data. The example illustrates that even for simple settings of low dimensionality, the
canonical variates estimated by sequential kCCA are incoherent with respect to their sign
and absolute value and thus difficult to interpret (Fig. 1, panel B, left column, middle and
bottom plot). In contrast, the variates of tkCCA are close to zero for all values of τ except
the variate at the delay specified in the simulations (Fig. 1, panel B, right column, middle
plot). For both filters, tkCCA assigns the correct mixing coefficients α and β . As expected
for this simple scenario, the canonical correlogram looks very similar for both methods—
in both implementations, the mixing coefficients at τ = τ ∗ are close to correct values and
thus at a time lag of 6 samples, there is a pronounced peak found by both implementations.
However, as it is crucial for the interpretation of this correlogram to take into account the
variates, the solution found by tkCCA is preferable.

3.2 Application to simulated fMRI/electrophysiogical data

3.2.1 Data generation

To illustrate the behavior of the tkCCA method in detail, we perform controlled simulations
that mimic the fMRI-experiments we will present later. In those experiments, a visual stim-
ulus is presented to a subject while the neural activity in the primary visual cortex and the
corresponding BOLD response is measured simultaneously. A detailed description will be
given in Sect. 3.3. Just like the experimental data, the simulated data contains two different
time series designed to match the main characteristics of the real data: One represents the
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Fig. 1 Toy data example illustrating sequential time-shifted kCCA and tkCCA; A: signal s(t) (top) and two
two-dimensional measurement time series X (blue, no delay) and Y (green, 6 samples delay); time dimension
is in arbitrary units [a.u.]; B, left: Results for sequential kCCA, canonical correlogram (top) and variates
wx (τ ) (middle) and wy (τ ) (bottom); B, right: Results obtained using tkCCA; in contrast to sequential kCCA,
only wx (τ ) has a temporal dimension (middle plot), whereas wy is constant over time (bottom); the correct
mixing is reliably recovered in both variates; importantly, tkCCA assigns high weights only at τ = 6 in the
time-dependent variate wx (τ ); as expected there are no significant differences for the correlograms in this
simple example (panel B, top row)

neural activity in 8 different frequency bands7 at a certain electrode position in the brain,
the other one represents the BOLD activations in a 50 × 50-pixel image patch. To show how
tkCCA can capture hidden structure in the data, we varied different model parameters in a
controlled fashion. Data generation is performed in three steps (a schematic diagram of the
data generation process is shown in Fig. 2):

1. Electrophysiology: First, a time series E(f, t) is generated, representing the band power
of the neural activity at frequency f and time t . At each frequency, the neurophysiolog-
ical signal is modeled as a weighted sum of the visual stimulus s(t) and spontaneous
neural activity, represented as Gaussian i.i.d. noise ǫ(f, t) ∼ N (0,1):

E(f, t) =
√

γα(f ) · s(t) +
√

(1 − γα(f )) · ǫ(f, t). (18)

A frequency specific gain 0 ≤ α(f ) ≤ 1 controls the relative stimulus susceptibility of
each frequency band and the overall signal-to-noise ratio of the stimulus is controlled by
the parameter 0 ≤ γ ≤ 1. (The stimulus s(t) is a boxcar time series with unit variance,
the square roots ensure that E(f, t) is properly normalized.)

2. Neuro-vascular coupling: The fMRI data is created from the electrophysiological data by
first applying a hemodynamic response filter h (as implemented e.g. in the fMRI analysis
toolbox SPM5, SPM5 2005) to each frequency band and then taking the weighted sum

7Different bands of electrophysiological bandpower are selective for independent stimulus features as re-
ported in e.g. (Belitski et al. 2008) (see also Sect. 3.2.3).
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Fig. 2 Data generation: neural data E(f, t) is simulated by a boxcar stimulus projected in 8 frequency
bands with frequency specific gain, controlled by α(f ) (18); the one dimensional BOLD time series B(f ) is
simulated by convolving E(f, t) with a time-frequency filter h(f, τ ) and projecting the result on a frequency
specific coupling filter β(f ) (19); the high dimensional BOLD time series F(p, t) is then generated as the
outer product with the spatial pattern f (p) (see (20))

over all frequency bands:

B(t) = 1

Z

∑

f

β(f )

(

∑

τ

h(f, τ )E(f, t − τ)

)

, (19)

where Z is a normalization parameter that sets B(t) to unit variance. Note that we allow
the hemodynamic response filter h to be frequency dependent. These filters together with
the coupling weights 0 ≤ β(f ) ≤ 1 define the neuro-vascular coupling.

3. BOLD signal: Spatially resolved fMRI time series are obtained as the product of the time
series representing the hemodynamic response B(t) with a spatial pattern f (p) and some
additional noise:

F(p, t) = sign(ηf (p))
√

|ηf (p)| · B(t) +
√

|(1 − ηf (p))| · ǫ(p, t). (20)

The spatial pattern represents a correlational structure similar to those arising from cor-
related activity of neural ensembles. The signal-to-noise ratio of the spatial pattern is
controlled by the parameter 0 ≤ η ≤ 1.

In the following sections, we will show the influence of different model parameters on the
tkCCA results. In the simulation model, we introduced three frequency dependent parame-
ters, the relative stimulus susceptibility α(f ), the neurovascular coupling strength β(f ) and
the hemodynamic response filter h(f, τ ). To separate the effects of these parameters, we
performed three different sets of simulations. In each of them, we allowed only one of those
three parameters to have an explicit frequency dependence, the other two were kept con-
stant for different frequencies f . This approach allows us to uniquely identify the influence
of each parameter on the tkCCA results. Within each of these settings, we varied both the
overall stimulus susceptibility γ and the signal-to-noise ratio in the simulated BOLD, i.e. η.
When varying η, we keep γ = 0.1 fixed (Panel B in Figs. 4–6), when varying γ , we keep
η = 0.05 fixed (Panel C in Figs. 4–6). The length of each simulated time series is 400 data
points, with a boxcar stimulus s(t) of period length 16 to approximately match the properties
of the real experimental data analyzed in Sect. 3.3. We calculated the tkCCA between the
time series x(t) = E(t, f ) and y(t) = F(p, t), i.e. we performed the time-delay embedding
for the simulated electrophysiology while keeping the simulated BOLD unshifted. In all
simulations reported in Sects. 3.2.3 to 3.2.5, the spatial BOLD field pattern f (p) was recov-
ered almost perfectly by the corresponding canonical variate wy when η > 0. We therefore
abstained from showing wy in Figs. 4 to 6.

We designed the simulation data such that we can independently parametrize the cou-
pling between the sources via β(f ) and h(f ) and the stimulus strength α(f ). Since the



Mach Learn (2010) 79: 5–27 17

auto-correlations in each data source can distort the resulting variates and correlograms
it is important to differentiate between correlations induced by the stimulus and correla-
tions due to the actual coupling between the sources. We expect the proposed method to
be primarily sensitive to the coupling parameters β(f ) and the temporal dynamics h(f )

and less susceptible to stimulus induced correlations, controlled by α(f ). This ensures that
the variates recovered by tkCCA reflect the coupling between the data sources rather than
auto-correlations in either data source.

3.2.2 Comparison of tkCCA with alternative approaches

In Sects. 2.2 and 2.4 we argued from a theoretical perspective that alternative approaches
like sequential ts-kCCA and multiway kCCA pose serious problems. To confirm these con-
siderations, we compare the performance of the these methods and tkCCA on the simulated
neuro-vascular coupling data described above.

In accordance with the expectations, panel A of Fig. 3 shows that tkCCA is faster than
its competitors. In panels B and C, we analyze the performances on different data sets, each
row corresponds to one of them. In the first row, the frequency dependence is confined to the
coupling strength β , in the second row to the stimulus susceptibility α and in the third row
only the hemodynamic response filter h depends on f . The other parameters are kept fixed
with respect to the frequency. The colors (green, red, blue) indicate the different algorithms.
The first three columns in panel C show the averaged8 canonical variates (i.e. estimated
filters) wx(τ ) and the rightmost column the effective neuro-vascular coupling

gx(f, τ ) = β(f )h(f, τ ) (21)

as defined by the data generating process. It is clearly visible that tkCCA (blue) captures
the simulated neuro-vascular coupling better than ts-kCCA (green) or the multi-way kCCA

Fig. 3 Comparison of sequential time-shifted kCCA, multi-way kCCA and tkCCA; tkCCA is faster (panel A)
and more accurate (panel B) than alternative approaches in all settings; A: runtime normalized to fastest
method; B: Accuracy for different SNR’s (η = [0,0.005,0.01,0.1]) of correlational structure (stimulus SNR
γ = 0.1); C: canonical variates wx (τ ), average over 10 simulations; the dot in the accuracy plots depicts the
setting for the variates on the right; settings shown are frequency dependent coupling (top row, cf. Fig. 5),
frequency dependent stimulus susceptibility (middle row, cf. Fig. 4) and frequency dependent temporal dy-
namics (bottom row, cf. Fig. 6)

8Prior to averaging we set wx (τ ) ← wx (τ ) sign(〈gx ,wx 〉).
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(red). To quantitatively compare the performances, we measure the accuracy as the absolute
correlation coefficient between the simulated and the estimated filters:

|Corr(gx,wx)| =
|〈gx,wx〉|√

〈gx, gx〉
√

〈wx,wx〉
, (22)

where the scalar product between two time-frequency filters is defined as 〈a, b〉 =
∑

f,τ a(f, τ )b(f, τ ). Panel B shows the accuracies on each data set for varying SNRs
(i.e. different values of η) and constant overall stimulus susceptibility γ . Colored dots
mark the η-values that correspond to the filters in panel C. In all settings, tkCCA clearly
outperforms its competitors. With increasing η the accuracy of the estimated variates wx(τ )

becomes better both for the sequential time shifted kCCA9 and tkCCA, for multi-way kCCA
however, the accuracy stagnates. This is due to the low-rank approximations of the kernels
computed on Xτ used in multi-way kCCA which are necessary in order to boil down the
generalized eigenvalue problem to a tractable size (see also Bach and Jordan 2002). Since
the first singular values are dominated by the auto-correlations in X, there is not much left in
the kernels other than the stimulus induced auto-correlations after the incomplete Cholesky
decomposition. In other words similar to a standard principal component analysis incom-
plete Cholesky decomposition just keeps the strongest spectral components for each time
lag. These strongest components are not necessarily the ones that account for the cross-
correlation which CCA tries to optimize. Another effect of the low-rank decomposition of
KX is the coarse discretization of the variates wx(τ ) when estimated using multi-way kCCA.
When projecting the results back into input space (cf. (12)), the resulting wx(τ ) show striped
patterns that do not change smoothly over time.

Overall the comparison shows that in terms of accuracy and computational cost, tkCCA
clearly outperforms multi-way and sequential time shifted kCCA. Note that even though
tkCCA is able to reproduce the simulated neuro-vascular coupling with a good accuracy, it
estimates filters that deviate systematically from g. This is because of the periodic stimulus
that manifests itself in the data. Any correlation at time delay τ will give rise to sidelobes in
the variates at delay τ + nθ , where θ is the period length of the stimulus.

However, the strength of the sidelobes does not depend on the coupling encoded in β

and h, but only on the stimulus susceptibility α. Consequently, the frequency dependence
of β is only visible in the main maximum (panel C, upper row, tkCCA—blue box), not in
the sidelobes. If the stimulus susceptibility α depends on f (panel C, middle row, tkCCA—
blue box), it is the other way around: here, only the periodic sidelobes show the frequency
dependence.10 This allows to distinguish the true coupling between two sources from a
spurious coupling due to auto-correlations. In the following sections we focus on tkCCA
only and analyze these effects in more detail.

3.2.3 Influence of the stimulus susceptibility

In this section, we simulate a frequency independent neurovascular coupling by keeping
both β(f ) and h(f ) fixed for all frequencies f . The only parameter that depends on the
frequency is the stimulus susceptibility α(f ) (see Fig. 4, Panel A). Such a frequency specific
stimulus selectivity in cortical oscillations has been reported in e.g. (Belitski et al. 2008).

9We used the heuristic in (7) to repair the signs for sequential time-shifted kCCA solutions.
10The small frequency dependence of the main maximum is due to the superposition with one of the periodic
maxima. After subtracting the periodic background, this dependence vanishes.
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Fig. 4 A: Parameter settings for detection of stimulus driven dependencies; α(f ) was frequency de-
pendent, β(f ) and h(f, τ ) were uniform across all values of f ; gx (f, τ ) was computed as in (21);
B, C: Time-dependent canonical variates wx (τ ) recovered by tkCCA on simulated data; single examples
are shown in rows 1–3, a mean over 100 simulations in row 4 and the corresponding correlograms (in red,
25th and 75th percentiles in gray) in row 5; B: Variates wx (τ ) for different values of η (γ = 0.1); at η = 0
(no coupling), stimulus driven auto-correlations dominate the variates (Panel B, left column); with increasing
η oscillations appear in the band coefficients in bands with non-zero α(f ); C: Variates wx (τ ) for different
values of γ (η = 0.05); At γ = 0 (no stimulus), the correlation induced by spontaneous activity dominates the
variates; with increasing γ , the stimulus induced dependencies are reflected as oscillations of filter weights
in bands with non-zero α(f )

The panels B and C of Fig. 4 show the variates, i.e. the estimated frequency-temporal filters
wx(τ ) for three different repetitions of the simulation (first three rows) and the averaged
filter over 100 repetitions (fourth row). The last row depicts the median of the canonical
correlograms.11 In all plots, τ = 0 is indicated by a vertical line in the middle and the time
lags were −20 ≤ τ ≤ 20.

In panel B we see the evolution of the tkCCA results for changing BOLD noise levels
0 ≤ η ≤ 0.2 while γ = 0.1 is kept constant. For η = 0 (leftmost column), the simulated
BOLD is pure noise and does not contain any neurophysiological contribution. In this case
the canonical correlogram is almost flat. The variates show weak oscillations at the stimulus
frequency (16 samples). These oscillations reflect stimulus induced auto-correlations in the
simulated neural data. It might seem odd that tkCCA finds a temporal structure in the vari-
ates, even when there is no correlational structure at all in the artificial BOLD data (η = 0).
Due to the high dimensionality of the BOLD time series, it is very likely that tkCCA will
find a spatial pattern, whose time course matches that of some dimensions of the other data
source. Since the temporal structure is similar in our simulations (all simulated neural data
shared the same stimulus), this overfitting to auto-correlations can show up in the average
variates. But as the phase of the oscillation might vary, the effect on the average variates is
not as strong as on single estimates. Importantly, the average canonical correlogram does
not exhibit these overfitting effects (cf. Fig. 4 to 6, panel B, bottom left). However, as in this
setting the stimulus was only picked up by certain frequency bands (in contrast to the results
in Figs. 5 and 6), the oscillations in the variates appear only for nonzero values of α(f ).

11The area between the 25%- and 75%-percentiles is shaded in gray, but the correlogram is so stable for
different realizations of the data that this is not visible in most plots.
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Fig. 5 A: Parameter settings for detection of frequency specific coupling; β(f ) was frequency dependent
while α(f ) and h(f ) were uniform across all values of f ; B, C: Time-dependent canonical variates wx (τ )

recovered by tkCCA on simulated data; single examples are shown in rows 1–3, a mean over 100 simulations
in row 4 and the corresponding correlograms (in red, 25th and 75th percentiles in gray) in row 5; B: Variates
wx (τ ) for η (γ = 0.1); if there is no coupling (η = 0), some variates reflect stimulus driven auto-correlations;
for η > 0, the correct coupling coefficients β(f ) are found at the right time lags; C: Variates wx (τ ) for γ

(η = 0.05); for all values of γ tkCCA finds the right β(f ) at the right time lag; at high values of γ , stimulus
induced dependencies appear in the correlogram but wx (τ ) is still reveals the right β(f )

Already for very small η values, the coupling dynamics are well reproduced, which means
that tkCCA is very robust even if the signal of interest has a variance that is much smaller
than the noise variance.

In panel C, the stimulus gain γ is varied between 0 and 0.3, while the BOLD SNR is kept
fixed at η = 0.05. For all γ settings, the estimated filters wx(τ ) capture the true coupling
structure, as reflected by the pronounced maximum at τ = 4. As the stimulus dependency
of the neural time series increases with γ , sidelobes appear that reflect the periodicity of
the visual stimulus. As expected, they are only visible in frequency bands where α(f ) �=
0. While the stimulus-induced oscillations in the variates have the same frequency as the
stimulus, the canonical correlogram contains oscillations at double that frequency since it
shows only the absolute of the correlation.

3.2.4 Influence of the coupling strengths

In this section we demonstrate how tkCCA reacts to frequency-dependent strength of the
neurovascular coupling. To this end, we choose the stimulus susceptibility α(f ) and hemo-
dynamic response h(f, τ ) such that they are fixed for all frequencies f and allow only the
parameter β(f ) to depend on f (see Fig. 5, Panel A).

Panels B and C in Fig. 5 again show variations of this experiment for different values of
η (BOLD signal to noise level) and γ (stimulus susceptibility of the neural activity). Like
in Sect. 3.2.3, the respective other parameter was kept fixed at γ = 0.1 and η = 0.05. From
Panel B we see that as soon as the simulated BOLD contains small contributions from the
electrophysiological signal (i.e. η ≥ 0.01), tkCCA is able to recover the neurovascular cou-
pling modeled by the coupling coefficients β(f ) and the time lag given by the coupling
dynamics h(f, τ ). The influence of the coupling coefficients β(f ) is clearly visible not only
in the average canonical variates (fourth row), but even in each single trial (rows 1–3). Panel
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Fig. 6 A: Parameter settings for detection of frequency specific temporal coupling dynamics; α(f ) and β(f )

was uniform, whereas h(f, τ ) was frequency dependent; we chose four different delay parameters and two
different widths for eight frequency specific hemodynamic response functions; B: Time-dependent canonical
variates for different values of η (γ = 0.1); coupling parameters at the time lags specified in h(f, τ ) are reli-
ably captured at very low η; with increasing η, the estimated coupling dynamics become more pronounced;
C: Time-dependent canonical variates for different values of γ (η = 0.05); at γ = 0 (no stimulus), coupling
coefficients are recovered reliably; the correlograms exhibits oscillations at the stimulus frequency (16 sam-
ples) for high values of γ , but the interpretation of the correlogram is non-trivial, as it reflects many different
temporal dynamics (i.e. the stimulus and different frequency band dynamics)

C shows that with increasing influence of the periodical stimulus, the canonical variates
display increasing sidelobes. In contrast to Fig. 4, however, the sidelobes and the overall
periodicity now extends to the whole range of frequencies due to the f -uniform stimulus
susceptibility α(f ). This allows to clearly separate the effects of α(f ) and β(f ). As already
seen in the last section, the canonical correlograms (panels B and C, last row) capture well
the temporal correlation structure induced by spontaneous activity (main peak) and the pe-
riodical stimulus. As pointed out earlier in Sects. 3.2.2 and 3.2.4, when η = 0 (i.e. there is
no coupling) the canonical variates are dominated by stimulus induced auto-correlations. As
soon as there is any coupling between the neural and BOLD data (η > 0) however, tkCCA
clearly picks the correct coupling coefficients.

3.2.5 Influence of temporal dynamics in the neurovascular coupling

In a third set of experiments, we keep both α(f ) and β(f ) constant in f . The only fre-
quency dependence is in the width and delay of the hemodynamic response function h(f, τ )

(see Fig. 6, panel A). We chose four different delay parameters and two different widths to
obtain a different hemodynamic response for each of the eight frequency bands. Of course
this setting represents an extreme case and these differences in coupling dynamics are not
to be expected from real data. Similar to the simulations presented before, panels B and C
show realizations of this setting for different values of η and γ . Again, panel B shows that
the correct temporal coupling dynamics is found at levels of η as small as 0.01, while for
η = 0, the only temporal structure in the variates is due to auto-correlations in the simu-
lated neural data. Since h(f, τ ) mixes the stimulus with different delays into the simulated
BOLD, the latter does not exhibit a clear periodicity any more. Consequently, the estimated
variates/filter wx(τ ) do not show the sidelobes we know from the previous settings. While
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the canonical correlogram does exhibit oscillations at the stimulus frequency for τ > 0, the
temporal structure in the correlogram is not as easy to interpret as in the previous exam-
ples. This is due to the superposition of different effects in the correlogram: The temporal
dynamics of the stimulus and those of the coupling as defined in h(f, τ ).

3.3 Application to experimental fMRI/electrophysiological recordings

We applied tkCCA to real data acquired by simultaneous recordings of neurophysiological
activity and BOLD signal in response to visual stimulation. The data was recorded in the
primary visual cortex of three male rhesus monkeys (Macaca mulatta). All surgical oper-
ations and anaesthesia procedures have been described in detail elsewhere (Logothetis et
al. 1999, 2002). The experiments were approved by the local authorities (Regierungspräsid-
ium, Tübingen, Germany) and were in full compliance with the guidelines of the European
Community for the care and use of laboratory animals (EUVD 86/609/EEC).

3.3.1 Experimental design and data acquisition

Visual stimuli were presented binocularly using a gamma-corrected SVGA fiber-optic sys-
tem (AVOTEC, Silent Vision, USA). The stimulation protocol consisted of 32 second blocks
of visual stimulation using a rotating polar checkerboard stimulus at a size of 10◦ × 10◦ of
visual angle followed by a 32 second blank period of isoluminant gray. Checkerboard rota-
tion direction was reversed every 8 s to minimize adaptation. The duration of the entire scan
was 39.5 minutes corresponding to 37 blocks of visual stimulation.

The amplifiers for the electrophysiological recordings were custom made and have an
analog compensation mechanism for the noise induced by gradient-switching of the scanner.
The details of interference compensation and signal conditioning are given elsewhere (see
Logothetis et al. 2001; Öltermann et al. 2007 and Goense and Logothetis 2008). Data have
been recorded at a temporal resolution of 20 kHz. After performing additional software
based artifact removal we downsampled the data to 7 kHz and performed spectral analysis
on the time series.12 Frequency bands cutoffs (taken from Goense and Logothetis 2008) were
0.1–8 Hz, 8–12 Hz, 12–24 Hz, 24–40 Hz, 40–60 Hz, 60–120 Hz, 120–1000 Hz and 1–3 kHz.
Temporal bin size was set to 1 second. The spectral power in each band was centered and
divided by its respective standard deviation.

fMRI data consisted of a timeseries of 3D images (256-by-128-by-7 voxels, each hav-
ing a spatial extent of 0.25-by-0.25-by-1 mm), acquired at a temporal resolution of 0.25
Hz. Each session comprised 592 consecutive images of fMRI data (39.5 minutes of record-
ing). The first preprocessing step was a spatial coregistration to the first image recorded
using code from the fMRI analysis package SPM5, (SPM5 2005)). After manually seg-
menting the image for brain tissue (more specifically primary and secondary visual cortex),
each fMRI image was spatially smoothed with a three-dimensional Parzen (or de la Vallé-
Poussin) window (radius 1 mm or 4-by-4-by-1 voxels) as defined in (Harris 0978). We then
chose a spherical region of interest (15 mm radius) around the recording electrode to restrict
the number of voxels to approximately 4000. This restriction has been made merely for the
sake of interpretability of the results. In principle kCCA could deal with a lot more voxels,

12Separation of electrophysiological activity into frequency sub-bands allows for distinct interpretations of
neural activity; for instance, the lower parts of the spectrum (< 100 Hz) can be interpreted as the summed
input to a population of neurons, whereas the high frequency content (> 1 kHz) can be interpreted as the
(spiking) output from this population to other brain regions (Logothetis 2008).
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but in order to relate the BOLD signal to the (spatially confined) neural activity recorded
at the electrode it is reasonable to restrict the spatial extent of analysis to a physiologically
plausible region. As a last preprocessing step, we removed linear trends from the fMRI data
and centered the timecourses in each voxel.

3.3.2 Results for the experimental data

We applied the same analysis methods as in Sect. 3.2 to the data acquired in the experiments
described above. Examples for canonical variates of fMRI, temporal canonical variates of
electrophysiological data and the canonical correlograms are shown in Fig. 7. Panel A shows
single experiment examples. Single experiment here refers to one 39.5 minute recording ses-
sion. The top row are two representative fMRI variates wy computed by tkCCA, a yellow ar-
row indicates the position of the recording site. Below are the corresponding time-dependent
variates wx(τ ) for the electrophysiological data. Panel B shows the canonical correlograms
in the top panel (plotted are median and 25th and 75th percentile, n = 10) and in the bottom
figure the mean canonical variate for the electrophysiological data. Note that the temporal
resolution of the canonical correlograms and variates wx(τ ) is 1 Hz, whereas the temporal
resolution of the fMRI data is only 0.25 Hz. The two single experiment examples show that
the canonical variate for the fMRI data source has distinct patches of high coefficients in pri-
mary visual cortex close to the recording site of the electrophysiological data. High values in
the canonical variate of the fMRI data (Fig. 7, panel A, top row) indicate correlated activity
in the neural tissue at those locations. In contrast to the simulation data, there is no ground
truth available, as CCA is an unsupervised method. But considering that tkCCA yielded ro-
bust estimates of the spatial correlational structure at very high noise levels in simulations
(at η > 0.01, the ground truth of the fMRI variate was always recovered by tkCCA, results
not shown), we can assume that the spatial patterns revealed by tkCCA do reflect the corre-
lational structure in primary visual cortex. This correlational structure can arise for instance
from intra-cortical connections or common preferences for specific features in the visual

Fig. 7 A, top: single experiment examples of fMRI variates wy , high positive values (red) indicate functional
connectivity between the respective sites; position of the recording electrode is indicated by yellow arrows; A,

bottom: time-dependent variates wx (τ ) for the electrophysiological data, corresponding to the variates above;
B, top: canonical correlograms; median is plotted in red, in gray the 25th and 75th percentile (n = 10); note
the pronounced peak at 5 ± 1.7 seconds (mean ± standard deviation) and the maximum at half the stimulus
period (32 seconds); B, bottom: average canonical variate wx (τ ) for electrophysiological data (n = 10)
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stimulus. Figure 7, panel A (bottom row) shows the time-dependent variates wx(τ ) for the
electrophysiological data corresponding to the fMRI variates above. The coefficients of the
filters indicate that frequency content in the band from 60 Hz to 120 Hz at a time lag of 5
seconds contributes most to the neurovascular coupling. In some experiments (cf. Fig. 7, A,
bottom right) there is a weak oscillation in the filters with a period of approximately 64 sec-
onds, the length of one stimulation period. In other experiments (cf. Fig. 7, panel A, bottom
left) the time-dependent variate seems to be mainly capturing dependencies independent of
the stimulus (there are only weak oscillations in the variate at the stimulus frequency).

It is important to note that the spatial filters for the BOLD data wy have to be analyzed
on a single experiment basis as the exact position of the head, the radio-frequency coils
in the scanner and also the electrode position vary across sessions and subjects. Thus av-
eraging across subjects is not possible, due to the lack of spatial normalization routines.13

Electrophysiological variates and the canonical correlogram do not suffer from this problem.
Examples for grand averages in Fig. 7 panel B, confirm the results from single experiments:
It is mainly bandpower in the range between 60 Hz and 120 Hz at a time lag of 5 ± 1.7
seconds (mean ± one standard deviation, n = 10) that dominates the neurovascular cou-
pling. At time lags close to the maximal canonical correlation, the percentiles around the
median correlogram indicate a very low variance across experiments. However, with in-
creasing time lags the variance also increases. This is a consequence of the fact that some
recordings have a higher signal-to-noise ratio (with respect to the visual stimulus) than oth-
ers. The activity in the fMRI signal and the electrophysiology does not reflect the visual
stimulation equally well in all experiments and thus the stimulus induced sidelobes in the
correlogram are less pronounced in some trials. The timepoint of the maximal hemody-
namic response is in line with well established models of the HRF (Friston et al. 2000;
Buxton et al. 2004; Logothetis and Wandell 2004), the correlation between the neural ac-
tivity and BOLD response is maximized when the electrophysiological data is shifted by
approximately 5 seconds relative to the fMRI time series. In addition to the confirmation
of HRF models, the multivariate filters allow to draw conclusions about the correlational
structure in the brain and the temporal dynamics of the coupling.

Although we shifted in time only the electrophysiology data, it is equivalent for the cor-
relogram to shift in time the BOLD data. Note however that the number of dimensions in the
fMRI data source is significantly larger which renders regularization more critical. Due to
the lower temporal resolution of the raw fMRI data, the canonical variates and correlogram
consequently also have a temporal resolution of only 0.25 Hz (instead of 1 Hz in the case of
the embedding of the faster data source). Leaving aside these drawbacks, the embedding of
the spatially resolved data source allows to recover spatio-temporal maps which can be visu-
alized as movies showing how the correlational structure in the cortex changes in response
to stimulation (see Fig. 8).

4 Conclusion

We presented a generic framework for analyzing data from multiple sources with non-
instantaneous dependencies. The algorithm is based on kCCA and thus applicable to high
dimensional data such as fMRI images. By embedding one data source into its temporal

13In human fMRI experiments, the single subject data is often mapped on a template brain in order to com-
pare results across subjects; this procedure requires extensive spatial smoothing and a template brain; these
standards have not yet been established for non-human primate brain scans.
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Fig. 8 Spatio-temporal variates obtained using tkCCA and temporal embedding of the fMRI data; data was
the same as in Fig. 7, panel A, top left; a yellow arrow indicates the position of the recording electrode;
temporal resolution was 0.25 Hz, τ is increased in 4 second steps; as expected from the results in Fig. 7, the
maximum of the correlogram was at τ = 4; for τ > 0, the maps exhibit a pronounced positive peak in the
coefficients around the recording site

context before computing the kernel, tkCCA can find critical coupling features and tempo-
ral dynamics of the dependencies between the data sources. In tkCCA, one canonical variate
has a temporal dimension that can be visualized. It can be interpreted as the contribution of
each feature at each time lag to the canonical correlation. Instead of a canonical correlation
coefficient, tkCCA computes a canonical correlogram that reflects the coupling dynamics
between the two data sources. As in classical kCCA, the solutions can be efficiently for-
mulated as a generalized eigenvalue problem. Importantly, tkCCA recovers correlograms
which are coherent over time with respect to both, the sign and scale of correlations.

Based on theoretical considerations and results from extensive simulations we showed
that tkCCA is able to reliably capture the coupling dynamics between two data sources
even in the presence of strong auto-correlations in either data source. Applying tkCCA to
brain activity measurements, simultaneously recorded direct invasive measurements and in-
direct non-invasive measurements, results in estimates of the canonical correlogram that
are highly reproducible across sessions and subjects. The estimated time point of maximal
neurovascular correlation confirms well established models of the HRF (Friston et al. 2000;
Buxton et al. 2004; Logothetis and Wandell 2004). The filters computed by tkCCA are novel
in that they allow to draw conclusions about the features in the data that give rise to these
neurovascular coupling phenomena. This can give valuable insights in functional connec-
tivity in or between cortical regions. Up to date, most fMRI connectivity studies have to
rely entirely on unsupervised methods that use only fMRI data or supervised methods that
correlate BOLD data with a stimulus time series (including some model assumptions about
the HRF). The proposed method in combination with the simultaneous recordings offers for
the first time a purely data-driven approach for the multivariate analysis of neurovascular
coupling mechanisms.

Future directions of research could try to explore multi-dimensional correlograms or ex-
tensions to more than two data sources. Moreover, one could think of more sophisticated
regularization techniques as proposed for instance in (Blaschko et al. 2008) or extend-
ing the tkCCA framework to tensor data. Other potential applications of temporal kCCA
could be experiments including pharmacological interventions such as (Rauch et al. 2008a,
2008b) that interfere with neurovascular coupling mechanisms. If certain pharmacological
agents have an effect on those mechanisms, the canonical correlations should reflect this
change. Insights into how different experimental manipulations influence canonical corre-
lations and variates might help to understand better neurovascular coupling mechanisms.
Note that tkCCA is readily applicable also in other fields of science beyond brain imaging.
A MATLAB implementation of tkCCA as presented in this work can be downloaded from
http://user.cs.tu-berlin.de/~fbiessma/code.html.
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