Temporal Logic Motion Planning for Mobile Robdts

Georgios E. Fainekos, Hadas Kress-Gazit and George J. Pappas
GRASP Laboratory, Departments of ESE and CIS
University of Pennsylvania
Philadelphia, PA 19104, USA
{fainekos,hadaskg,pappds@grasp.upenn.edu

Abstract—In this paper, we consider the problem of robot This paper addresses the novel problem of generating
motion planning in order to satisfy formulas expressible in continuoustrajectories for mobile robots while satisfying
temporal logics. Temporal logics naturally express traditional t4myjas in temporal logic. Our approach first lifts the
robot specifications such as reaching a goal or avoiding . S .

an obstacle, but also more sophisticated specifications such proble_m to t_he_ discrete level bY partitioning the enqun-
as Sequencing’ coverage, or tempora| ordering of different ment into a finite number of eql."Valence classes. A Va”ety
tasks. In order to provide computational solutions to this of partitions are applicable, in particular the cellular de-
problem, we first construct discrete abstractions of robot composition in [9] or the triangular decomposition in [10].
motion based on some environmental decomposition. We then rne harition results in a natural discrete abstraction for

generate discrete plans satisfying the temporal logic formula - S . .
using powerful model checking tools, and finally translate the robot motion which is used then for planning using model

discrete plans to continuous trajectories using hybrid control. ~ checking tools, in particular 8N and NuSmv .

Critical to our approach is providing formal guarantees . . .
ensuring that if the discrete plan satisfies the temporal logic In order to ensure that the discrete plan is feasible at the

formula, then the continuous motion also satisfies the exact continuous level, the decomposition must satisfy the so-

same formula. called bisimulation property [11]. Bisimulations allow us to
Index Terms— Motion planning, temporal logics, model check- ~ Prove that if the abstract, discrete robot model satisfies the
ing, discrete abstractions, hyb,rid control. ' LTL formula, then the continuous robot model also satisfies

the same formula. To ensure this critical property we utilize
the hybrid control framework of [10], even though the

|. INTRODUCTION framework of [9] is equally applicable but computationally
more demanding.

Robot motion planning problem has historically focusedre|ated work can be found in the hybrid systems commu-
on generating trajectories which reach a goal configuratiopity, and in particular the recent work of [12] which focuses
while avoiding obstacles [1], [2]. Mathematically formu- on designing controllers for discrete-time control systems
lating specifications such as motion sequencing, synchrqn order to satisfy temporal logic specifications. In [13],
nization, or temporal ordering of different motions presentcgontrollers are designed for satisfying LTL formulas by
new challenges for motion planning, as they require NOgomposing controllers using navigation functions [14]. In
only novel formulations, but also powerful computational[15), the UpPAAL model checking tool for timed automata
approaches due to the inherent problem complexity. has been used for multi-robot motion planning using CTL

Formally defining such specifications can be achieved usinﬁﬁrmmas’ but without taking into account the dynamics of
temporal logics, such as linear temporal logic (LTL) andthe robots. This paper differentiates itself from all previous
computation tree logic (CTL), developed in concurrency@PProaches by building upon the framework proposed
theory. The applicability of temporal logics in robotics in [10] which has, comparatively, the best computational
was advocated as far back as [3]. Over the years, the foRroperties, is fully automated, and is ideally suited for
mal methods community has developed very sophisticatefterfacing with model checking tools.

model checking tools such ase@i [4] and NUSMV [5], |y addition to addressing this novel problem, we believe
which verify whether a discrete transition system satisfieghat this direction of research is important for at least
a temporal logic formula. More recently, model checkinginree reasons. First, this work formally connects high-level
approaches have been used for discrete planning in ordgfanning with low-level control, resulting in a mathemati-
to satisfy temporal logic specifications. This research haga”y precise interface between discrete Al planning and
led to planning algorithms and tools such assM[6], continuous motion planning. Second, the mapping from
TLPLAN [7] and UvoP [8]. These tools generate high- temporal logic to physical motion is the first important
level, discrete plans that do not take into consideratiorgtep in the mapping from natural language to physical
the dynamic model of the robot, resulting in potentially motion in a compositional manner. Finally, this work can
infeasible plans. be extended to multi-agent environments where formal

specifications and computational solutions will result in

*This work is partially supported by NSF EHS 0311123, NSF ITR yerified coordination |ogic for Cooperating robots.
0324977, and ARO MURI DAAD 19-02-01-0383.

Il. PROBLEM FORMULATION Problem 1: [Temporal logic motion planning] Given robot
model (1), observation map (2), initial conditiaii0) € P,
We consider a fully actuated, planar model of robot motionand a LTL temporal logic formula, construct a control
operating in a polygonal environmeft The motion of the inputu(¢) so that the resulting robot trajectaryt) satisfies
robot is expressed as the formula.

i(t)=u(t) z(t)e PCR?> wu(t)eUCR?> (1) Example 1:In order to better explain the different steps
in this paper, we will consider throughout the paper the

wherez(t) is the position of the robot at timg andu(t) following example. Consider a robot that is moving in
is the control input. The goal of this paper is to constructa square environment with four areas of interest denoted
a control inputu(t) for system (1) so that the resulting by 7, 7o, w3, 74. Initially, the robot is placed somewhere
trajectoryx(t) satisfies a formula in a temporal logic, suchin the region labeledr; (see Figure 1). The desired
as the temporal logic LTL [16]. The formulas are built specification for the robot given in natural language is:
from a finite number of atomic propositions or observablesVisit areaw, then arear; then arear, and, finally, return
which label areas of interest in the environment such aso regionw; while avoiding areas, andrs”.
rooms or obstacles. Lefl = {m,72,... m,} be a set
of such propositions. For system (1) we then associate an i

. . LINEAR TEMPORAL LOGIC
observation map

he : P —11 (2) In this section, we formally describe linear temporal logic

which maps the continuous states of the robot to the finitéLTL) by giving its syntax and semantics.

set of propositions.Propositionr; € II represents an area Syntax:LTL formulas are interpreted over all trajectories

of interest in the environment which can be characterizedf the system starting from some initial stat€0) [16].

by a convex set of the form: The atomic propositions of the logic are labels representing
areas of interest in the environment such as rooms or obsta-

Pi={xeR’| A afo+b,<0,a, R b €R} cles. Letll = {m,7,...} be a set of such propositions.

1<k<m The LTL formulas are defined according to the following
In other words, the observation mag : P — II has the ~9rammar:
form heo(x) = m; iff 2 belongs in the associated sét 6 = w|-d|éVe|bUd

We first give some informal examples of LTL formulas .

and defer the formal syntax and semantics of LTL toAS usual, the Boolean constants and L are defined
Section IlI. Propositional logic is the traditional logic of @ T = @V —m and L = —T respectively. Given
conjunction(A), disjunction(V), negation(—), implication nega_tlon_e) z_ind d|SJunct|0nV),_ we can define conjunction
(=), andequivalence(<). LTL is obtained from standard ("), implication (), and equivalence<¢). Furthermore,
propositional logic by adding temporal operators such a¥/€ can glso derive additional temporal operators such as
eventually(¢), always(D), next(Q) anduntil (/). Some ~ €ventualityo¢ = Ti¢ and safetydg = ~O—¢. Note that

LTL examples that express interesting properties include:OUr Syntax does not contain the so-called next opet@ior

Semantics:We define the continuous semantics of LTL
formulas over robot trajectories. Le(t) for ¢ > 0 denote
the state of the robot at timeand letz[t] be a possible
robot trajectory starting at(t). That isz[t] = {z(s) | s >

t andz(t) = u(t)} or z[t] denotes the flow of(s) under
the inputu(s) for s > t.

« Reach goal while avoiding obstaclesThe formula
—(01 Vo2 V- Vo, Ur expresses the property that
eventuallyr will be true, and untilr is reached, we
must avoid all obstacles labeledasi=1,...,n.

« Sequencing:The requirement that we must first visit
m, T2, andms in this order is naturally captured by
the formula<(m; A O(me A Oms)).

o Coverage:Formula®m; A Omg A - -+ A Omyp, reads as
the robot will eventually reach; and eventuallyr,
and ... eventuallyt,,,, requiring the robot to eventually
visit all regions of interest in any order.

More complicated specifications can be composed from
more basic specifications using the logic operators. For
such temporal logic formulas, in this paper we provide
computational solution of the following problem. 3

lUninteresting regions of the state space could be mapped to a dummy
proposition or no proposition (resulting in a partial observation map).
Furthermore, one can easily consider overlapping propositions resultingig. 1. Example 1. The 4 areas of interest and the initial position of the
in non-deterministic observation maps. robot marked with x.

LTL formulas ¢ are interpreted over a trajectory]t].
z[t] E¢ ¢ denotes the satisfaction of the formupaover
the trajectoryx[t] starting atz(t). The semantics of any
formula can be recursively defined as:

[t] Ec w iff he(x(t)) =
[1? Fc —o if 2ft] e ¢
]

8

8 8

o zft] o @1V o if zt] =o d1 or zft] Fo ¢
o z[t] Ec p1ldpo if there existss > ¢ such thate[s] =¢

@2 and for alls’ with t < s’ < s we havezr[s'] ¢ ¢1

Therefore, the formulapU/¢- intuitively expresses the
property that over the trajectory[t] ¢, is true until
¢> becomes true. Formul&¢ indicates that over the
trajectory the formulap becomes eventually true, whereas

O¢ indicates that is true over the trajectory[t] for all Fig. 2. The triangulation of the workspace of Example 1 appears with

timet' > t. solid lines. The edges of the dual graph appear with dashes. The numbers

. denote the nodes of the undirected graph.
Example 2:Coming back to Example (1), we can now

formally define the specification using temporal logic for-
mulas. Letr; be the proposition that is true when the robot
is in areai. Using LTL the precise specification is:

contains all states € P which are contained in the triangle
labeled byg and {T~'(¢:;) | ¢; € Q} is a partition of the

b = O(ma A O(ms A O(ma A (= A = U))) state space. Given such a partition/®f we can naturally
abstract the robot motion by defining a finite transition

system
IV. TEMPORALLOGIC MOTION PLANNING y

D = (qu(o)v_)D»hD) (3)
Our solution to generating continuous robot trajectories

satisfying LTL formulase consists of the following three Where @ is the finite set of states, ang0) € @ is
steps: the cell containing the initial robot state(0) € P, that

is ¢(0) = T(x(0)). The dynamics are captured by the
1) Discrete Abstraction of Robot MotiorDecompose transition relation—pC Q x @, defined asg; —p g,
the environmentP into a finite number of equiva- iff the cells labeled byg;,q; are topologically adjacent,
lence classes resulting in a finite state model of robothat is triangles7—'(g;) and 7'(g;) have a common
motion. line segment. The transition relatior is also known
2) Temporal Logic Planning using Model Checking: as the dual graph of the triangulation and can be easily
Construct plans for the discrete robot motion satiscomputed. Having defined transitionsp for transition
fying desired specifications using model checkers. systemD, we can define trajectorigsof D as sequences
3) Continuous Implementation of Discrete Pldmple- of the formp[i| = p; —p piv1 —p Pive —p --., Where
ment the discrete plan at the continuous level whilep; = p(i) € Q.

preserving the satisfaction of the temporal formula. In addition to defining the transition relation, we also define

the observation magp : Q@ — 1II, ashp(q) = =,
if there existsz € T~'(q) such thathc(z) = . In
order to ensure thatp is well defined, we must impose

We first partition the workspacé” of the robot into a the requirement that the decomposition is proposition or
finite number of equivalence classes (or cells). Clearly, qul . . P prop
observation preservinghat is for allzy,zo € P and all

we can use many efficient cell decpmposmon methods fogr € 1L, T(21) = T(xs) = ho(z1) = he(xa). In other
polygonal environments [2]. In this paper, we chose to . :
. . . . words, states that belong in the same equivalence class or
triangulateP for two main reasons. First, there exist several :

- o cell, map to the same observations.
efficient triangulation algorithms which can partition very
complicated environments [17]. Second, the choice oExample 3:Revisiting Example 1, we can now triangulate
controllers used in Section IV-C is proven to exist andthe environment (see [18] for the algorithm used) and
be efficiently computable on triangles [10]. Despite thisconstruct the dual graph of the triangulation (Figure 2). The
choice, many of the results in this section can be easilyesulting undirected graph has 34 states and 49 transitions.
adapted to similar decompositions, such as the decomp

sition described in [9].

A. Discrete Abstraction of Robot Motion

%he transition systen® will serve as an abstract model of
robot motion. We must now lift our problem formulation
Let T : P — @ denote the map which sends each statdrom the continuous to the discrete domain. In the previous
x € P to the finite set) = {¢1,...,q,} of all equivalence section we defined the semantics of LTL formulas over
classes (triangles in this paper). In other words,!(¢) continuous trajectories. We keep the LTL syntax exactly

the same, but we reformulate the semantics of the temporahvironments. Of course, there are also several differences
logic formula to be interpreted over the discrete trajectoriedetween the two toolboxes mainly concerning the way they
generated by transition system. deal with the model checking problem, the user interface
and the expressive power of the underlying logieiNgonly
supports asynchronous communication among agents, but
it gives us the option for the generation of traces that are
optimal in the sense of minimum number of transitions

Discrete LTL Semanticdath formulasy are interpreted
over an executionp[:], denoted a®[i] Ep ¢. The seman-
tics of any path formula can be recursively defined as:

e pli] Ep 7iff hp(p(i)) == (trace length). The conversion of the discrete transition
o pli] Ep ¢ if pli] Fp ¢ system of Section IV-A to the input language obBMv
o pli] Ep ¢1V ¢y if pli] Ep o1 oF pli] Ep ¢ or to the input language of SPIN is straightforward and it
o pli] Ep p1Ues if there existsj > i s. t.p[j] =p ¢, IS aUtomated.

and for allj” with i < j" < j we havep[j’] =p ¢ Example 4:Using NUSMv for our example, we get the

llowing witness trace = {33, 34, 24, 25, 27, 16, 15, 14,
4,5, 32, 23, 26, 29, 30, 3, 14, B3which satisfies our
pecification.

We are interested in understanding the relationship betwee?
the continuous robot model satisfying formut®] =¢ ¢ ’
with continuous LTL semantics and the transition systemS
D satisfying formulap[0] =p ¢, wherep(0) = T'(xz(0)),

but with the discrete LTL semantics. C. Continuous Implementation of Discrete Trajectory

B. Temporal Logic Planning using Model Checking Our next task is to utilize the Qiscrete trajectop}0]
in order to construct a control input(t) for ¢ > 0

In a nutshell, model checking is the algorithmic procedureand, therefore, a continuous trajectarj0] that satisfies
for testing whether a specification formula holds over som@xactly the same path formula. We achieve this desired
semantic model [19]. The model of the system is usuallygoal by simulating (or implementing) at the continuous
given in the form of a discrete transition system like thelevel each discrete transition @f0]. This means that if
one described in Section IV-A. The specification formula isthe discrete system makes a transitiop; —p p;, then

usually given in the form of temporal logics such as LTL.the continuous system must match this discrete step by
moving the robot from states in triangle~!(p;) to states

As mentioned earlier, we are looking for computation;, triangle T~ (p;).

pathsp[i] that satisfy the temporal formulp0] Ep ¢.
In the model checking community, this is known as theWe define a transition relatior~cC P x P between
generation ofvitnessesUnfortunately, the current versions continuous robot states iR. Formally, there is a transition
of the model checking software tools do not supportz —c @’ if andz’ belong to adjacent triangles, and it is
the construction of witnesses as they are mainly analysiBossible to construct a trajectonyt) for 0 < ¢ < 7" with
tools. Hence, we have to employ the algorithms that solve(0) = z andz(T") = 2’, and, furthermore, for al) <t <
the dual problem, i.e. the generation of counterexampled’ We havex(t) € (T~ (T(x)) UT~'(T(z'))). Informally,

In this case, when the model checker determines that & —c &’ if we can steer the robot from to 2’ without
formula ¢ is false, it constructs a finite tragg0] which ~ Visiting any triangle other than the triangle containing

demonstrates that the negation/ab true, i.ep[0] =p —¢. ©OF the neighboring triangle containing. Having defined

) —¢ allows us to formally define a transition systerh=
Let ¢ be the formula that the system should satisfy. Assum%P 2(0), —c, he).

now that we give as input to our model checking algorithm _ _

the LTL formula —¢, representing the negation of the In order to ensure that the continuous system can imple-
desired behavior. If the formula is false in our discretementany discrete plan obtained by the model checker, we
model of the environment, then the model checker will'€quire that the decomposition &f satisfies the so called

return a finite trace|0] that satisfies the formuta(—¢) = bisimulation property [11].
¢ and, thus, we are done as we have found a finite patBefinition 1 (Bisimulations):A partition 7' : P — Q is
that satisfies the original LTL formula. called a bisimulation if the following properties hold for

Out of the variety of model checking tools that have beerdll z,y € P :
developed over the years, we chose the most dominant
ones, that is, NSMv [5] which is based on symbolic
model checking techniques and is mainly targeted for CTL
(but it can also handle LTL) model checking problems,
and S IN [4] which uses an automaton approach to the ,
model checking problem and accepts only LTL formu-).

las. Both toolboxes support hierarchy and composition|n other words, the triangulation is a bisimulation if the
multiple agents, generation of counterexamples in casehole triangle is mapped to the same observation, and
the temporal formula is invalidated and nondeterministicfurthermore, if one state can move to the adjacent triangle

o (Observation preserving) IiI'(z) = T(y), then
he(x) = he(y)

« (Reachability preserving) Ifl'(x) = T(y), then if
x —¢ 2’ theny —¢ ¢ for somey’ with T'(z') =

rea 1 rea 2

Area 3 Area 4

Fig. 4. Example 6: Visit all the rooms

Fig. 3. Example 1: Continuous trajectory implementation

planning problem, and we show examples of non-trivial

to some state’, then all stateg in the same triangle with pehaviors in complex environments, which may include
x can also move to the same triangle with holes and regions of interest.

Assuming that this property is satisfied by the partition withThe first step consists of specifying the environment. The
respect to transitions we just defined, it is straightforwardenyironment is described as a set of vertices which define
to show the following proposition. the outer contour, inner holes and inner regions of interest

Proposition 1: Let ¢ be an LTL path formula, and l&f : (Such as rooms). We specify these vertices either by using
P — @ be a bisimulation. Ifp[0] =p ¢, then for every @ MATLAB based graphical user interface which allows

2(0) € T~1(p(0)) there exists a trajectory[0] satisfying the user to select points.on a grid or_by writingAM.AB
z[0] Ec ¢ functions that create vertices in a desired pattern. Next, we

)]) triangulate the polygonal environment using the software
It remains to design controllers that satisfy the So'ca”echeveloped in [18] and we create the input code for the

bisimulatiop property. There are several recent approachggogel checker which we augment with the temporal logic
for generating such controllers, such as [9], [10] and [20]formula. The required path is generated as a counter
We use the framework developed in [10] due to its COMexample trace using a model checker. The final step is
putational properties in triangular environments. In thisiy create the control lawe() for ¢ > 0 and to simulate
approach, an affine vector field is created in each trianglghe ropot path. This step is performed imaM.AB and the

that drives the robot to the desired adjacent triangle, whilgonro| law is generated according to the method developed
taking into consideration any velocity bounds the robot, [10] using linear programming.

might have. For a description of this controller design, we) .]
refer the reader to [10]. Example 6:Figure 4 is an example of a trajectory, gener-

ated by NuUSMv, satisfying a coverage requirement. In this
Note however, that by satisfying the bisimulation propertyexample the desired behavior was to visit each of the rooms
using feedback controllers, the temporal logic formula isighaded areas) in no particular order. The LTL formula that
robustly satisfied not only by the initial state(0), but captures the specification i€ A Org A Org A Org A
also by all other states in the same triangle. Furthermorey,.. A ¢ For problems of this size, the generation of the

the design of the controllers in [10] can guarantee thgjiscrete path is almost instant and the controller synthesis
continuity of the vector fields at the common edges ofi, MATLAB takes less then 15 seconds.

adjacent triangles. o) o
))) Example 7:This is an example of a trajectory satisfying
Example 5:Figure 3 shows the continuous trajectory cor-3 more complex requirement. In this example the desired

responding to our example, which was created using thgehavior is “Visit roomr,, then roomr; and then cover
triangulation from Example 3 and the discrete path genelroomsrs, 74, 75 - all this while avoiding obstacles;, oo,
ated by NUSmv in example 4. 03". Figure 5 depicts the path generated byl

V. SIMULATIONS Example 8:Figure 6 is an example of a very large envi-
ronment. This environment includes 1156 areas of interest
In order to test our approach to the problem of motion plan{rooms) and its discrete abstraction consists of 9250 tri-
ning, we ran several simulations. We started with simpleangles. The specification for this example was “Start in
environments and continued by increasing the complexitghe white room and go to both black rooms”. Even though
of both the environment and the specification in order tahis environment is very large, the computation time was a
make sure our approach scales well. In this section, wéw seconds for the triangulation, about 55 seconds for the
describe the process of creating a solution to the motiopath generation in NSMv and around 90 seconds for the

a setR of initial conditions (i.e.vxz(0) € R = z[0] Ec¢

ﬂ ¢). Furthermore, we plan to run experiments testing our

approach using &TIVMEDIA mobile robots as a testbed.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their comments.

ﬂ & REFERENCES

4
‘ 5". [1] S. M. LaValle, "Planning Algorithms”, [Online, Available at
http://msl.cs.uiuc.edu/planning/], 2004
[2] H. Choset, K. M. Lynch, L. Kavraki, W. Burgard, S. A. Hutchinson,

Fig. 5. Example 7: While avoiding the obstacles go to room 2, then to G. Kantor, and S. ThrurRobotic Motion Planning: Foundations and

room 1 and then go to rooms 3, 4, 5 (in any order) Implementation 2004. In preparation.
[3] M. Antoniotti and B. Mishra, "Discrete Event Models + Temporal

logic = Supervisory Controller: Automatic Synthesis of Locomotion
Controllers”, IEEE International Conference on Robotics and Au-
tomation 1995.

[4] G.J. Holzmann, "The Spin Model Checker Primer and Reference
Manual”, Addison-Wesley, Reading Massachusetts, 2004.

[5] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pis-
tore, M. Roveri, R. Sebastiani and A. Tacchella, "NuSMV 2: An
OpenSource Tool for Symbolic Model Checking”, In Proceeding
of International Conference on Computer-Aided Verificati@AV
2002), Copenhagen, Denmark, July 27-31, 2002.

[6] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and P. Traverso, "MBP:
A Model Based Plannerin Proc. IJCAI'01 Workshop on Planning
under Uncertainty and Incomplete Informatjo2001.

[7] F. Bacchus and F. Kabanza, "Using Temporal Logics to Express
Search Control Knowledge for Planningrtificial Intelligence vol
116, 2000.

[8] R.M. Jensen and M. M. Veloso, "OBDD-based Universal Planning
for Synchronized Agents in Non-Deterministic DomaindSurnal of

_ . . Artificial Intelligence ResearcH2000, Volume 13, 189-226.

Fig. 6. Example 8: Complex environment - Visit the two square areagg] p.C. Conner, A. Rizzi, and H. Choset, "Composition of local potential

in black color functions for global robot control and navigatiorProceedings of
2003 |IEEE/RSJ International Conference on Intelligent Robots and
SystemgIROS 2003), IEEE, Vol. 4, October, 2003, pp. 3546-3551.

[10] C. Belta and L.C.G.J.M. Habets, "Constructing decidable hybrid
systems with velocity bounds43rd IEEE Conference on Decision
and Contro] Bahamas, Dec 2004.

[11] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas. "Discrete

VI. CONCLUSIONS- FUTURE WORK abstractions of hybrid system$roceedings of the IEEB8:971984,

2000.

In this paper, we have described our approach to th&2] P.Tabuadaand G.J. Pappas. Model checking LTL over controllable

: : : : : linear systems is decidableHybrid Systems : Computation and
problem of motion planning, which begins at a high level Control. volume 2623 ofLecture Notes in Computer Science

of behavior specification, expressed in temporal logic, and Springer-Verlag, Prague, 2003.
ends in creating continuous control inputs for the robof13] S. Loizou and K. Kyriakopoulos, "Automatic Synthesis of Multi-

; ; . Agent Motion Tasks Based on LTL Specifications#3rd IEEE
that satisfy those requirements. We have shown that this -0 " 5o and Contr@ahamas, Dec 2004.

approach is computationally feasible, that complex envi{14] E. Rimon and D. E. Kodischek, "Exact robot navigation using
ronments can be handled easily and that many complex artificial potential functions”, IEEE Transactions on Robotics and

- T Automation 8(5):501-518, 1992.
robot behaviors can be eXpressed and satisfied. [15] M.M. Quottrup, T. Bak, and R. lzadi-Zamanabadi, "Multi-Robot

. ; . Planning: A Timed Automata ApproachProc. 2004 IEEE Int. Conf.
We find this approach to be very promising and there are on Robotics and Automatioilew Orleans, LA.

several directions in which we are planning to proceedjig] A.E. Emerson, "Temporal and Modal Logic”, in: Van Leeuwen (ed)
such as, extending this framework to multiple robots, Handbook of Theoretical Computer Sciensel. B, pp. 997-1072,

: : : e Elsevier Science Publishers, 1990.
incorporating natural language as a higher level speC|f|ca[—17] M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf,

tion (which will be automatically translated into temporal "Computational Geometry: Algorithms and Applications”, 2nd rev.

logic), and looking at different cell decomposition tech- ed. 2000.
nigues [18] A. Narkhede, and D. Manocha, "Fast Polygon Tri-
a ’ angulation based on Seidel's Algorithm”, [Online at

; ; ; ; _ http://lwww.cs.unc.edu/ dm/CODE/GEM/chapter.html#Seidel91].
Currently, we are investigating the extension of the pre 19] E. M. Clarke, O. Grumberg and D. A. Peled, "Model Checking”.

sented approach to the design of hybrid controllers thal “the mMIT Press, Cambrige, MA, 1999.
would guarantee the satisfaction of a path formglan [20] L.C.G.J.M. Habets and J.H. van Schuppen. A control problem for
the presence of localization and actuation errors, in the afine dynamical systems on a ful-dimensional polytopetomatica
. . ’ 40:21-35, 2004.
presence of observable predicates (sensory input) and under

opgoooooooon

DOooDDDOoODOOODODODOODOOODOOOD

ODoDOoO0DODODDODODDODOODOODDDODDODOODOODOODOOD
ODoDo0DO0OODODDDODODDODDOOOODDDOODDODOODDOODOOOOD
OoOoDoDODODODODODONOODODODDOODOOODOODOOOO
OODODODODODODODOOODODODDDODOODODOODOODOOOO
OODODO0DODDDODDODOOODDODODDDODOODODOODOODOOOD

Oooo0OD0OODODODODOODDODOODDODOODOODODDOOOODOOD
ODoOoO0D0OOODODODOODDOOODDODOODDODODDOODOOOOD
ODoOoO0D0OOODODODOODDOOODDODOODDODODDOODOOOOD
ODoOoO0D0OOODODODOODDOOODDODOODDODODDOODOOOOD
ODoOoO0D0OOODODODOODDOOODDODOODDODODDOODOOOOD
OoDooO0D0OOODODODODODDOOODDODOODDODODDODOOOOD
ODDOD00D0ODODOO0DOO0DODODODODOOOOODODOOD
OODDDODDODOODDDOODODODODODODODOODDOOOD
ODooO0DO0OODDODODODODDOOODDODOODDOODODDOODOOOD
ODoDOo0DDDDOODDODODDODDOOODDDOODDODOODDOODODOOD
OoDODODOODODDODDODOODODOODOODDOOODOOOD
OooO0DDOD0ODDDOODDOOODODOODOODOOOODOOOD
OoODODONDODOD0DOODDOODODOODODODODODODODOO
0000000000 O0DO0DO0ODD0D0DO0DOODOOOODOOO
DODDO00DODOODODOODOOODODODOOODOOODOOOOO
DODDO0ODODOODODOODOOODODODOOODOOODOOOOOD
DODDO0ODODOODODOODOOODODODOOODOOODOOOOOD
DODDO0ODODOODODOODOOODODODOOODOOODOOOOOD
nonoODODoDONODODODOODODODOOODOOOODOODODOO
NO0D0DO0DODODODO0ONOOOODODDODOOODODNODDOODOOOO
N0D00D00DO000D0DDO00O0OODO0DDODDODOOOODOOO
o00DOD00D0Oo0DDO0DDDODOODOODDODOODODOODOOOODOODOD
o00DOD00D0DOo0DDO0DDOODODOODDODOODODOODOOOODODOD
000000 Oo0DD0ODDOODOODOODDODOODODOODOOOODOD
000000 Do0DD0ODDOODODOODDODOODODOODOOOODOODOD
00000 O0NODODDODDODODODOODDOODODODOODODOO
onopoooooooo

£

controller synthesis of a path of 145 triangles irANIAB.

