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ABSTRACT

This paper presents an inference algorithm that can discover
temporal logic properties of a system from data. Our algo-
rithm operates on finite time system trajectories that are
labeled according to whether or not they demonstrate some
desirable system properties (e.g. “the car successfully stops
before hitting an obstruction”). A temporal logic formula
that can discriminate between the desirable behaviors and
the undesirable ones is constructed. The formulae also in-
dicate possible causes for each set of behaviors (e.g. “If the
speed of the car is greater than 15 m/s within 0.5s of brake
application, the obstruction will be struck”) which can be
used to tune designs or to perform on-line monitoring to
ensure the desired behavior. We introduce reactive parame-
ter signal temporal logic (rPSTL), a fragment of parameter
signal temporal logic (PSTL) that is expressive enough to
capture causal, spatial, and temporal relationships in data.
We define a partial order over the set of rPSTL formulae
that is based on language inclusion. This order enables a
directed search over this set, i.e. given a candidate rPSTL
formula that does not adequately match the observed data,
we can automatically construct a formula that will fit the
data at least as well. Two case studies, one involving a cattle
herding scenario and one involving a stochastic hybrid gene
circuit model, are presented to illustrate our approach.

Categories and Subject Descriptors

I.2.6 [Learning]: Knowledge Acquisition; D.2.1 [Software
Engineering]: Requirements/Specifications; F.4.3 [
Mathematical Logic and Formal Languages]: Formal
Languages; D.4.7 [Organization and Design]: Real-Time
Systems and Embedded Systems
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1. INTRODUCTION
Reverse engineering has always been a cornerstone of phys-

ical and biological science. Given a set of input-output pairs,
one can interpret and predict the behavior of the underly-
ing system by inferring properties that are compatible with
this data. Reverse engineering can largely be divided into
three areas: system identification [16], machine learning [21],
and inductive logic programming [15]. In general, properties
inferred from reverse engineering can either describe the dy-
namics of a system or capture some high-level specification
that the system satisfies. Inferring dynamics can be a chal-
lenging task if very little is known about the system. On
the other hand, inferred specifications might be too “coarse-
grained” to be useful for problems of interest. Temporal
logics [11] bridge these two extremes by incorporating quan-
titative temporal and spatial constraints when describing
dynamic behaviors. For instance, we can use temporal log-
ics to express invariance properties such as “If x is greater
than xr, then within T1 seconds, it will drop below xr and
remain below xr for at least T2 seconds”.

In this paper, we address the problem of inferring a tem-
poral logic formula that can be used to distinguish between
desirable system behaviors, e.g. an airplane lands in some
goal configuration on the tarmac, and undesirable behaviors,
e.g. the airplane’s descent is deemed unsafe. Moreover, in
our approach, the inferred formulae can be used as predic-
tive templates for either set of behaviors. This in turn can
be used for on-line system monitoring, e.g. aborting a land-
ing if the descent pattern is consistent with unsafe behavior.
Since our procedure is automatic and unsupervised beyond
the initial labeling of the signals, it is possible that it can
discover properties of the system that were previously un-
known to designers, e.g. changing the direction of banking
too quickly will drive the airplane to an unsafe configuration.
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Most of the recent research on temporal logic inference
has focused on the estimation of parameters associated with
a given temporal logic structure [1, 22, 12, 2]. In the re-
ferred papers, the structure of the formula reflects the do-
main knowledge of the designer as well as the properties of
interest of a given system. However, it is possible that the
selected formula may not reflect achievable behaviors or may
overlook fundamental features. Furthermore, an important
feature of reverse engineering that is absent from the cur-
rent paradigm is the possibility of deriving new knowledge
directly from data, since it requires the user to be very spe-
cific about the system properties that are to be inferred.
Thus, a natural next step is to infer from data the formula
structure in addition to its parameters. As a result, in this
work, we guide the search via the robustness degree [8, 6], a
signed metric on the signal space which quantifies to what
degree a signal satisfies or violates a given formula.
In this paper, we solve the structural inference problem

and the parameter estimation problem simultaneously. The
structural inference problem is generally hard and even ill-
posed [9]. We reduce the difficulty of structural learning by
imposing a partial order on the set of reactive parametric
signal temporal logic (rPSTL) formulae. The defined par-
tial order allows us to search for a formula template in an
efficient, orderly fashion while the robustness degree allows
us to formulate the inference problem as a well-defined op-
timization problem.
The paper is outlined as follows. Section 2 reviews signal

and parametric signal temporal logic. Section 3 uses a herd-
ing example to motivate the inference problem. A new logic
called reactive parametric signal temporal logic is defined
and the formal problem statement is given in this section.
Section 4 presents some properties of rPSTL. The details
of our inference algorithm are described in Section 5. Two
case studies are presented in Section 6. Finally, Section 7
concludes the paper.

2. SIGNAL AND PARAMETRIC SIGNAL

TEMPORAL LOGIC
Given two sets A and B, F(A,B) denotes the set of all

functions from A to B. Given a time domain R
+ := [0,∞)

(or a finite prefix of it), a continuous-time, continuous-valued
signal is a function s ∈ F(R+,Rn). We use s(t) to denote
the value of signal s at time t, and s[t] to denote the suffix
of signal s from time t, i.e. s[t] = {s(τ)|τ ≥ t}. We use xs

to denote the one-dimensional signal corresponding to the
variable x of the signal s.
Signal temporal logic (STL) [17] is a temporal logic defined

over signals. The syntax of STL is inductively defined as

φ := µ|¬φ|φ1 ∨ φ2|φ1 ∧ φ2|φ1U[a,b)φ2, (1)

where [a, b) is a time interval, µ is a numerical predicate
in the form of an inequality gµ(s(t)) ∼ cµ such that gµ ∈
F(Rn,R), ∼∈ {<,≥}, and cµ is a constant.
The semantics of STL is defined recursively as

s[t] |= µ iff gµ(s(t)) ∼ cµ
s[t] |= ¬φ iff s[t] ̸|= φ

s[t] |= φ1 ∧ φ2 iff s[t] |= φ1 and s[t] |= φ2

s[t] |= φ1 ∨ φ2 iff s[t] |= φ1 or s[t] |= φ2

s[t] |= φ1U[a,b)φ2 iff ∃t′ ∈ [t+ a, t+ b)
s. t. s[t′] |= φ2, s[t

′′] |= φ1

∀t′′ ∈ [t+ a, t′).

(2)

We also use the constructed temporal operators ♦[a,b)φ =
⊤ U[a,b)φ (read “eventually φ”), where ⊤ is the symbol for
Boolean constant True, and ![a,b)φ = ¬♦[a,b)¬φ (read “al-
ways φ”). A signal s satisfies an STL formula φ if s[0] |= φ.

The language of an STL formula φ, L(φ), is the set of all
signals that satisfy φ, namely L(φ) = {s ∈ F(R+,Rn)|s |=
φ}. Given formulae φ1 and φ2, we say that φ1 and φ2 are
semantically equivalent , i.e., φ1 ≡ φ2, if L(φ1) = L(φ2).

Parametric signal temporal logic (PSTL) [1] is an exten-
sion of STL where cµ or the endpoints of the time intervals
[a, b) are parameters instead of constants. We denote them
as scale parameters π = [π1, ...,πnπ

], and time parameters
τ = [τ1, ..., τnτ

], respectively. They range over their respec-
tive hyper-rectangular domains Π ⊂ R

nπ and T ⊂ R
nτ . A

full parameterization is denoted by θ = [π, τ ] with θ ∈ Θ =
Π× T. The syntax and semantics of PSTL are the same as
those for STL. To avoid confusion, we will use φ to refer to an
STL formula and ϕ to refer to a PSTL formula. A valuation
v is a mapping that assigns real values to the parameters
appearing in a PSTL formula. Each valuation v of a PSTL
formula ϕ induces an STL formula φv where each parame-
ter in ϕ is replaced with its image in v. For example, given
ϕ = (xs ≥ π1)U[0,τ1)(ys ≥ π2) and v([π1,π2, τ1]) = [0, 4, 5],
we have φv = (xs ≥ 0)U[0,5](ys ≥ 4).

The robustness degree of a signal s with respect to an
STL formula φ at time t is given as r(s,φ, t), where r can be
calculated recursively via the quantitative semantics [8, 6]

r(s, µ≥, t) = gµ(s(t))− cµ
r(s, µ<, t) = cµ − gµ(s(t))
r(s,¬φ, t) = −r(s,φ, t)

r(s,φ1 ∧ φ2, t) = min(r(s,φ1, t), r(s,φ2, t))
r(s,φ1 ∨ φ2, t) = max(r(s,φ1, t), r(s,φ2, t))

r(s,φ1U[a,b)φ2, t) = sup
t′∈[t+a,t+b)

(min(r(s,φ2, t
′),

inf
t′′∈[t,t′)

r(s,φ1, t
′′)))

where µ≥ is a predicate of the form gµ(s(t)) ≥ cµ and µ< is
a predicate of the form gµ(s(t)) < cµ.

We use r(s,φ) to denote r(s,φ, 0). A signed distance from
a point x ∈ X := F(R+,Rn) to a set S ⊆ X is defined as

Distρ(x, S) :=

{

−inf{ρ(x, y)|y ∈ cl(S)} if x /∈ S
inf{ρ(x, y)|y ∈ X \ S} if x ∈ S

(3)

with cl(S) denoting the closure of S, ρ is a metric defined as

ρ(s, s′) = sup
t∈T

{d(s(t), s′(t))}, (4)

and d corresponds to the metric defined on the domain R
n

of signal s. It has been shown in [8] that r(s,φ) is an under-
approximation of Distρ(s, L(φ)).

3. PROBLEM STATEMENT

3.1 Motivating Example
We first give a motivating scenario that will serve as a run-

ning example throughout the rest of this paper. Consider
the example shown in Figure 1. A rancher keeps track of the
location of his cattle via GPS devices embedded in ear tags.
The rancher herds the cattle to new grazing grounds. While
most of the cattle are successfully herded to the rancher’s
grounds, some wander into someone else’s land, indicating
that there are likely one or more breaches in the fencing sep-
arating the two properties. However, searching for a breach
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Figure 1: A herding example. The desired behaviors
are shown in green, while the undesired ones are
shown in red.

in the fencing would be very difficult to do if the property
is large.
Consider the following PSTL formula that describes un-

desirable behaviors

ϕund = ♦[0,τ1)(![0,τ2)(d(s,πbreach) < d0) ⇒
♦[τ3,τ4)(Distρ(s,D) ≥ 0)),

(5)

where πbreach is a parameter describing the breach location
(the corner of region B), D is someone else’s grazing ground,
d0 is a threshold, and d and Distρ(., .) are defined in Sec-
tion 2. The formula reads as “If there is a time t in [0, τ1)
such that if the cow remains within d0 of πbreach for the
next τ2 seconds, then in at least τ3 and at most τ4 sec-
onds, the cow is guaranteed to enter D.” The structure of
the formula gives quite a bit of insight into the cows’ be-
havior. The sub-formula ♦[τ3,τ4)(Distρ(s,D) ≥ 0) specifies
the undesirable behavior (classifies behaviors), and the sub-
formula ![0,τ2)(d(s,πbreach) < d0) provides a pre-condition
of the undesirable behavior (predicts behaviors). Finding a
parameterization of this formula that fits the data has prac-
tical value, as searching for the parameter πbreach will yield
the location of the breach, allowing the farmhands to mend
it.

3.2 Reactive Parametric Signal Temporal Logic
We define reactive parametric signal temporal logic (rP-

STL), a fragment of PSTL that is expressive enough to cap-
ture causal relationships that are crucial to a wide range of
applications.
The set of predicates used in rPSTL is restricted to the set

of linear predicates of the form (ys ∼ π) where ∼∈ {<,≥},
and π is a scale parameter.
The syntax of rPSTL is given as

ϕ ::= ♦[τ1,τ2)(ϕc ⇒ ϕe) (6a)

ϕc ::= ♦[τ1,τ2)ℓ|![τ1,τ2)ℓ|ϕc ∧ ϕc|ϕc ∨ ϕc (6b)

ϕe ::= ♦[τ1,τ2)m|![τ1,τ2)m|ϕe ∧ ϕe, |ϕe ∨ ϕe (6c)

where ℓ and m are linear predicates, and τ1 and τ2 are time
parameters. We refer to ϕc as the cause formula and ϕe as
the effect formula.
The semantics of rPSTL is the same as PSTL. Since rP-

STL is a fragment of PSTL, any valuation v of an rPSTL

formula induces an STL formula. We call the fragment of
all such STL formulae reactive STL (rSTL). Let ci be real
values. The quantitative semantics of a signal with respect
to an rSTL formula are given by

r(s, (ys ≥ c1), t) = ys(t)− c1
r(s, (ys < c1), t) = c1 − ys(t)
r(s,![c1,c2)φ, t) = min

t′∈[t+c1,t+c2)
r(s,φ, t′)

r(s,♦[c1,c2)φ, t) = max
t′∈[t+c1,t+c2)

r(s,φ, t′)

(7)

Formula (6a) can be read as “If there is an instance t in
the time interval [τ1, τ2) such that an event described by
formula ϕc occurs, then an event described by formula ϕe

will be triggered.” For this reason, in an rPSTL (rSTL)
formula, we call sub-formula ϕc (φc) the cause formula and
sub-formula ϕe (φe) the effect formula. We call this fragment
reactive PSTL because we say that the system reacts to the
cause ϕc by producing an effect ϕe. The causal structure
fits the practical needs of automatically identifying causes
of certain events, such as unauthorized network intrusion
[3]. In this case, the learned cause formula can serve as an
on-line monitor for intrusion detection.

rPSTL can be used to express a wide range of important
system properties, such as

• Bounded-time invariance, e.g. ♦[0,τ1)(![0,τ2)(ys < π1)
⇒ ![τ3,τ4)(ys < π2)) (“If there exists a time t ∈ [0, τ1)
such that if ys is less than π1 for the next τ2 seconds,
then it will be less than π2 everywhere in [t + τ3, t +
τ4).”)

• Reachability to multiple regions in the state space,
e.g. ♦[0,τ1)(♦[0,τ2)(ys ≥ π1) ⇒ ♦[τ3,τ4)(ys ≥ π2) ∨
♦[τ3,τ4)(ys < π3)) (“If there exists a time t ∈ [0, τ1)
such that if ys is greater than π1 within the next τ2
seconds, then eventually ys is either less than π3 or
greater than π2 from t+ τ3 seconds to t+ τ4 seconds.”)

We can approximate (5) with the rPSTL formula

ϕ∗
und = ♦[0,τ1)(ϕ

∗
und,c ⇒ ϕ∗

und,e)
ϕ∗

und,c = ![0,τ2)(ys ≥ πbd) ∧![0,τ2)(ys < πbu)∧
![0,τ2)(xs ≥ πbl) ∧![0,τ2)(xs < πbr)

ϕ∗
und,e = ![τ3,τ4)(ys ≥ πdd) ∧![τ3,τ4)(ys < πdu)∧

![τ3,τ4)(xs ≥ πdl) ∧![τ3,τ4)(xs < πdr)

(8)

The scale parameters are shown in Figure 1. The formula
ϕ∗

und can be interpreted as “If a cow is in B for the next τ2
seconds (ϕ∗

und,c), then it is guaranteed to be in D within τ3
seconds and remain in D for τ4 − τ3 seconds(ϕ∗

und,e).”

Remark 1. (Limitations of rPSTL) There are some tem-
poral properties that cannot be described directly in rPSTL,
namely,

• Concurrent eventuality, e.g. ϕc,e = ♦[0,τ1)((ys < π1)∧
(xs ≥ π2)). (“Within τ1 seconds, ys is less than π1 and
xs is greater than π2 at the same time.”)

• Nested “always eventually”, e.g. ϕc,e = ![0,τ1)♦[τ2,τ3)

(ys < π1). (“At any time t in the next τ1 seconds,
ys will be less than π1 at some point in the interval
[t+ τ2, t+ τ3).”)

The lack of concurrent eventuality means that we can-
not directly specify that a trajectory will eventually reach
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some intersection of half-spaces in the state-space, though
we can approximate such properties by specifying ϕc,e =
♦[0,τ1)(ys < π1) ∧ ♦[0,τ1)(xs > π2).
The lack of nested “always eventually” limits the periodic

properties that may be expressed, but we can approximate
such properties by specifying ϕc,e = ♦[τ2,τ3)(ys < π1) ∧
. . .∧♦[τ2+nε,τ3+nε)(ys < π1), that is by selecting n points in
the interval [0, τ1) ε apart and specifying that the property
♦[τ2,τ3)(ys < π1) is true at all points.

3.3 Problem Description
In this paper, we consider the following problem:

Problem 1. Given a set of labeled signals {(si, pi)}
N
i=1,

where signal si has a finite duration and pi = 1 if si demon-
strates a desired behavior and pi = 0 if si does not, find an
rSTL formula φdes (or φund) such that

• si |= φdes iff pi = 1 (or si |= φund iff pi = 0) ∀i =
1, . . . , N (classification).

• φdes (or φund) can be used to determine pi from a
prefix of si ∀i = 1, . . . , N (prediction).

The nature of the problem of interest determines whether
φdes or φund is needed. For instance, when trying to find
possible causes of aircraft crashes, φund is more relevant.
In the following, for brevity, we only define the problems
involved with φdes. Problems involved with φund can be
defined similarly.
We approximate the solution to Problem 1 by finding the

cause and effect formulae (see (6b)) and (6c)) separately.
First, we solve the classification problem by searching for an
effect formula φdes,e that can adequately classify the si based
on the last t̃ seconds of the observed signals. That is, we
assume that the observed desirable or undesirable behaviors
occur in the last t̃ seconds of the observed signal si. (Please
refer to Remark 3 for guidelines for selecting t̃.) Making
this assumption yields a significant computational speedup:
inferring time bounds for a single formulae over the timescale
T requires more computation than inferring time bounds for
two formulae over timescales t̃ and T − t̃, respectively.
The classification procedure can be cast as the following

optimization problem.

Problem 2. (Classification) Let σi be the signal that re-
sults from truncating si to its final t̃ seconds. Find an effect
formula φdes,e with syntax given by (6c) such that the rP-
STL formula ϕdes,e and valuation vdes,e minimize

Je(ϕ, v) =
1

N

N
∑

i=1

l(pi, r(si,φv)) + λ||φv||, (9)

where r is the robustness degree defined in Section 2, φv is
derived from ϕ with valuation v, l is a loss function, λ is a
weighting parameter, and ||φv|| is the length of φv (number
of linear predicates that appear in φv).

A natural loss function l is the total number of signals that
φv mis-classifies. Unfortunately, such a discrete measure of
success is not helpful for iterative optimization procedures.
Instead, we propose to continuize l by using the robustness
degree as an intermediary fitness function, a measure of how
well a given formula fits observed data. We penalize formula
length in our approach because if φdes,e grows arbitrarily

long, it becomes as complex to represent as the data itself,
which would render the inference process redundant.

After solving Problem 2, we need to find a cause formula
φdes,c that is consistent with the mined rPSTL template
ϕdes,e and the full signals si. We do this by performing the
following optimization.

Problem 3. (Prediction) Find a formula φdes that mini-
mizes the cost

Jc(ϕ, v) =
1

N

N
∑

i=1

l(pi, r(si,φv)) + λ||φv||, (10)

where ϕ = ♦[0,τ1)(ϕc ⇒ ϕdes,e) and ϕdes,e is the solution to
Problem 2.

The minimization of l in Problem 2 maximizes the classi-
fication quality. Solving Problem 3 after Problem 2 yields a
cause formula φdes,c such that if a system produces a signal
prefix that satisfies φdes,c, then pi is guaranteed to be 1.

4. PROPERTIES OF RPSTL
In this section, we present some properties of rSTL and

rPSTL that are essential for the design of our inference al-
gorithm. We define a partial order over rPSTL, the set of
all rPSTL formulae. The formulae in rPSTL can be orga-
nized in a directed acyclic graph (DAG) where a path exists
from formula ϕ1 to formula ϕ2 iff ϕ1 has a lower order than
ϕ2. Finally, for any parameterization, the robustness degree
of a signal with respect to a formula φ1,v is greater than
with respect to φ2,v if ϕ1 has a higher order than ϕ2. This
enables us to find an rSTL formula against which a signal
is more robust by searching for a parameterization of an
rPSTL formula that is further down the DAG.

4.1 Partial Orders Over rSTL and rPSTL
We define two relations 2S and 2P for rSTL formulae

and rPSTL formulae, respectively.

Definition 1.

1. For two rSTL formulae φ1 and φ2, φ1 2S φ2 iff ∀s ∈
F(R+,Rn), s |= φ1 ⇒ s |= φ2, i.e. L(φ1) ⊆ L(φ2).

2. For two rPSTL formulae ϕ1 and ϕ2, ϕ1 2P ϕ2 iff ∀v,
φ1,v 2S φ2,v, where the domain of v is Θ(ϕ1)∪Θ(ϕ2),
the union of parameters appearing in ϕ1 and ϕ2.

Based on these definitions and the semantics of rSTL and
rPSTL, we have

Proposition 1. Both 2S and 2P are partial orders.

Proof. (Sketch) A partial order 2 is a binary relation
that is reflexive, transitive and antisymmetric. The equiva-
lence with language inclusion of 2S is used to prove that it
is a partial order. The relationship of 2P with 2S is used
to show that 2P is a partial order. For example, the anti-
symmetry of 2P can be proved as follows. If ϕ1 2P ϕ2 and
ϕ2 2P ϕ1, we have

∀v,φ1,v 2S φ2,v and φ2,v 2S φ1,v

⇒ ∀v,φ1,v ≡ φ2,v due to antisymmetry of 2S

⇒ ϕ1 ≡ ϕ2
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Further, we have

Proposition 2. The partial order 2P satisfies the fol-
lowing properties.

1. ϕ1 ∧ ϕ2 2P ϕj 2P ϕ1 ∨ ϕ2 for j = 1, 2

2. ![τ1,τ2)ℓ 2P ♦[τ1,τ2)ℓ, where ℓ is a linear predicate;

3. For two rPSTL formulae, ϕ1 := ♦[τ1,τ2)(ϕc1 ⇒ ϕe1)
and ϕ2 := ♦[τ1,τ2)(ϕc2 ⇒ ϕe2), ϕ1 2P ϕ2 iff ϕc2 2P

ϕc1 and ϕe1 2P ϕe2.

The first property is an extension of the propositional logic
rules A ∧ B ⇒ A ⇒ A ∨ B. The second property states
“If a property is always true over a time interval, then it
is trivially true at some point in that interval”. The third
property is easy to verify once we consider the semantic
equivalence of ϕc ⇒ ϕe and ¬ϕc∨ϕe. An rPSTL formula can
be made more inclusive by either making the effect formula
more inclusive or the cause formula more exclusive.

4.2 DAG and Robustness Degree
The structure of rPSTL and the definition of the partial

order 2P enable the following theorem.

Theorem 1. The formulae in rPSTL have an equivalent
representation as nodes in an infinite DAG. A path exists
from formula ϕ1 to ϕ2 iff ϕ1 2P ϕ2. The DAG has a unique
top element (⊤) and a unique bottom element (⊥).

Proof. (Sketch) The proof of this theorem requires the
intermediate results that the family of formulae Φ with syn-
tax (6b) and (6c) (e.g. cause and effect subformulae) form a
lattice when ordered according to 2P . A partially ordered
set < X,2> forms a lattice if any two elements x1, x2 ∈ X
have a join and a meet [4]. In our case, we need to prove
that for all ϕ1,ϕ2 ∈ Φ, their join ϕ1 ⊓ ϕ2 and meet ϕ1 ⊔ ϕ2

exist and are unique. This can be done by first treating
the subformulae !Ip and ♦Ip where p is a linear predicate
and I is a time interval I := [τ1, τ2) as different Boolean
predicates. Then the existence and uniqueness of ϕ1 ⊓ ϕ2

(ϕ1 ⊔ ϕ2) can be proved by the existence and uniqueness
of ϕ1 ∧ ϕ2 (ϕ1 ∨ ϕ2)[11] by putting formulae in Disjunctive
(Conjunctive) Normal Form . Finally, since < rPSTL,2P>
is a lattice, it has an equivalent representation as an infinite
DAG [4].

An example of such a DAG is shown in Figure 5.
Next, we establish a relationship between the robustness

degrees of a signal s with respect to rSTL (rPSTL) formulae
φ (ϕ) and the partial order 2S (2P ).

Theorem 2. The following statements are equivalent:

1. φ1 2S φ2;

2. ∀s ∈ F(R+,Rn), r(s,φ1) ≤ r(s,φ2).

Proof. 2 ⇒ 1 can be easily proved by using contradic-
tion. As for 1 ⇒ 2, since L(φ1) ⊂ L(φ2), for any s ∈
F(R+,Rn), we need to first enumerate the following three
cases and prove that 1 ⇒ 2 is true for each: (a) s ∈ L(φ1);
(b) s ∈ L(φ1) ∩ L(¬φ2); and (c) s ∈ L(¬φ1) ∩ L(¬φ2). This
can be done by using the relationship between r(s,φ) and
Distρ(s, L(φ)) as described by (3).
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Figure 2: Illustration of the relationship between
rPSTL formulae and robustness degree.

Corollary 1. The following statements are equivalent:

1. ϕ1 2P ϕ2;

2. ∀s ∈ F(R+,Rn) and ∀v, r(s,φ1,v) ≤ r(s,φ2,v).

Corollary 1 is illustrated in Figure 2. The formulae are
organized according to the relation ϕ1 2P ϕ2,ϕ3 2P ϕ4,
which means that r(s,φ1,v) ≤ r(s,φ2,v), r(s,φ3,v)≤ r(s,φ4,v)
for all valuations v.

Theorem 1 and Corollary 1 have important implications
for solving Problem 1. The formula inferred by our proce-
dure should be a close representation of the properties that
differentiate between desired and undesired behavior. Re-
stricting the inferred formula (shrinking its language) by a
small amount should result in a formula that cannot dis-
criminate between the two cases. Thus, the mined formula
should in principle be the lowest ordered satisfying formula.
The DAG representation of rPSTL can naturally be used
to find such a “barely” satisfying formula. The search starts
from the most exclusive formula and follows directed edges
until a satisfying formula is found. This is shown in Figure
2. The formulae induced from optimal valuations (denoted
with ∗ superscripts) of formulae ϕ1,ϕ2,ϕ3 are all still vi-
olated by s (have negative robustness degrees). Thus, we
have to go up the DAG to formula ϕ4 to find a formula that
s ‘barely’ satisfies, i.e. a formula with a small yet positive
robustness degree.

The interaction between the graph search and parameter
estimation is further illustrated in Figure 3. The top left and
right plots show the x and y coordinates, respectively, of a
single cow’s trajectory. The center left (right) figure shows
the robustness degree with respect to ϕ1 := ♦[0,τ)(x > 100)
(ϕ2 := ♦[0,40)(y < π)) for various values of τ (π). Note that
by selecting the parameter τ(π) for each ϕi, we can maximize
or minimize the robustness degree of the signal with respect
to the induced formula φi,v. The bottom left plot shows the
robustness degree for ϕ3 := ϕ1 ∧ ϕ2 for various pairs (τ,π)
and the bottom right plot shows the robustness degree with
respect to ϕ4 := ϕ1 ∨ ϕ2. Note that ϕ3 2P ϕ1(ϕ2) 2P

ϕ4. By considering ϕ3 rather than ϕ1 or ϕ2 alone, we can
find a larger class of rSTL formulae that strongly violate
the specification, which is useful for mining formulae with
respect to undesirable behavior. Similarly, by considering
ϕ4, we can find a larger class of formulae that robustly satisfy
the behavior. This is useful when we consider large groups
of traces, as it is more likely that for two signals s1, s2 where
p1 = 1, p2 = 0, we can find a formula φj,v, j ∈ {3, 4} such
that r(s1,ϕj,v) > 0 and r(s2,ϕj,v) < 0 for i = 1, 2 than to
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Figure 3: Simple example of formula search using
cattle herding data.

be able to find a formula φ1,v or φ2,v that achieves the same
classification.

5. SOLUTION
In this work, we infer an rPSTL formula by inferring the

effect and cause formulae separately. Inferring the formulae
separately still constitutes a search on finite subgraphs of the
infinite DAG. When searching for the effect formula φe, we
search over only the nodes of form ♦[0,τ1)(⊤ ⇒ ϕe). When
searching for the entire formula in the prediction phase,
we only search among the nodes of the form ♦[0,τ1)(ϕc ⇒
ϕdes,e), where ϕdes,e is the effect formula found in the clas-
sification phase. The framework for solving Problem 2 is
detailed in Alg. 1. The prediction algorithm to solve Prob-
lem 3 is similar to Alg. 1.

Initialization.
Our algorithm operates on V , the set of all variables repre-

sented in the output signals from the system. The inference
process begins in line 4 of Alg. 1, where DAGInitialization(V )
generates the basis of the candidate formulae. The basis is
a set of linear predicates with temporal operators, called ba-
sis nodes, of the form O[τ1,τ2)(xs ∼ π1) where O ∈ {!,♦},
∼∈ {≥, <} and x ∈ V . Edges are constructed from ϕi to
ϕj in the initial graph G1 iff ϕj 2P ϕi. For example, in the
cow herding example if we only consider the (x, y) position
of the cow, then the initial graph is shown in Figure 4.

Figure 4: The initial graph G1 constructed from x, y
coordinates.

ListInitialization(G1) (line 5) generates a ranked list of
formulae from the basis nodes. Since we do not yet know
anything about how well each of the basis nodes classifies

Algorithm 1: Classification Algorithm

Input:
A set of labeled signals Se := (si, pi), i = 1, ..., N ;
A variable set V ;
A misclassification rate threshold δ;
A formula length bound Lmax

Output:
A rPSTL formula ϕe along with the corresponding
valuation ve and the misclassification rate qe.

1 G0 ← ∅;
2 for i = 1 to Lmax do
3 if i = 1 then
4 G1 ← DAGInitialization(V );
5 List ← ListInitialization(G1);

6 else
7 Gi ← PruningAndGrowing(Gi−1);
8 List ← Ranking(Gi \ Gi−1);

9 end
10 while List ̸= ∅ do
11 ϕ ← PopOutFirstFormula(List);
12 vini ← ParameterInitialization(ϕ,Gi−1);
13 (v, c, q) ← ParameterEstimation(Se,ϕ, vini);
14 if q ≤ δ then
15 return (ϕ, v, q).
16 end
17 Gi ← Maintenance(ϕ, v, c, q);

18 end

19 end
20 k∗ ← MinimumCostNode(GLmax

);
21 return (ϕk∗ , vk∗ , qk∗).

behaviors, the rank is generated randomly. After the graph
is constructed, we find the optimal parameters for each of
the nodes.

Parameter Estimation.
PopOutFirstFormula(List) (line 11) pops out the lowest

ranked formula from List. ParameterInitialization(ϕ,Gi−1)
(line 12) randomly generates an initial valuation for ϕ if
Gi−1 = ∅. Otherwise, it initializes the valuations based on
those of its parents. ParameterEstimation(Se,ϕ, vini) (line
13) uses simulated annealing [19] to find an optimal valua-
tion for ϕ. The robustness degree of a formula generally in-
creases or decreases monotonically in each parameter. How-
ever, we use simulated annealing rather than binary searches
over the parameters because we are interested in optimizing
a loss function of the robustness degree and are not neces-
sarily trying to directly minimize it.

Function Maintenance(ϕ, v, c, q) (line 17) maintains the
DAG by updating the nodes of Gi with the computed tuple
(ϕ, v, c, q) where ϕ is the formula, v is the optimal valua-
tion, c is the corresponding cost, and q is the corresponding
misclassification rate, which is defined as the number of mis-
classified signals divided by the total number of signals N .

Structural Inference.
After the first set of parameters and costs have been found,

the iterative process begins. The definition of the partial
order allows for dynamic extension of the formula search
space. We cannot explicitly represent the infinite DAG, so
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we construct a finite subgraph of possible candidate formu-
lae and expand it when the candidate formulae perform in-
sufficiently. PruningAndGrowing(Gi−1) (line 7) does this by
first eliminating a fixed number of nodes with high costs, i.e.
those formulae that do not fit the observed data. Pruning
the graph to eliminate high cost formulae follows naturally
from forward subset selection ideas developed in machine
learning [21]. Then, the function grows the pruned Gi−1 to
include nodes with length i according to graph manipulation
rules detailed in Section 4.2. An example of a subset of a
graph G2 grown from the (pruned) basis graph is given in
Figure 5.

Figure 5: A subset of the DAG G2 after pruning and
expansion

Ranking(Gi \ Gi−1) (line 8) ranks the newly grown nodes
based on a heuristic function

1

|pa(ki)|

∑

ki−1∈pa(ki)

Je(ki−1), (11)

where ki is a node in Gi−1, pa(ki) is the set of ki’s parents,
and |pa(ki)| is the size of pa(ki). For example, in Figure
5, for ki = (♦[0,τ1)(x ≥ π1) ∧ (♦[0,τ2)(y < π2)), pa(ki) =
{♦[0,τ)(x ≥ π), (♦[0,τ)(y < π)} and |pa(ki)| = 2.
The iterative graph growing and parameter estimation

procedure is performed until a formula with low enough mis-
classification rate is found or Lmax iterations are completed.
At this point, MinimumCostNode(Gi) returns the node with
the minimum cost within Gi.
Compared to Alg. 1, the prediction algorithm searches

inside the subsection of the DAG of rPSTL corresponding
to formulae ♦[0,τ1)(ϕc ⇒ ϕdes,e), where ϕdes,e is the output
of Alg. 1. The prediction algorithm employs the same pro-
cedures and continues the search until a formula with a low
enough misclassification rate is found.

Complexity.
Without pruning, the discrete layer of the described algo-

rithms runs in time O(Lmax ·2
|V |). Since PruningAndGrow-

ing prunes a constant number of nodes at each iteration, the
complexity of the discrete layer is reduced to O(Lmax · |V |2)
when pruning is applied. The continuous layer of the algo-
rithm, based on the simulated annealing algorithm, runs in
time O(Lmax(n

2 + m) · log(N)), with n being the number
of samples used in simulated annealing, and m being the
number of data points per signal.

Remark 2. It has been shown in [7] that the set of all lin-
ear temporal logic (LTL) formulae can also be organized in
a DAG using a partial order similar to 2S . However, unlike

LTL, PSTL can express temporal specifications involving
continuous-time intervals and constraints on continuously
valued variables. To our own knowledge, our algorithm is
the first of its kind which can be used to infer an STL for-
mula by inferring both its PSTL structure and its optimal
valuation.

Remark 3. The truncation time t̃ is specified by the user.
The truncation time represents a temporal threshold be-
tween possible causes of behaviors (described by φc) and
the observed effects of these behaviors (described by φe).
Thus, it should be chosen such that the desirable and un-
desirable effects can be clearly seen in the truncated signals
σi. In the absence of any intuition about the value of t̃, its
value can be set to half the duration of signals. This is the
value we use for both case studies in Section 6.

6. IMPLEMENTATION AND CASE STUD-

IES
The classification and prediction algorithms were imple-

mented as a software tool called TempLogIn (TEMPoral
LOGic INference) in MATLAB. We developed all of the
components of our solution in-house, including the graph
construction and search algorithms and the simulated an-
nealing algorithm. Our procedure takes as inputs sets of
labeled trajectories, desired confidence, a truncation time
(t̃) and a maximum formula length, and infers an rSTL for-
mula. The software is available at http://hyness.bu.edu/
Software.html.

6.1 Herding Example

Table 1: Parameters Defining Relevant Areas (Unit: m)

π.l π.r π.d π.u

A 0 50 40 100
B 25 50 40 60
C 100 150 60 100
D 100 150 0 45

The first example we consider is the herding example given
in Section 3.1. We generated 600 signals, 120 of which are
shown in Figure 6. Table 1 shows the values of the pa-
rameters describing the boundaries of the different regions
A,B,C,D shown in Figure 1 and Figure 6. The columns
correspond to the boundaries: the left boundary π.l, the
right boundary π.r, the lower boundary π.d and the upper
boundary π.u. The starting locations of the signals are cho-
sen randomly within A. The starting velocities are all set to
0. The dynamics of the cow are described by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẋ = v cosα
ẏ = v sinα
v̇ = at

α̇ = ω,

(12)

where x and y are the cow’s coordinates, v is its speed,
and α is its heading.1 The two controls are the tangential
1The simple unicycle dynamics (12) is chosen for reader fa-
miliarity. The choice of simulated dynamics does not affect
the validity of our results, as our algorithm depends on la-
beled traces and not explicit system models.
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Figure 6: Synthesized trajectories with positive ex-
amples shown in black and negative ones shown in
purple.

acceleration at and the angular velocity ω. These controls
are generated based on a hybrid strategy. For a signal with
pi = 1 (a positive example), a random point is selected along
the exit of A and acts as an attractor. The controls are gen-
erated from a potential function, a function of the distance
between the selected point and the current location of the
cow [14], until the cow reaches the exit. Then, the potential
function-based control strategy is used to drive the cow to C.
Signals in which pi = 0 (a negative example) are generated
similarly. All times are in minutes.

Table 2: Misclassification Rates for i = 1 (Classification)

♦, < !, < ♦,≥ !,≥
x 0.140 0.140 0.213 0.173
y 0 0 0.270 0.233
v 0.325 0.140 0.207 0.140
α 0.140 0.140 0.140 0.140

Classification For this case study, we are interested in in-
ferring φund,e, the formula describing the signals in which
pi = 0 (shown as purple in Figure 6). The variable set V
is {x, y, v,α}. Table 2 shows the misclassification rates of
the nodes generated by our algorithm after parameter es-
timation occurs. The rows correspond to different variable
choices. The columns correspond to different temporal op-
erator and inequality combinations. For instance, the first
row x and first column ♦, < represent ♦[τ1,τ2)(x < π). In
the following, we use the triple (x,♦, <) to represent it. It
can be seen from the table that there are two formulae that
have zero misclassification rate (underlined), which means
the classification algorithm terminates with i = 1. To break
the tie between these two formulae, the algorithm chooses
the one with a lower cost Je(ϕ, v). The inferred effect for-
mula is

![0,3.02)(y < 47.56), (13)

which says that the undesirable cow behavior can be classi-
fied as “the y coordinate is always smaller than 47.56 meters

for a period of 3.02 minutes”. Notice that y = 47.65 is lo-
cated between C and D which means that, for this specific
case, we can classify signals by simply looking at their y
coordinates.

Table 3: Misclassification Rates for i = 1 (Prediction)

♦,≥ !,≥ ♦, < !, <
x 0.168 0.138 0.310 0.245
y 0.243 0.213 0.032 0.008
v 0.140 0.140 0.860 0.140
α 0.140 0.140 0.140 0.140

Prediction We again focus on signals in which pi = 0. Ta-
ble 3 shows the misclassification rates of the 16 basis nodes.
It can be seen that there is no formula φc of length one that
has zero misclassification rate. The three formulae with the
lowest misclassification rates are underlined. The algorithm
next grows the DAG to include formulae with length 2.

The algorithm then searches the new formulae in order ac-
cording to the heuristic given in (11). The basis node with
lowest cost is (y,!, <) and the basis node with second low-
est cost is (y,♦, <). The lowest ranked formula is the child
of (y,♦, <), i.e. (y,!, <), which has already been checked.
Thus, the algorithm proceeds to the next lowest ranked can-
didate,which is the child of (y,!, <) and (x,!,≥). This for-
mula is ![τ1,τ2)(x ≥ π1) ∧ ![τ3,τ4)(y < π2). The algorithm
was able to infer a cause formula with this template that has
0 misclassification rate. The total inferred rSTL formula is

φund = ♦[0,12.00)((![0,0.65)(x ≥ 25.00)∧
![0,8.00)(y < 58.99)) ⇒ ![8.98,12.00)(y < 47.56)).

(14)
The similarity between (14) and (8) shows that our in-

ference algorithm can accurately capture the essence of the
undesirable behaviors with the cause formula (LHS of (14)).
The two scale parameters inferred by the algorithm are 25.00
and 58.99, which are close to the fencing breach location
(πbl,πbu) = (25, 60) (see Section 3.1 and Table 1). These
results are achieved without any expert knowledge.

On a Mac with a 3.06 GHz Intel Core 2 Duo CPU and
6 GB RAM, the classification took 305.5 seconds, and the
prediction took 643.1 seconds with n, the number of samples
generated in simulated annealing, equal to 100, and m, the
maximum number of data point per signal, equal to 200.

6.2 Biological Network
The second example we consider is from synthetic biol-

ogy. In this field, gene networks are engineered to achieve
specific functions [13, 20]. The robustness degree has pre-
viously been exploited in gene network design and analy-
sis [18, 2, 5], but to our knowledge, template discovery has
never been used to analyze a gene network. We consider
the gene network presented in [10]. The network, shown in
Figure 7, controls the production of two proteins, namely
tetR and RFP . This network is expected to work as an
inverter in which the concentrations of tetR and RFP can
be treated as the input and the output, respectively. In par-
ticular, tetR represses the production of RFP . A high tetR
concentration decreases the production rate of RFP , hence
the concentration of RFP eventually decreases and stays
low. Similarly, if the concentration of tetR is low, then the
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production of RFP is not repressed, and its concentration
eventually increases and stays high.

Arabinose

pBad
tetR

pTet
RFP

Figure 7: A synthetic gene network. The genes cod-
ing for proteins tetR and RFP are shown as colored
polygons. The promoters (pBad and pTet) regulat-
ing protein production rates are indicated by bent
arrows. The regulators (arabinose and tetR) are con-
nected to the corresponding promoters.

In [10], a stochastic hybrid system modeling the gene net-
work was constructed from characterization data of the bio-
logical network components. Statistical model checking was
used to check a temporal logic formula (expressing a prop-
erty chosen by biology experts) that describes the inverter
behavior of the network. In this paper, sample trajectories
of this system 2 are used to find a formula that describes the
inverter behavior without any prior expert knowledge.

Figure 8: Concentration levels xtetR (green) and
xRFP (red) for the high and low output cases. 100
signals are plotted for each protein and each case.

We generated 600 signals, half of which correspond to the
low output case (repression) and half of which correspond
to the high output case (no repression). Figure 8 shows 200
of these signals. Assume that we are interested in charac-
terizing the low output case (pi = 1 for low output signals).
The inferred rSTL formula φdes which classifies both cases
and describes the pre-conditions for low output is

φdes = ♦[0,118)(![0,340)(xtetR ≥ 23209) ⇒
![188,323)(xRFP < 13479))

(15)

This formula captures the repressing effect of tetR, and
shows that the designed gene network works as expected. In
particular, the formula implies that tetR represses the pro-
duction of RFP when its concentration is higher than 23209

2Arabinose regulates the production rate of tetR. We use
trajectories generated at different concentration levels of
arabinose. As we are interested in cause-effect relation-
ship between tetR and RFP , we omit the concentration of
arabinose.

for 340 time units. Moreover, when the production of RFP
is repressed, its concentration drops below 13479 within 188
time units. Such quantitative information learned from the
formula helps the user to design more complex gene net-
works.

On the same computer used in the first case study, the
classification procedure took 494.0 seconds while the predic-
tion algorithm took 693.7 seconds. For the biological net-
work case study, the number of samples generated by the
simulating annealing, n, and the maximum number of data
points per signal, m, were 100 and 600, respectively.

7. FINAL REMARKS AND FUTURE WORK
In this paper, we present a temporal logic inference frame-

work, which, given a collection of labeled continuously val-
ued signals, produces temporal logic formulae that can be
used to describe and predict desirable and undesirable be-
haviors. We define reactive parametric signal temporal logic
(rPSTL), a fragment of parametric signal temporal logic
(PSTL) that can be used to describe causal relationships
in systems. We exploit the properties of rPSTL and develop
a hybrid temporal logic inference algorithm that searches
for a formula template, as well as as its parameterization,
that best fits the observed data. Two case studies, one on
herding and the other one on biological networks, are used to
illustrate our algorithm. The formulae mined from each case
study appear to be consistent with the observed behaviors
of each system.

While the example considered in Section 6 is relatively
simple, the algorithm presented in the paper can be used
to infer characteristics of more complex systems. Since our
algorithm infers properties without any expert inputs, it is
well-suited to tasks such as system reconstruction, e.g. infer-
ring the purpose and capabilities of legacy code, and knowl-
edge discovery, e.g. finding relevant properties of a complex
biological network directly from the data. It can also serve
as a first step for developing high-fidelity models of a com-
plex system from a massive data set. For instance, from the
inferred formula (15), it can be seen that the underlying sys-
tem acts as an inverter. This conclusion can guide further
revisions in experimental design as well as modeling.

Future research in this area includes applying our infer-
ence algorithm to more complex data, expanding the class
of formulae which may be inferred automatically, and re-
vising our algorithm to fit large data sets and unsupervised
learning cases.
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