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Abstract. We propose a real-time, Realizable, Responsive, Unobtrusive Unit (rt-
R2U2) to meet the emerging needs for System Health Management (SHM) of
new safety-critical embedded systems like automated vehicles, Unmanned Aerial
Systems (UAS), or small satellites. SHM for these systems must be able to han-
dle unexpected situations and adapt specifications quickly during flight testing
between closely-timed consecutive missions, not mid-mission, necessitating fast
reconfiguration. They must enable more advanced probabilistic reasoning for di-
agnostics and prognostics while running aboard limited hardware without affect-
ing the certified on-board software. We define and prove correct translations of
two real-time projections of Linear Temporal Logic to two types of efficient ob-
server algorithms to continuously assess the status of the system. A synchronous
observer yields an instant abstraction of the satisfaction check, whereas an asyn-
chronous observer concretizes this abstraction at a later, a priori known, time. By
feeding the system’s real-time status into a statistical reasoning unit, e.g., based
on Bayesian networks, we enable advanced health estimation and diagnosis. We
experimentally demonstrate our novel framework on real flight data from NASA’s
Swift UAS. By on-boarding rt-R2U2 aboard an existing FPGA already built into
the standard UAS design and seamlessly intercepting sensor values through read-
only observations of the system bus, we avoid system integration problems of
software instrumentation or added hardware. The flexibility of our approach with
regard to changes in the monitored specification is not due to the reconfigurability
offered by FPGAs; it is a benefit of the modularity of our observers and would
also be available on non-reconfigurable hardware platforms such as ASICs.

1 Introduction

Autonomous and automated systems, including Unmanned Aerial Systems (UAS),
rovers, and satellites, have a large number of components, e.g., sensors, actuators, and
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software, that must function together reliably at mission time. System Health Manage-
ment (SHM) [17] can detect, isolate, and diagnose faults and possibly initiate recovery
activities on such real-time systems. Effective SHM requires assessing the status of the
system with respect to its specifications and estimating system health during mission
time. Johnson et al. [17, Ch.1] recently highlighted the need for new, formal-methods
based capabilities for modeling complex relationships among different sensor data and
reasoning about timing-related requirements; computational expense prevents the cur-
rent best methods for SHM from meeting operational needs.

We need a new SHM framework for real-time systems like the Swift [16] electric
UAS (see Fig. 1), developed at NASA Ames. SHM for such systems requires:

RESPONSIVENESS: the SHM framework must continuously monitor the system. Devi-
ations from the monitored specifications must be detected within a tight and a priori
known time bound, enabling mitigation or rescue measures, e.g., a controlled emer-
gency landing to avoid damage on the ground. Reporting intermediate status and satis-
faction of timed requirements as early as possible is required for enabling responsive
decision-making.

UNOBTRUSIVENESS: the SHM framework must not alter crucial properties of the sys-
tem including functionality (not change behavior), certifiability (avoid re-certification
of flight software/hardware), timing (not interfere with timing guarantees), and toler-
ances (not violate size, weight, power, or telemetry bandwidth constraints). Utilizing
commercial-off-the-shelf (COTS) and previously proven system components is abso-
lutely required to meet today’s tight time and budget constraints; adding the SHM
framework to the system must not alter these components as changes that require them
to be re-certified cancel out the benefits of their use. Our goal is to create the most ef-
fective SHM capability with the limitation of read-only access to the data from COTS
components.

REALIZABILITY: the SHM framework must be usable in a plug-and-play manner by
providing a generic interface to connect to a wide variety of systems. The specification
language must be easily understood and expressive enough to encode e.g. temporal
relationships and flight rules. The framework must adapt to new specifications without
a lengthy re-compilation. We must be able to efficiently monitor different requirements
during different mission stages, like takeoff, approach, measurement, and return.

1.1 Related Work

Existing methods for Runtime Verification (RV) [4] assess system status by automatically
generating, mainly software-based, observers to check the state of the system against a
formal specification. Observations in RV are usually made accessible via software in-
strumentation [15]; they report only when a specification has passed or failed. Such in-
strumentation violates our requirements as it may make re-certification of the system
onerous, alter the original timing behavior, or increase resource consumption [23]. Also,
reporting only the outcomes of specifications violates our responsiveness requirement.

Systems in our applications domain often need to adhere to timing-related rules like:
after receiving the command ’takeoff’ reach an altitude of 600ft within five minutes.
These flight rules can be easily expressed in temporal logics; often in some flavor of lin-
ear temporal logic (LTL), as studied in [7]. Mainly due to promising complexity



Temporal-Logic Based Runtime Observer Pairs for SHM 359

results [6,11], restrictions of LTL to its past-time fragment have most often been used for
RV. Though specifications including past time operators may be natural for some other
domains [19], flight rules require future-time reasoning. To enable more intuitive spec-
ifications, others have studied monitoring of future-time claims; see [22] for a survey
and [5, 11, 14, 21, 27, 28] for algorithms and frameworks. Most of these observer algo-
rithms, however, were designed with a software implementation in mind and require a
powerful computer. There are many hardware alternatives, e.g. [12], however all either
resynthesize monitors from scratch or exclude checking real-time properties [2]. Our
unique approach runs the logic synthesis tool once to synthesize as many real-time ob-
server blocks as we can fit on our platform, e.g., FPGA or ASIC; our Sec. 4.1 only inter-
connects these blocks. Others have proposed using Bayesian inference techniques [10]
to estimate the health of a system. However, modeling timing-related behavior with dy-
namic Bayesian networks is very complex and quickly renders practical implementa-
tions infeasible.

1.2 Approach and Contributions

We propose a new paired-observer SHM framework allowing systems like the Swift
UAS to assess their status against a temporal logic specification while enabling advanced
health estimation, e.g., via discrete Bayesian networks (BN) [10] based reasoning. This
novel combination of two approaches, often seen as orthogonal to each other, enables
us to check timing-related aspects with our paired observers while keeping BN health
models free of timing information, and thus computationally attractive. Essentially, we
can enable better real-time SHM by utilizing paired temporal observers to optimize BN-
based decision making. Following our requirements, we call our new SHM framework
for real-time systems a rt-R2U2 (real-time, Realizable, Responsive, Unobtrusive Unit).

Our rt-R2U2 synthesizes a pair of observers for a real-time specification ϕ given in
Metric Temporal Logic (MTL) [1] or a specialization of LTL for mission-time bounded
characteristics, which we define in Sec. 2. To ensure RESPONSIVENESS of our rt-R2U2,
we design two kinds of observer algorithms in Sec. 3 that verify whether ϕ holds at a
discrete time and run them in parallel. Synchronous observers have small hardware foot-
prints (max. eleven two-input gates per operator; see Theorem 3 in Sec. 4) and return
an instant, three-valued abstraction {true, false,maybe}) of the satisfaction check of ϕ
with every new tick of the Real Time Clock (RTC) while their asynchronous counter-
parts concretize this abstraction at a later, a priori known time. This unique approach al-
lows us to signal early failure and acceptance of every specification whenever possible
via the asynchronous observer. Note that previous approaches to runtime monitoring
signal only specification failures; signaling acceptance, and particularly early accep-
tance is unique to our approach and required for supporting other system components
such as prognostics engines or decision making units. Meanwhile, our synchronous ob-
server’s three-valued output gives intermediate information that a specification has not
yet passed/failed, enabling probabilistic decision making via a Bayesian Network as
described in [26].

We implement the rt-R2U2 in hardware as a self-contained unit, which runs
externally to the system, to support UNOBTRUSIVENESS; see Sec. 4. Safety-critical
embedded systems often use industrial, vehicle bus systems, such as CAN and PCI,
interconnecting hardware and software components, see Fig 1. Our rt-R2U2 provides
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Fig. 1. rt-R2U2: An instance of our SHM framework rt-R2U2 for the NASA Swift UAS. Swift
subsystems (top): The laser altimeter maps terrain and determines elevation above ground by
measuring the time for a laser pulse to echo back to the UAS. The barometric altimeter deter-
mines altitude above sea level via atmospheric pressure. The inertial measurement unit (IMU)
reports velocity, orientation (yaw, pitch, and roll), and gravitational forces using accelerometers,
gyroscopes, and magnetometers. Running example (bottom): predicates over Swift UAS sensor
data on execution e; ranging over the readings of the barometric altimeter, the pitch sensor, and
the takeoff command received from the ground station; n is the time stamp as issued by the
Real-Time-Clock.

generic read-only interfaces to these bus systems supporting our UNOBTRUSIVENESS

requirement and sidestepping instrumentation. Events collected on these interfaces are
time stamped by a RTC; progress of time is derived from the observed clock signal,
resulting in a discrete time base N0. Events are then processed by our runtime observer
pairs that check whether a specification holds on a sequence of collected events. Other
RV approaches for on-the-fly observers exhibit high overhead [13,20,24] or use power-
ful database systems [3], thus, violate our requirements.

To meet our REALIZABILITY requirement, we design an efficient, highly parallel
hardware architecture, yet keep it programmable to adapt to changes in the specification.
Unlike existing approaches, our observers are designed with an efficient hardware im-
plementation in mind, therefore, avoid recursion and expensive search through memory
and aim at maximizing the benefits of the parallel nature of hardware. We synthesize
rt-R2U2 once and generate a configuration, similar to machine code, to interconnect
and configure the static hardware observer blocks of rt-R2U2, adapting to new specifi-
cations without running CAD or compilation tools like previous approaches. UAS have
very limited bandwidth constraints; transferring a lightweight configuration is prefer-
able to transferring a new image for the whole hardware design. The checks computed
by these runtime observers represent the system’s status and can be utilized by a higher
level reasoner, such as a human operator, Bayesian network, or otherwise, to compute a
health estimation, i.e., a conditional probability expressing the belief that a certain sub-
system is healthy, given the status of the system. In this paper, we compute these health
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estimations by adapting the BN-based inference algorithms of [10] in hardware. Our
contributions include synthesis and integration of the synchronous/asynchronous ob-
server pairs, a modular hardware implementation, and execution of a proof-of-concept
rt-R2U2 running on a self-contained Field Programmable Gate Array (FPGA) (Sec. 5).

2 Real-Time Projections of LTL
MTL replaces the temporal operators of LTL with operators that respect time bounds [1].

Definition 1 (Discrete-Time MTL). For atomic proposition σ ∈ Σ, σ is a formula. Let
time bound J = [t, t′] with t, t′ ∈ N0. If ϕ and ψ are formulas, then so are:

¬ϕ ∣ ϕ ∧ ψ ∣ ϕ ∨ ψ ∣ ϕ → ψ ∣ Xϕ ∣ ϕ UJ ψ ∣ ◻J ϕ ∣ ◇J ϕ.

Time bounds are specified as intervals: for t, t′ ∈ N0, we write [t, t′] for the set {i ∈
N0 ∣ t ≤ i ≤ t′}. We use the functions min,max,dur, to extract the lower time bound
(t), the upper time bound (t′), and the duration (t′ − t) of J . We define the satisfaction
relation of an MTL formula as follows: an execution e = (sn) for n ≥ 0 is an infinite
sequence of states. For an MTL formula ϕ, time n ∈ N0 and execution e, we define ϕ
holds at time n of execution e, denoted en ⊧ ϕ, inductively as follows:
en ⊧ true is true, en ⊧ σ iff σ holds in sn, en ⊧ ¬ϕ iff en ⊭ ϕ,
en ⊧ ϕ ∧ ψ iff en ⊧ ϕ and en ⊧ ψ, en ⊧ X ϕ iff en+1 ⊧ ϕ,
en ⊧ ϕ UJ ψ iff ∃i(i ≥ n) ∶ (i − n ∈ J ∧ ei ⊧ ψ ∧ ∀j(n ≤ j < i) ∶ ej ⊧ ϕ).

With the dualities ◇Jϕ ≡ true UJ ϕ and ¬◇J ¬ϕ ≡ ◻J ϕ we arrive at two additional
operators: ◻J ϕ (ϕ is an invariant within the future interval J) and ◇Jϕ (ϕ holds
eventually within the future interval J). In order to efficiently encode specifications in
practice, we introduce two special cases of ◻J ϕ and ◇Jϕ: τϕ ≡ ◻[0,τ] ϕ (ϕ is an
invariant within the next τ time units) and τϕ ≡ ◇[0,τ]ϕ (ϕ holds eventually within the
next τ time units). For example, the flight rule from Sec. 1, “After receiving the takeoff
command reach an altitude of 600ftwithin five minutes,” is efficiently captured in MTL
by (cmd == takeoff) → 5(alt ≥ 600ft), assuming a time-base of one minute and the
atomic propositions (alt ≥ 600ft) and (cmd == takeoff) as in Fig. 1.

Systems in our application domain are usually bounded to a certain mission time.
For example, the Swift UAS has a limited air-time, depending on the available battery
capacity and predefined waypoints. We capitalize on this property to intuitively monitor
standard LTL requirements using a mission-time bounded projection of LTL.

Definition 2 (Mission-Time LTL). For a given LTL formula ξ and a mission time tm ∈
N0, we denote by ξm the mission-time bounded equivalent of ξ, where ξm is obtained
by replacing every ◻ϕ, ◇ϕ, and ϕ U ψ operator in ξ by the τϕ, τϕ, and ϕ UJ ψ
operators of MTL, where J = [0, tm] and τ = tm.

Inputs to rt-R2U2 are time-stamped events, collected incrementally from the system.

Definition 3 (Execution Sequence). An execution sequence for an MTL formula ϕ,
denoted by ⟨Tϕ⟩, is a sequence of tuples Tϕ = (v, τe) where τe ∈ N0 is a time stamp and
v ∈ {true, false,maybe} is a verdict.

We use a superscript integer to access a particular element in ⟨Tϕ⟩, e.g., ⟨T 0
ϕ⟩ is

the first element in execution sequence ⟨Tϕ⟩. We write Tϕ.τe to access τe and Tϕ.v to
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access v of such an element. We say Tϕ holds if Tϕ.v is true and Tϕ does not hold if
Tϕ.v is false. For a given execution sequence ⟨Tϕ⟩ = ⟨T 0

ϕ⟩, ⟨T 1
ϕ⟩, ⟨T 2

ϕ⟩, ⟨T 3
ϕ⟩, . . . , the

tuple accessed by ⟨T iϕ⟩ corresponds to a section of an execution e as follows: for all
times n ∈ [⟨T i−1ϕ ⟩.τe + 1, ⟨T iϕ⟩.τe], en ⊧ ϕ in case ⟨T iϕ⟩.v is true and en ⊭ ϕ in case
⟨T iϕ⟩.v is false. In case ⟨T iϕ⟩ is maybe, neither en ⊧ ϕ nor en ⊭ ϕ is defined.

In the remainder of this paper, we will frequently refer to execution sequences col-
lected from the Swift UAS as shown in Fig. 1. The predicates shown are atomic propo-
sitions over sensor data in our specifications and are sampled with every new time
stamp n issued by the RTC. For example, ⟨Tpitch≥5○⟩ = ((false,0), (false,1), (false,2),
(true,3), . . . , (true,17), (true,18)) describes en ⊧ (pitch ≥ 5○) sampled over n ∈
[0,18] and ⟨Tpitch≥5○⟩ holds 19 elements.

3 Asynchronous and Synchronous Observers

The problem of monitoring a real-time specification has been studied extensively in
the past; see [8, 22] for an overview. Solutions include: (a) translating the temporal for-
mula into a finite-state automaton that accepts all the models of the specification [11,
12, 14, 28], (b) restricting MTL to its safety fragment and waiting until the operators’
time bounds have elapsed to decide the truth value afterwards [5,21], and (c) restricting
LTL to its past-time fragment [6,11,24]. Compiling new observers to automata as in (a)
requires re-running the logic synthesis tool to yield a new hardware observer, in automa-
ton or autogenerated VHDL code format as described in [12], which may take dozens of
minutes to complete, violating the REALIZABILITY requirement. Observers generated
by (b) are in conflict with the RESPONSIVENESS requirement and (c) do not natively
support flight rules. Our observers provide UNOBTRUSIVENESS via a self-contained
hardware implementation. To enable such an implementation, our design needs to re-
frain from dynamic memory, linked lists, and recursion – commonly used in existing
software-based observers, however, not natively available in hardware.

Our two types of runtime observers differ in the times when new outputs are gener-
ated and in the resource footprints required to implement them. A synchronous (time-
triggered) observer is trimmed towards a minimalistic hardware footprint and computes
a three-valued abstraction of the satisfaction check for the specification with each tick of
the RTC, without considering events happening after the current time. An asynchronous
(event-triggered) observer concretizes this abstraction at a later, a priori known, time
and makes use of synchronization queues to take events into account that occur after
the current time.1 Our novel parallel composition of these two observers updates the
status of the system at every tick of the RTC, yielding great responsiveness. An incon-
clusive answer when we can’t yet know true/false is still beneficial as the higher-level
reasoning part of our rt-R2U2 supports reasoning with inconclusive inputs. This al-
lows us to derive an intermediate estimation of system health with the option to initiate
fault mitigation actions even without explicitly knowing all inputs. If exact reasoning
is required, we can re-evaluate system health when the asynchronous observer provides
exact answers.

1 Similar terms have been used by others [9] to refer to monitoring with pairs of observers that
do not update with the RTC, incur delays dangerous to a UAS, and require system interaction
that violates our requirements (Sec. 1).
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In the remainder of this section, we discuss2 both asynchronous and synchronous
observers for the operators ¬ϕ, ϕ ∧ ψ, τ ϕ, ◻J ϕ, and ϕ UJ ψ. Informally, an MTL
observer is an algorithm that takes execution sequences as input and produces another
execution sequence as output. For a given unary operator ●, we say that an observer
algorithm implements en ⊧ ●ϕ, iff for all execution sequences ⟨Tϕ⟩ as input, it pro-
duces an execution sequence as output that evaluates en ⊧ ●ϕ (analogous for binary
operators).

3.1 Asynchronous Observers

The main characteristic of our asynchronous observers is that they are evaluated with
every new input tuple and that for every generated output tuple T we have that T.v ∈
{true, false} and T.τe ∈ [0, n]. Since verdicts are exact evaluations of a future-time
specification ϕ for each clock tick they may resolve ϕ for clock ticks prior to the current
time n if the information required for this resolution was not available until n.

Our observers distinguish two types of transitions of the signals described by execu-
tion sequences. We say transition of execution sequence ⟨Tϕ⟩ occurs at time n =
⟨T iϕ⟩.τe +1 iff (⟨T iϕ⟩.v⊕ ⟨T i+1ϕ ⟩.v) ∧ ⟨T i+1ϕ ⟩.v holds. Similarly, we say transition of
execution sequence ⟨Tϕ⟩ occurs at time n = ⟨T iϕ⟩.τe+1 iff (⟨T iϕ⟩.v⊕⟨T i+1ϕ ⟩.v)∧⟨T iϕ⟩.v
holds (⊕ denotes the Boolean exclusive-or). For example, transitions and of
⟨Tpitch≥5○⟩ in Fig. 1 occur at times 3 and 11, respectively.

Negation (¬ϕ). The observer for ¬ϕ, as stated in Alg. 1, is straightforward: for every
input Tϕ we negate the truth value of Tϕ.v. The observer generates (. . . , (true,2),
(false,3), . . . ).

Invariant within the Next τ Time Stamps ( τ ϕ). An observer for τ ϕ requires
registers m↑ϕ and mτs with domain N0: m↑ϕ holds the time stamp of the latest
transition of ⟨Tϕ⟩ whereas mτs holds the start time of the next tuple in ⟨Tϕ⟩. For the
observer in Alg. 2, the check m ≤ (Tϕ.τe − τ) in line 8 tests whether ϕ held for at
least the previous τ time stamps. To illustrate the algorithm, consider an observer for
5 (pitch ≥ 5○) and the execution in Fig. 1. At time n = 0, we have m↑ϕ = 0 and since

⟨T 0
pitch≥5○⟩ does not hold the output is (false,0). Similarly, the outputs for n ∈ [1,2]

are (false,1) and (false,2). At time n = 3, a transition of ⟨Tpitch≥5○⟩ occurs, thus
m↑ϕ = 3. Since the check in line 8 does not hold, the algorithm does not generate a
new output, i.e., returns ( , ) designating output is delayed until a later time, which
repeats at times n ∈ [4,7]. At n = 8, the check in line 8 holds and the algorithm returns
(true,3). Likewise, the outputs for n ∈ [9,10] are (true,4) and (true,5). At n = 11,
⟨T 11

pitch≥5○⟩ does not hold and the algorithm outputs (false,11). We note the ability of
the observer to re-synchronize its output with respect to its inputs and the RTC. For
n ∈ [8,10], outputs are given for a time prior to n, however, at n = 11 the observer re-
synchronizes: the output (false,11) signifies that en ⊭ 5 (pitch ≥ 5○) for n ∈ [6,11].
By the equivalence τ ϕ ≡ ¬ τ¬ϕ, we immediately arrive at an observer for τ ϕ from
Alg. 2 by negating both the input and the output tuple.

2 Proofs of correctness for every observer algorithm appear in the Appendix.
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Algorithm 1. Observer for ¬ϕ.
1: At each new input Tϕ:
2: Tξ ← (¬ Tϕ.v, Tϕ.τe)
3: return Tξ

Algorithm 2. Observer for τ ϕ. Initially, m↑ϕ =
mτs = 0.
1: At each new input Tϕ:
2: Tξ ← Tϕ

3: if transition of Tξ occurs then
4: m↑ϕ ←mτs

5: end if
6: mτs ← Tϕ.τe + 1
7: if Tξ holds then
8: if m↑ϕ ≤ (Tξ.τe − τ) holds then
9: Tξ.τe ← Tξ.τe − τ

10: else
11: Tξ ← ( , )
12: end if
13: end if
14: return Tξ

Algorithm 3. Observer for ϕ ∧ ψ.
1: At each new input (Tϕ, Tψ):
2: if Tϕ holds and Tψ holds and qϕ ≠ () holds and

qψ ≠ () holds then
3: Tξ ← (true,min(Tϕ.τe, Tψ .τe))
4: else if ¬Tϕ holds and ¬Tψ holds and qϕ ≠ () holds

and qψ ≠ () holds then
5: Tξ ← (false,max(Tϕ.τe, Tψ.τe))
6: else if ¬Tϕ holds and qϕ ≠ () holds then
7: Tξ ← (false, Tϕ.τe)
8: else if ¬Tψ holds and qψ ≠ () holds then
9: Tξ ← (false, Tψ.τe)

10: else
11: Tξ ← ( , )
12: end if
13: dequeue(qϕ, qψ , Tξ.τe)
14: return Tξ

Algorithm 4. Observer for ◻J ϕ.
1: At each new input Tϕ:
2: Tξ ← dur(J) Tϕ

3: if (Tξ.τe −min(J) ≥ 0) then
4: Tξ.τe ← Tξ.τe −min(J)
5: else
6: Tξ ← ( , )
7: end if
8: return Tξ

Algorithm 5. Observer for ϕUJ ψ. Initially,
mpre = m↑ϕ = 0, m↓ϕ = −∞, and p = false.

1: At each new input (Tϕ, Tψ) in lockstep mode:
2: if transition of Tϕ occurs then
3: m↑ϕ ← τe − 1
4: mpre ← −∞

5: end if
6: if transition of Tϕ occurs and Tψ holds then
7: Tϕ.v, p← true, true
8: m↓ϕ ← τe
9: end if

10: if Tϕ holds then
11: if Tψ holds then
12: if (m↑ϕ +min(J) < τe) holds then
13: mpre ← τe
14: return (true, τe −min(J))
15: else if p holds then
16: return (false,m↓ϕ)
17: end if
18: else if (mpre + dur(J) ≤ τe) holds then
19: return (false,max(m↑ϕ, τe −max(J)))
20: end if
21: else
22: p← false
23: if (min(J) = 0) holds then
24: return (Tψ.v, τe)
25: end if
26: return (false, τe)
27: end if
28: return ( , )

Invariant within Future Interval (◻J ϕ). The observer for ◻J ϕ, as stated in Alg. 4,
builds on an observer for τ ϕ and makes use of the equivalence τϕ ≡ ◻[0,τ] ϕ. Intu-
itively, the observer for τ ϕ returns true iff ϕ holds for at least the next τ time units.
We can thus construct an observer for ◻J ϕ by reusing the algorithm for τ ϕ, assign-
ing τ = dur(J) and shifting the obtained output by min(J) time stamps into the past.
From the equivalence ◇Jϕ ≡ ¬ ◻J ¬ϕ, we can immediately derive an observer for
◇J ϕ from the observer for ◻J ϕ. To illustrate the algorithm, consider an observer for
◻5,10 (alt ≥ 600ft) over the execution in Fig. 1. For n ∈ [0,4] the algorithm returns
( , ), since (⟨T 0...4

alt≥600ft⟩.τe−5) ≥ 0 (line 3 of Alg. 4) does not hold. At n = 5 the under-
lying observer for 5 (alt ≥ 600ft) returns (false,5), which is transformed (by line 4)
into the output (false,0). For similar arguments, the outputs for n ∈ [6,9] are (false,1),
(false,2), (false,3), and (false,4). At n ∈ [10,14], the observer for 5 (alt ≥ 600ft)
returns ( , ). At n = 15, 5 (alt ≥ 600ft) yields (true,10), which is transformed (by
line 4) into the output is (true,5). Note also that Xϕ ≡ ◻[1,1] ϕ.
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The remaining observers for the binary operators ϕ ∧ ψ and ϕ UJ ψ take tuples
(Tϕ, Tψ) as inputs, where Tϕ is from ⟨Tϕ⟩ and Tψ is from ⟨Tψ⟩. Since ⟨Tϕ⟩ and ⟨Tψ⟩
are execution sequences produced by two different observers, the two elements of the
input tuple (Tϕ, Tψ) are not necessarily generated at the same time. Our observers for
binary MTL operators thus use two FIFO-organized synchronization queues to buffer
parts of ⟨Tϕ⟩ and ⟨Tψ⟩, respectively. For a synchronization queue q we denote by q=()
its emptiness and by ∣q∣ its size.

Conjunction (ϕ∧ψ). The observer for ϕ∧ψ, as stated in Alg. 3, reads inputs (Tϕ, Tψ)
from two synchronization queues, qϕ and qψ. Intuitively, the algorithm follows the
rules for conjunction in Boolean logic with additional emptiness checks on qϕ and
qψ. The procedure dequeue(qϕ, qψ , Tξ.τe) drops all entries Tϕ in qϕ for which the
following holds: Tϕ.τe ≤ Tξ.τe (analogous for qψ). To illustrate the algorithm, con-
sider an observer for 5 (alt ≥ 600ft)∧(pitch ≥ 5○) and the execution in Fig. 1. For
n ∈ [0,9] the two observers for the involved subformulas immediately output (false, n).
For n ∈ [10,14], the observer for 5 (alt ≥ 600ft) returns ( , ), while in the meantime,
the atomic proposition (pitch ≥ 5○) toggles its truth value several times, i.e., (true,10),
(false,11), (false,12), (true,13), (false,14). These tuples need to be buffered in
queue qpitch≥5○ until the observer for 5 (alt ≥ 600ft) generates its next output, i.e.,
(true,10) at n = 15. We apply the function aggregate(⟨Tϕ⟩), which repeatedly re-
places two consecutive elements ⟨T iϕ⟩, ⟨T i+1ϕ ⟩ in ⟨Tϕ⟩ by ⟨T i+1ϕ ⟩ iff ⟨T iϕ⟩.v = ⟨T i+1ϕ ⟩.v,
to the content of qpitch≥5○ once every time an element is added to qpitch≥5○ . Therefore,
at n = 15: qpitch≥5○ = ((true,10), (false,12), (true,13), (false,14), (true,15)) and
q

5 (alt≥600ft) = ((true,10)). The observer returns (true,10) (line 3) and
dequeue(qϕ, qψ,10) yields: qpitch≥5○ = ((false,12), (true,13), (false,14), (true,15))
and q

5 (alt≥600ft) = ().

Until within Future Interval (ϕ UJ ψ). The observer for ϕ UJ ψ, as stated in Alg. 5,
reads inputs (Tϕ, Tψ) from two synchronization queues and makes use of a Boolean
flag p and three registers m↑ϕ, m↓ϕ, and mpre with domain N0 ∪ {−∞}: m↑ϕ (m↓ϕ)
holds the time stamp of the latest transition ( transition) of ⟨Tϕ⟩ and mpre holds
the latest time stamp where the observer detected ϕ UJ ψ to hold. Input tuples (Tϕ, Tψ)
for the observer are read from synchronization queues in a lockstep mode: (Tϕ, Tψ) is
split into (T ′ϕ, T

′
ψ), where T ′ϕ.τe = T ′ψ.τe and the time stamp T ′′ϕ .τe of the next tuple

(T ′′ϕ , T
′′
ψ ) is T ′ϕ.τe + 1. This ensures that the observer outputs only a single tuple at

each run and avoids output buffers, which would account for additional hardware re-
sources (see correctness proof in the Appendix for a discussion). Intuitively, if Tϕ does
not hold (lines 22-26) the observer is synchronous to its input and immediately outputs
(false, Tϕ.τe). If Tϕ holds (lines 11-20) the time stamp n′ of the output tuple is not nec-
essarily synchronous to the time stamp Tϕ.τe of the input anymore, however, bounded
by (Tϕ.τe − max(J)) ≤ n′ ≤ Tϕ.τe (see Lemma “unrolling” in the Appendix). To il-
lustrate the algorithm, consider an observer for (pitch ≥ 5○) U[5,10] (alt ≥ 600ft) over
the execution in Fig. 1. At time n = 0, we have mpre = 0, m↑ϕ = 0, and m↓ϕ = −∞
and since ⟨T 0

pitch≥5○⟩ does not hold, the observer outputs (false,0) in line 26. The out-
puts for n ∈ [1,2] are (false,1) and (false,2). At time n = 3, a transition of
⟨Tpitch≥5○⟩ occurs, thus we assign m↑ϕ = 2 and mpre = −∞ (lines 3 and 4). Since
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⟨T 3
pitch≥5○⟩ holds and ⟨T 3

alt≥600ft⟩ does not hold, the predicate in line 18 is evaluated,
which holds and the algorithm returns ⟨false,max(2,3 − 10)⟩ = (false,2). Thus, the
observer does not yield a new output in this case, which repeats for times n ∈ [4,9].
At time n = 10, a transition of ⟨Talt≥600ft⟩ occurs and the predicate in line 12
is evaluated. Since (2 + 5) < 10 holds, the algorithm returns (true,5), revealing that
en ⊧ (pitch ≥ 5○) U[5,10] (alt ≥ 600ft) for n ∈ [3,5]. At time n = 11, a transition of
⟨Tpitch≥5○⟩ occurs and since ⟨T 11

alt≥600ft⟩ holds, p and the truth value of the current input
⟨T 11

pitch≥5○⟩.v are set true and m↓ϕ = 11. Again, line 12 is evaluated and the algorithm re-
turns (true,6). At time n = 12, since ⟨T 12

pitch≥5○⟩ does not hold, we clear p in line 22 and
the algorithm returns (false,12) in line 26, i.e., en ⊭ (pitch ≥ 5○) U[5,10] (alt ≥ 600ft)
for n ∈ [7,12]. At time n = 13, a transition of ⟨Tpitch≥5○⟩ occurs, thus m↑ϕ = 12
and mpre = −∞. The predicates in line 12 and 15 do not hold, the algorithm returns
no new output in line 28. At time n = 14, a transition of ⟨Tpitch≥5○⟩ occurs, thus
p and ⟨T 14

pitch≥5○⟩.v are set true and m↓ϕ = 14. The predicate in line 15 holds, and the
algorithm outputs (false,14), revealing that en ⊭ (pitch ≥ 5○) U[5,10] (alt ≥ 600ft) for
n ∈ [13,14].

3.2 Synchronous Observers

The main characteristic of our synchronous observers is that they are evaluated at ev-
ery tick of the RTC and that their output tuples T are guaranteed to be synchronous
to the current time stamp n. Thus, for each time n, a synchronous observer outputs
a tuple T with T.τe = n. This eliminates the need for synchronization queues. In-
puts and outputs of these observers are execution sequences with three-valued verdicts.
The underlying abstraction is given by êval ∶ � → {true, false,maybe}, where � ∈
{¬ϕ,ϕ ∧ ψ, τ ϕ,◻J ϕ,ϕ UJ ψ}. The implementation of êval (¬ϕ) and êval (ϕ ∧ ψ)
follows the rules for Kleene logic [18]. For the remaining operators we define the ver-
dict Tξ.v of the output tuple (Tξ.v, n), generated for inputs (Tϕ.v, n) (respectively
(Tψ.v, n) for ϕ UJ ψ), as:

êval ( τ ϕ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

true if Tϕ.v holds and τ = 0,
false if Tϕ.v does not hold,
maybe otherwise.

êval (◻J ϕ) = maybe.

êval (ϕ UJ ψ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

true if
Tϕ.v and Tψ.v holds
and min(J) = 0,

false if Tϕ.v does not hold,
maybe otherwise.

To illustrate our synchronous observer algorithms, consider the previously discussed
formula 5 (alt ≥ 600ft) ∧ (pitch ≥ 5○), which we want to evaluate using the syn-
chronous observer:

ξ = êval (êval ( 5 (alt ≥ 600ft)) ∧ (pitch ≥ 5○))
For n ∈ [0,9], as in the case of the asynchronous observer, we can immediately output
(false, n). At n = 10, êval ( 5 (alt ≥ 600ft)) yields (maybe, n), thus, the observer is
inconclusive about the truth value of e10 ⊧ ξ. At n ∈ [11,12] since (pitch ≥ 5○) does
not hold, the outputs are (false, n). For analogous arguments, the output at n = 13 is
(maybe,13), at n = 14 (false,14), and at n = 15 (maybe,15). In this way, at times
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n ∈ {11,12,14} the synchronous observer completes early evaluation of ξ, producing
output that would, without the abstraction, be guaranteed by the exact asynchronous
observer with a delay of 5 time units, i.e., at times n ∈ {16,17,19}.

4 Mapping Observers into Efficient Hardware

We introduce a mapping of the observer pairs into efficient hardware blocks and a syn-
thesis procedure to generate a configuration for these blocks from an arbitrary MTL
specification. This configuration is loaded into the control unit of our rt-R2U2, where it
changes the interconnections between a pool of (static) hardware observer blocks and as-
signs memory regions for synchronization queues. This approach enables us to quickly
change the monitored specification (within resource limitations) without re-compiling
the rt-R2U2’s hardware, supporting our REALIZABILITY requirement.

Asynchronous observers require arithmetic operations on time stamps. Registers and
flags as required by the observer algorithm are mapped to circuits that can store informa-
tion, such as flip-flops. For the synchronization queues we turn to block RAMs (abun-
dant on FPGAs), organized as ring buffers. Time stamps are internally stored in registers
of width w = ⌈log2(n)⌉ + 2, to indicate −∞ and to allow overflows when performing
arithmetical operations on time stamps. Subtraction and relational operators as required
by the observer for τ ϕ (Fig. 2) can be built around adders. For example, the check
in line 8 of Alg. 2 is implemented using two w-bit wide adders: one for q = Tϕ.τe − τ
and one to decide whether m↑ϕ ≥ q. A third adder runs in parallel and assigns a new
value to mτs (line 6 of Alg. 2). Detecting a transition on ⟨Tϕ⟩ maps to an XOR gate
and an AND gate, implementing the circuit (T i−1ϕ .v ⊕T iϕ.v) ∧T iϕ.v, where T i−1ϕ .v is the
truth value of the previous input, stored in a flip-flop. The multiplexer either writes a
new output or sets a flag to indicate ( , ).

Synchronous observers do not require calculations on time stamps and directly map
to basic digital logic gates. Fig. 2 shows a circuit representing an êval ( τ ϕ) observer
that accounts for one two-input AND gate, one two-input OR gate, and two Inverter
gates. Inputs (i1, i2) and outputs (y1, y2) are encoded (to project the three-valued logic
into Boolean logic) such as: true (0,0), false (0,1), and maybe (1,0). Input j is set if
τe = 0 and cleared otherwise.

4.1 Synthesizing a Configuration for the rt-R2U2

The synthesis procedure to translate an MTL specification ξ into a configuration such
that the rt-R2U2 instantiates observers for both ξ and êval (ξ), works as follows:

– Preprocessing. By the equivalences given in Sect. 2 rewrite ξ to ξ′, such that opera-
tors in ξ′ are from {¬ϕ,ϕ ∧ ψ, τ ϕ,◻J ϕ,ϕ UJ ψ} (SA1).

– Parsing. Parse ξ′ to obtain an Abstract Syntax Tree (AST), denoted by AST(ξ′).
The leaves of this tree are the atomic propositions Σ of ξ′ (SA2).

– Allocating observers. For all nodes q in AST(ξ′) allocate both the corresponding
synchronous and the asynchronous hardware observer block (SA3).

– Adding synchronization queues. ∀q ∈ AST(ξ′): If q is of type ϕ∧ ψ or ϕ UJ ψ add
queues qϕ and qψ to the inputs of the respective asynchronous observer (MA1).
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Algorithm 6. Assigning synchronization queue sizes for AST(ξ′). Let S be a set of nodes;
Initially: w = 0, add all Σ nodes of AST(ξ′) to S; The function wcd ∶ � → N0 calculates the
worst-case-delay an asynchronous observer may introduce by: wcd(¬ϕ) = wcd(ϕ ∧ ψ) = 0,
wcd( τ ϕ) = τ , wcd(◻J ϕ) = wcd(ϕ UJ ψ) =max(J).

1: while S is not empty do
2: s,w ← get next node from S, 0
3: if s is type ϕ UJ ψ or ϕ ∧ψ then
4: w ←max(∣qϕ∣, ∣qψ ∣) +wcd(s)
5: end if
6: while s is not a synchronization queue do
7: s,w ← get predecessor of s in AST(ξ′), w +wcd(s)
8: end while
9: Set ∣q∣ = w; (q is opposite synchronization queue of s)

10: Add all ϕ UJ ψ and ϕ ∧ψ nodes that have unassigned synchronization queue sizes to S
11: end while

– Interconnect and dimensioning. Connect observers and queues according to AST(ξ′).
Execute Alg. 6 (MA2).

Let {σ1, σ2, σ3} ∈ Σ and ξ = σ1 → ( 10 (σ2) ∨ 100(σ3)) be an MTL formula
we want to synthesize a configuration for. SA1 yields ξ′ = ¬(σ1 ∧ ¬(¬ 10 (¬σ2)) ∧
¬(¬ 100 (¬σ3))) which simplifies to ξ = ¬(σ1 ∧ 10 (¬σ2) ∧ 100 (¬σ3)). SA2
yields AST(ξ′). SA3 instantiates two ϕ∧ψ, three ¬ϕ, one 10 Tϕ and one 100 Tϕ ob-
servers, both synchronous and asynchronous. MA1, introduces queues qσ1 , qξ2 , qξ3 , qξ4
and MA2 interconnects observers and queues and assigns ∣qσ1 ∣ = 100, ∣qξ2 ∣ = 100,
∣qξ3 ∣ = 10, and ∣qξ4 ∣ = 0, see Fig. 2.

q =
Tϕ.τe − τ

m↑ϕ ≥ q

mτs =
Tϕ.τe + 1

multiplexer

TξTϕ

edge detection

i1

j

i2

y1

y2

¬ σ2 ¬ σ3

10 ξ0 100 ξ1

ξ2 ∧ ξ3

σ1 ∧ ξ4

¬ ξ5

êval (¬ σ2) êval (¬ σ3)

êval ( 10 ξ0) êval ( 100 ξ1)

êval (ξ2 ∧ ξ3)

êval (σ1 ∧ ξ4)

êval (¬ ξ5)

σ1
σ2
σ3

inputs

asynchronous synchronous

outputs

depth d of
AST (ξ) = 5

en
′

⊧ ξ en ⊧ êval (ξ)

qσ1

qξ2 qξ3

qξ4

Fig. 2. Left: hardware implementations for τ ϕ (top) and ̂eval ( τ ϕ) (bottom). Right: subfor-
mulas of AST(ξ), observers, and queues synthesized for ξ. Mapping the observers to hardware
yields two levels of parallelism: (i) asynchronous (left) and the synchronous observers (right) run
in parallel and (ii) observers for subformulas run in parallel, e.g., 10 ξ0 and 100 ξ1.
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4.2 Circuit Size and Depth Complexity Results

Having discussed how to determine the size of the synchronization queues for our asyn-
chronous MTL observers, we are now in the position to prove space and time complex-
ity bounds.

Theorem 1 (Space Complexity of Asynchronous Observers). The respective asyn-
chronous observer for a given MTL specification ϕ has a space complexity, in terms of
memory bits, bounded by (2 + ⌈log2(n)⌉) ⋅ (2 ⋅m ⋅ p), where m is the number of binary
observers (i.e., ϕ ∧ ψ or ϕUJ ψ) in ϕ, p is the worst-case delay of a single predecessor
chain in AST(ϕ), and n ∈ N0 is the time stamp it is executed.

Theorem 2 (Time Complexity of Asynchronous Observers). The respective asyn-
chronous observer for a given MTL specification ϕ has an asymptotic time complexity

of O( log2 log2max(p,n) ⋅ d), where p is the maximum worst-case-delay of any ob-

server in AST(ϕ), d the depth of AST(ϕ), and n ∈ N0 the time stamp it is executed.

For our synchronous observers, we prove upper bounds in terms of two-input gates on
the size of resulting circuits. Actual implementations may yield significant better results
on circuit size, depending on the performance of the logic synthesis tool.

Theorem 3 (Circuit-Size Complexity of Synchronous Observers). For a given MTL
formula ϕ, the circuit to monitor êval (ϕ) has a circuit-size complexity bounded by
11 ⋅ m, where m is the number of observers in AST(ϕ).

Theorem 4 (Circuit-Depth Complexity of Synchronous Observers). For a given
MTL formula ϕ, the circuit to monitor êval (ϕ) has a circuit-depth complexity of 4 ⋅ d.

5 Applying the rt-R2U2 to NASA’s Swift UAS
We implemented our rt-R2U2 as a register-transfer-level VHDL hardware design, which
we simulated in MENTOR GRAPHICS MODELSIM and synthesized for different FPGAs
using the industrial logic synthesis tool ALTERA QUARTUS II.3 With our rt-R2U2, we
analyzed raw flight data from NASA’s Swift UAS collected during test flights. The
higher-level reasoning is performed by a health model, modeled as a Bayesian network
(BN) where the nodes correspond to discrete random variables. Fig. 3 shows the relevant
excerpt for reasoning about altitude. Directed edges encode conditional dependencies
between variables, e.g., the sensor reading SL depends on the health of the laser altime-
ter sensor HL. Conditional probability tables at each node define the local dependencies.
During health estimation, verdicts computed by our observer algorithms are provided
as virtual sensor values to the observable nodes SL, SB , SS ; e.g., the laser altimeter
measuring an altitude increase would result in setting SL to state inc. Then, the poste-
riors of the multivariate probability distribution encoded in the BN are calculated [10];
for details of modeling and reasoning see [25].

Our temporal specifications are evaluated by our runtime observers and describe
flight rules (ϕ1, ϕ2) and virtual sensors:

3 Simulation traces are available in the Appendix; tools can be downloaded at
http://www.mentor.com and http://www.altera.com.
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n
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en ⊧ êval (ϕ1)
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v

S BaroAlt
(SB)

H BaroAlt
(HB)

S LaserAlt
(SL)

H LaserAlt
(HL)

S Sensors
(SS)

U Altimeter
(UA) HB ΘHB
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bad 0.1

HL ΘHL
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bad 0.3

UA ΘUA

inc 0.5
dec 0.5

UA SS ΘSS
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inc 0.7
dec 0.1
maybe 0.2
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inc 0.1
dec 0.7
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dec 0.5

UA HL SL ΘSL
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Inputs to our rt-R2U2 are flight data, sampled in real time;
a health model as BN, right; and an MTL specification ϕ.
Outputs: health estimation (posterior marginals ofHL

andHB , quantifying the health of the laser and
barometric altimeter) and the status of the UAS.

Fig. 3. Adding SHM to the Swift UAS

ϕ1 = (cmd == takeoff ) → 10 (altB ≥ 600ft)
ϕ2 = (cmd == takeoff ) → ∗ (cmd == land)

ϕ1 encodes our running example flight rule; ϕ2 is a mission-bounded LTL property re-
quiring that the command land is received after takeoff, within the projected mission
time, indicated by ∗. Fig. 3 shows the execution sequences produced by both the asyn-
chronous (en ⊧ ϕ1) and the synchronous (en ⊧ êval (ϕ1)) observers for flight rule ϕ1.
To keep the presentation accessible we scaled the timeline to just 24 time stamps; the
actual implementation uses a resolution of 232 time stamps. The synchronous observer
is able to prove the validity of ϕ1 immediately at all time stamps but one (n = 1), where
the output is (maybe,1), indicated by . The asynchronous observer will resolve this
inconclusive output at time n = 11, by generating the tuple (false,1), revealing a vio-
lation of ϕ at time n = 1. The verdicts of σSL↑

,σSL↓
, σSB↑

, σSB↓
, ϕSS↑

, and ϕSS↓
are

mapped to inputs SL, SB , SS of the health model:

σSL↑
= (altL − alt′L) > 0 σSL↓

= (altL − alt′L) < 0
σSB↑

= (altB − alt′B) > 0 σSB↓
= (altB − alt′B) < 0

σSB↑
observes if the first derivation of the barometric altimeter reading is positive, thus,

holds if the sensors values indicate that the UAS is ascending. We set SB to inc if σSB↑

holds and to dec if σSB↓
holds. The specifications ϕSS↑

and ϕSS↓
subsume the pitch

and the velocity readings to an additional, indirect altitude sensor. Due to sensor noise,
simple threshold properties on the IMU signals would yield a large number of false
positives. Instead ϕSS↑

and ϕSS↓
use τ ϕ observers as filters, by requiring that the

pitch and the velocity signals exceed a threshold for multiple time steps.
ϕSS↑

= 10 (pitch ≥ 5○) ∧ 5 (vel up ≥ 2m
s

)
ϕSS↓

= 10 (pitch < 2○) ∧ 5 (vel up ≤ −2m
s

)

Our real-time SHM analysis matched post-flight analysis by test engineers, includ-
ing successfully pinpointing a laser altimeter failure, see Fig 3: the barometric altime-
ter, pitch, and the velocity readings indicated an increase in altitude (σSB↑

and ϕSS↑
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held) while the laser altimeter indicated a decrease (σSL↓
held). The posterior marginal

Pr(HL = healthy ∣ en ⊧ {σSL
, σSB

, ϕSS
}) of the node HL, inferred from the BN,

dropped from 70% to 8%, indicating a low degree of trust in the laser altimeter reading
during the outage; engineers attribute the failure to the UAS exceeding its operational
altitude.

6 Conclusion
We presented a novel SHM technique that enables both real-time assessment of the
system status of an embedded system with respect to temporal-logic-based specifica-
tions and also supports statistical reasoning to estimate its health at runtime. To ensure
REALIZABILITY, we observe specifications given in two real-time projections of LTL
that naturally encode future-time requirements such as flight rules. Real-time health
modeling, e.g., using Bayesian networks allows mitigative reactions inferred from com-
plex relationships between observations. To ensure RESPONSIVENESS, we run both an
over-approximative, but synchronous to the real-time clock (RTC), and an exact, but
asynchronous to the RTC, observer in parallel for every specification. To ensure UNOB-
TRUSIVENESS to flight-certified systems, we designed our observer algorithms with a
light-weight, FPGA-based implementation in mind and showed how to map them into
efficient, but reconfigurable circuits. Following on our success using rt-R2U2 to analyze
real flight data recorded by NASA’s Swift UAS, we plan to analyze future missions of
the Swift or small satellites with the goal of deploying rt-R2U2 onboard.
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