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Abstract. Two new logics for verification of hyperproperties are pro-
posed. Hyperproperties characterize security policies, such as noninter-
ference, as a property of sets of computation paths. Standard temporal
logics such as LTL, CTL, and CTL∗ can refer only to a single path at a
time, hence cannot express many hyperproperties of interest. The logics
proposed here, HyperLTL and HyperCTL∗, add explicit and simultane-
ous quantification over multiple paths to LTL and to CTL∗. This kind of
quantification enables expression of hyperproperties. A model checking
algorithm for the proposed logics is given. For a fragment of HyperLTL,
a prototype model checker has been implemented.

1 Introduction

Trace properties, which developed out of an interest in proving the correctness of
programs [32], characterize correct behavior as properties of individual execution
traces. Although early verification techniques specialized in proving individual
correctness properties of interest, such as mutual exclusion or termination, tem-
poral logics soon emerged as a general, unifying framework for expressing and
verifying trace properties. Practical model checking tools [11, 16, 28] based on
those logics now enable automated verification of program correctness.

Verification of security is not directly possible with such tools, because some
important security policies cannot be characterized as properties of individual
execution traces [38]. Rather, they are properties of sets of execution traces,
also known as hyperproperties [15]. Specialized verification techniques have been
developed for particular hyperproperties [5, 27, 41, 43], as well as for 2-safety

properties [52], which are properties of pairs of execution traces. But a unifying
program logic for expressing and verifying hyperproperties could enable auto-
mated verification of a wide range of security policies.

In this paper, we propose two such logics. Both are based, like hyperproperties,
on examining more than one execution trace at a time. Our first logic, HyperLTL,
generalizes linear-time temporal logic (LTL) [44]. LTL implicitly quantifies over
only a single execution trace of a system, but HyperLTL allows explicit quantifi-
cation over multiple execution traces simultaneously, as well as propositions that
stipulate relationships among those traces. For example, HyperLTL can express

M. Abadi and S. Kremer (Eds.): POST 2014, LNCS 8414, pp. 265–284, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



266 M.R. Clarkson et al.

information-flow policies such as observational determinism [37,46,61], which re-
quires programs to behave as (deterministic) functions from low-security inputs
to low-security outputs. The following two programs do not satisfy observational
determinism, because they leak the value of high-security variable h through low-
security variable l, thus making the program behave nondeterministically from
a low-security user’s perspective:

(1) l := h (2) if h = 0 then l := 1 else l := 0

Other program logics could already express observational determinism or closely
related policies [7,30,41]. Milushev and Clarke [40–42] have even proposed other
logics for hyperproperties, which we discuss in Section 8. But HyperLTL provides
a simple and unifying logic in which many information-flow security policies can
be directly expressed.

Information-flow policies are not one-size-fits-all. Different policies might be
needed depending on the power of the adversary. For example, the following
program does not satisfy observational determinism, but the program might be
acceptable if nondeterministic choices, denoted �, are resolved such that the
probability distribution on output value l is uniform:

(3) l := h � l := 0 � l := 1

On the other hand, if the adversary can influence the resolution of nondeter-
ministic choices, program (3) could be exploited to leak information. Similarly,
the following program does satisfy observational determinism, but the program
might be unacceptable if adversaries can monitor execution time:

(4) while h > 0 do {h := h− 1}

In Section 3, we show how policies appropriate for the above programs, as well
as other security policies, can be formalized in HyperLTL.

Our second logic, HyperCTL∗, generalizes a branching-time temporal logic,
CTL∗ [18]. Although CTL∗ already has explicit trace quantifiers, only one trace
is ever in scope at a given point in a formula (see Section 5.1), so CTL∗ cannot di-
rectly express hyperproperties. But HyperCTL∗ can, because it permits quantifi-
cation over multiple execution traces simultaneously. HyperLTL and HyperCTL∗

enjoy a similar relationship to that of LTL and CTL∗: HyperLTL is the syntac-
tic fragment of HyperCTL∗ containing only formulas in prenex form—that is,
formulas that begin exclusively with quantifiers and end with a quantifier-free
formula. HyperCTL∗ is thus a strict generalization of HyperLTL. HyperCTL∗

also generalizes a related temporal logic, SecLTL [17], and subsumes epistemic
temporal logic [19, 54] (see Section 5).

Having defined logics for hyperproperties, we investigate model checking of
those logics. In Section 6, we show that for HyperCTL∗ the model checking
problem is decidable by reducing it to the satisfiability problem for quantified
propositional temporal logic (QPTL) [50]. Since HyperCTL∗ generalizes Hyper-
LTL, we immediately obtain that the HyperLTL model checking problem is also
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decidable. We present a hierarchy of fragments, which allows us to precisely char-
acterize the complexity of the model checking problem in the number quantifier
alternations. The lowest fragment, which disallows any quantifier alternation,
can be checked by a space-efficient polynomial-time algorithm (NLOGSPACE
in the number of states of the program).

We also prototype a model checker that can handle an important fragment of
HyperLTL, including all the examples from Section 3. The prototype implements
a new model checking algorithm based on a well-known LTL algorithm [58, 59]
and on a self-composition construction [7, 52]. The complexity of our algorithm
is exponential in the size of the program and doubly exponential in the size of
the formula—impractical for real-world programs, but at least a demonstration
that model checking of hyperproperties formulated in our logic is possible.

This paper contributes to theoretical and foundational aspects of security by:

– defining two new program logics for expressing hyperproperties,
– demonstrating that those logics are expressive enough to formulate impor-

tant information-flow policies,
– proving that the model checking problem is decidable, and
– prototyping a new model checking algorithm and using it to verify security

policies.

The rest of the paper is structured as follows. Section 2 defines the syntax
and semantics of HyperLTL. Section 3 provides several example formulations
of information-flow policies. Section 4 defines the syntax and semantics of
HyperCTL∗. Section 5 compares our two logics with other temporal and epistemic
logics. Section 6 obtains a model checking algorithm for HyperCTL∗. Section 7 de-
scribes our prototypemodel checker. Section 8 reviews related work, and Section 9
concludes.

2 HyperLTL

HyperLTL extends propositional linear-time temporal logic (LTL) [44] with
explicit quantification over traces. A trace is an infinite sequence of sets of atomic

propositions. Let AP denote the set of all atomic propositions. The set TR of all
traces is therefore (2AP)ω.

We first define some notation for manipulating traces. Let t ∈ TR be a trace.
We use t[i] to denote element i of t, where i ∈ N. Hence, t[0] is the first element
of t. We write t[0, i] to denote the prefix of t up to and including element i, and
t[i,∞] to denote the infinite suffix of t beginning with element i.

Syntax. Let π be a trace variable from an infinite supply V of trace variables.
Formulas of HyperLTL are defined by the following grammar:

ψ ::= ∃π. ψ | ∀π. ψ | ϕ

ϕ ::= aπ | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ

Connectives ∃ and ∀ are universal and existential trace quantifiers, read as “along
some traces” and “along all traces.” For example, ∀π1. ∀π2. ∃π3. ψ means that
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for all traces π1 and π2, there exists another trace π3, such that ψ holds on those
three traces. (Since branching-time logics also have explicit path quantifiers, it
is natural to wonder why one of them does not suffice to formulate hyperprop-
erties. Section 5.1 addresses that question.) A HyperLTL formula is closed if all
occurrences of trace variables are bound by a trace quantifier.

An atomic proposition a, where a ∈ AP, expresses some fact about states.
Since formulas may refer to multiple traces, we need to disambiguate which
trace the proposition refers to. So we annotate each occurrence of an atomic
proposition with a trace variable π. Boolean connectives ¬ and ∨ have the usual
classical meanings. Implication, conjunction, and bi-implication are defined as
syntactic sugar: ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2, and ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2), and
ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1). True and false, written true and false, are
defined as aπ ∨ ¬aπ and ¬true.

Temporal connective Xϕ means that ϕ holds on the next state of every
quantified trace. Likewise, ϕ1 U ϕ2 means that ϕ2 will eventually hold of the
states of all quantified traces that appear at the same index, and until then ϕ1

holds. The other standard temporal connectives are defined as syntactic sugar:
Fϕ ≡ true U ϕ, and Gϕ ≡ ¬F¬ϕ, and ϕ1 Wϕ2 ≡ (ϕ1 U ϕ2) ∨ Gϕ1, and
ϕ1 R ϕ2 ≡ ¬(¬ϕ1 U ¬ϕ2).

We also introduce syntactic sugar for comparing traces. Given a set P of
atomic propositions, π[0]=P π′[0] ≡

∧

a∈P aπ↔aπ′ . That is, π[0]=P π′[0] holds
whenever the first state in both π and π′ agree on all the propositions in P . And
π=P π′ ≡ G(π[0]=P π′[0]), that is, all the positions of π and π′ agree on P . The
analogous definitions hold for �=.

Semantics. The validity judgment for HyperLTL formulas is written Π |=T ψ,
where T is a set of traces, and Π : V → TR is a trace assignment (i.e., a
valuation), which is a partial function mapping trace variables to traces. Let
Π[π �→ t] denote the same function as Π, except that π is mapped to t. We write
trace set T as a subscript on |=, because T propagates unchanged through the
semantics; we omit T when it is clear from context. Validity is defined as follows:

Π |=T ∃π. ψ iff there exists t ∈ T : Π[π �→ t] |=T ψ

Π |=T ∀π. ψ iff for all t ∈ T : Π[π �→ t] |=T ψ

Π |=T aπ iff a ∈ Π(π)[0]
Π |=T ¬ϕ iff Π �|=T ϕ

Π |=T ϕ1 ∨ ϕ2 iff Π |=T ϕ1 or Π |=T ϕ2

Π |=T Xϕ iff Π[1,∞] |=T ϕ

Π |=T ϕ1 U ϕ2 iff there exists i ≥ 0 : Π[i,∞] |=T ϕ2

and for all 0 ≤ j < i we have Π[j,∞] |=T ϕ1

Trace assignment suffix Π[i,∞] denotes the trace assignment Π′(π) = Π(π)[i,∞]
for all π. If Π |=T ϕ holds for the empty assignment Π, then T satisfies ϕ.

We are interested in whether programs satisfy formulas, so we first derive
a set T of traces from a program, first using Kripke structures as a unified
representation of programs. A Kripke structure K is a tuple (S, s0, δ,AP, L)
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comprising a set of states S, an initial state s0 ∈ S, a transition function δ :
S → 2S, a set of atomic propositions AP, and a labeling function L : S → 2AP.
To ensure that all traces are infinite, we require that δ(s) is nonempty for every
state s.

The set Traces(K) of traces of K is the set of all sequences of labels produced
by the state transitions of K starting from initial state. Formally, Traces(K)
contains trace t iff there exists a sequence s0s1 . . . of states, such that s0 is the
initial state, and for all i ≥ 0, it holds that si+1 ∈ δ(si); and t[i] = L(si). A
Kripke structure K satisfies ϕ, denoted by K |= ϕ, if Traces(K) satisfies ϕ.

It will later be technically convenient to consider enlarging the set AP of
atomic propositions permitted by a Kripke structure to a set AP′, such that
AP ⊂ AP′. We extend Traces(K) into the set of traces Traces(K,AP′) that is
agnostic about whether each new proposition holds at each state. A trace (P0 ∪
P ′
0)(P1 ∪ P ′

1) . . . ∈ Traces(K,AP′) whenever P0P1 . . . ∈ Traces(K), and for all
i ≥ 0: P ′

i ⊆ AP′ \ AP. The final conjunct requires every possible set of new
atomic propositions to be included in the traces.

3 Security Policies in HyperLTL

We now put HyperLTL into action by formulating several information-flow se-

curity policies, which stipulate how information may propagate from inputs to
outputs. Information-flow is a very active field in security; see [20,48] for surveys.

Noninterference. A program satisfies noninterference [23] when the outputs ob-
served by low-security users are the same as they would be in the absence of
inputs submitted by high-security users. Since its original definition, many vari-
ants with different execution models have been named “noninterference.” For
clarity of our examples, we choose a simple state-based synchronous execution
model in which atomic propositions of the traces contain the values of program
variables, and in which progress of time corresponds to execution steps in the
model. We also assume that the variables are partitioned into input and output
variables, and into two security levels, high and low. (We could handle lattices
of security levels by conjoining several formulas that stipulate noninterference
between elements of the lattice.)

Noninference [38] is a variant of noninterference that can be stated in our sim-
ple system model. Noninference stipulates that, for all traces, the low-observable
behavior must not change when all high inputs are replaced by a dummy input
λ, that is, when the high input is removed. Noninference, a liveness hyperprop-

erty [15], can be expressed in HyperLTL as follows:

∀π.∃π′. (Gλπ′) ∧ π=Lπ
′ (5)

where λπ′ expresses that all of the high inputs in the current state of π′ are λ,
and π=Lπ

′ expresses that all low variables in π and π′ have the same values.
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Nondeterminism. Noninterference was introduced for use with deterministic pro-
grams.Nonetheless, nondeterminism naturally arises when programspecifications
abstract from implementation details, so many variants of noninterference have
been developed for nondeterministic programs. We formalize two variants here.

A (nondeterministic) program satisfies observational determinism [61] if ev-
ery pair of traces with the same initial low observation remain indistinguishable
for low users. That is, the program appears to be deterministic to low users.
Programs that satisfy observational determinism are immune to refinement at-

tacks [61], because observational determinism is preserved under refinement.
Observational determinism, a safety hyperproperty [15], can be expressed in Hy-
perLTL as follows:

∀π.∀π′. π[0]=L,inπ
′[0] → π=L,outπ

′ (6)

where π=L,inπ
′ and π=L,outπ

′ express that both traces agree on the low input
and low output variables, respectively.

Generalized noninterference (GNI) [35] permits nondeterminism in the low-
observable behavior, but stipulates that low-security outputs may not be altered
by the injection of high-security inputs. Like noninterference, GNI was original
formulated for event-based systems, but it can also be formulated for state-based
systems [38]. GNI is a liveness hyperproperty and can be expressed as follows:

∀π.∀π′.∃π′′. π=H,inπ
′′ ∧ π′=Lπ

′′ (7)

The trace π′′ in (7) is an interleaving of the high inputs of the first trace and
the low inputs and outputs of the second trace. Other security policies based
on interleavings, such as restrictiveness [36], separability [38], and forward cor-

rectability [39] can similarly be expressed in HyperLTL.

Declassification. Some programs need to reveal secret information to fulfill func-
tional requirements. For example, a password checker must reveal whether the
entered password is correct or not. The noninterference policies we have ex-
amined so far prohibit such behavior. More flexible security policies have been
designed to permit declassification of information; see [49] for a survey.

With HyperLTL, we easily specify customized declassification policies. For
example, suppose that a system inputs a password in its initial state, then de-
classifies whether that password is correct in the next state. The following policy
(a safety hyperproperty) stipulates that leaking the correctness of the password
is permitted, but that otherwise observational determinism must hold:

∀π.∀π′.(π[0]=L,inπ
′[0] ∧ X(pwπ↔ pwπ′)) → π=L,outπ

′ (8)

where atomic proposition pw expresses that the entered password is correct.

Quantitative noninterference. Quantitative information-flow policies [12, 14, 24,
31] permit leakage of information at restricted rates. One way to measure leak-
age is with min-entropy [51], which quantifies the amount of information an at-
tacker can gain given the answer to a single guess about the secret. The bounding
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problem [60] for min-entropy is to determine whether that amount is bounded
from above by a constant n. Assume that the program whose leakage is being
quantified is deterministic, and assume that the secret input to that program is
uniformly distributed. The bounding problem then reduces to determining that
there is no tuple of 2n+1 low-distinguishable traces [51,60] (a safety hyperprop-
erty). We can express that as follows:

¬∃π0. . . . . ∃π2n .
(

∧

i

πi =L,in π0

)

∧
∧

i�=j

πi �=L,out πj (9)

The initial negation can pushed inside to obtained a proper HyperLTL formula.
Quantitative flow and entropy naturally bring to mind probabilistic systems.

We haven’t yet explored extending our logics to enable specification of policies
that involve probabilities. Perhaps techniques previously used with epistemic
logic [25] could be adapted; we leave this as future work.

Event-based systems. Our examples above use a synchronous state-based ex-
ecution model. Many formulations of security policies, including the original
formulation of noninterference [23], instead use an event-based system model,
in which input and output events are not synchronized and have no relation
to time. HyperLTL can express policies for asynchronous execution models, too.
For example, HyperLTL can express the original definition of noninterference [23]
and observational determinism; the companion technical report [13] shows how.
The key idea is to allow the system to stutter and to quantify over all stut-
tered versions of the executions. We characterize the correct synchronization of
a pair of traces as having updates to low variables only at the same positions.
We then add an additional antecedent to the policy formula to require that only
those pairs of traces that are synchronized correctly need to fulfill the security
condition.

4 HyperCTL∗

HyperLTL was derived from LTL by extending the models of formulas from single
traces to sets of traces. However, like LTL, HyperLTL is restricted to linear time
and cannot express branching-time properties (e.g., all states that succeed the
current state satisfy some proposition). We show now that a branching-time
logic for hyperproperties could be derived from a branching-time logic for trace
properties, such as CTL∗ [18]. We call this logic HyperCTL∗. The key idea is
again to use sets instead of singletons as the models of formulas.

Syntax. HyperCTL∗ generalizes HyperLTL by allowing quantifiers to appear
anywhere within a formula. Quantification in HyperCTL∗ is over paths through
a Kripke structure. A path p is an infinite sequence of pairs of a state and a set
of atomic propositions. Hence, a path differs from a trace by including a state
of the Kripke structure in each element. Formally, p ∈ (S × 2AP)ω, where S is
the states of the Kripke structure. As with traces, p[i] denotes the element i of



272 M.R. Clarkson et al.

p, and p[i,∞] denotes the suffix of p beginning with element i. We also define a
new notation: let p(i) be the state in element i of p.

In HyperCTL∗, π is a path variable and ∃π is a path quantifier. Formulas of
HyperCTL∗ are defined by the following grammar:

ϕ ::= aπ | ¬ϕ | ϕ ∨ ϕ| Xϕ | ϕ U ϕ | ∃π. ϕ

We introduce all the syntactic sugar for derived logical operators, as for Hy-
perLTL. The universal quantifier can now be defined as syntactic sugar, too:
∀π. ϕ ≡ ¬∃π. ¬ϕ. A HyperCTL∗ formula is closed if all occurrences of some
path variable π are in the scope of a path quantifier. A HyperCTL∗ specification

is a Boolean combination of closed HyperCTL∗ formulas each beginning with a
quantifier (or its negation).

Semantics. The validity judgment for HyperCTL∗ formulas is written Π |=K ϕ,
where K is a Kripke structure, and Π : V → (S × 2AP)ω is a path assignment,
which is a partial function mapping path variables to paths. We write K as a
subscript on |=, because K propagates unchanged through the semantics; we
omit K when it is clear from context. Validity is defined as follows:

Π |=K aπ iff a ∈ L
(

Π(π)(0)
)

Π |=K ¬ϕ iff Π �|=K ϕ

Π |=K ϕ1 ∨ ϕ2 iff Π |=K ϕ1 or Π |= ϕ2

Π |=K Xϕ iff Π[1,∞] |=K ϕ

Π |=K ϕ1 U ϕ2 iff there exists i ≥ 0 :Π[i,∞] |=K ϕ2

and for all 0 ≤ j < i we have Π[j,∞] |=K ϕ1

Π |=K ∃π. ϕ iff there exists p ∈ Paths(K,Π(π′)(0)) : Π[π �→ p] |=K ϕ

In the clause for existential quantification, π′ denotes the path variable most
recently added to Π (i.e., closest in scope to π). If Π is empty, let Π(π′)(0) be the
initial state of K. It would be straightforward but tedious to further formalize
this notation, so we omit the details. That clause uses another new notation,
Paths(K, s), which is the set of paths produced by Kripke structure K beginning
from state s. Formally, Paths(K, s) contains path p, where p = (s0, P0)(s1, P1) . . .
and Pi ∈ 2AP, iff there exists a sequence s0s1 . . . of states, such that s0 is s, and
for all i ≥ 0, it holds that si+1 ∈ δ(si) and Pi = L(si).

Like with Traces in HyperLTL, we define Paths(K, s,AP′) as follows: We
have (s0, P0 ∪ P ′

0)(s1, P1 ∪ P ′
1) . . . ∈ Paths(K, s,AP′) iff (s0, P0)(s1, P1) . . . ∈

Paths(K, s), and for all i ≥ 0, it holds that P ′
i ⊆ AP′ \ AP.

We say that a Kripke structure K satisfies a HyperCTL∗ specification ϕ,
denoted by K |= ϕ, if Π |=K ϕ holds true for the empty assignment. The model

checking problem for HyperCTL∗ is to decide whether a given Kripke structure
satisfies a given HyperCTL∗ specification.

HyperCTL∗ vs. HyperLTL. LTL can be characterized as the fragment of CTL∗

containing formulas of the form Aϕ, where A is the CTL∗ universal path quan-
tifier and ϕ contains no quantifiers. Formula Aϕ is satisfied in CTL∗ by a Kripke
structure iff ϕ is satisfied in LTL by the traces of the Kripke structure.
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A similar relationship holds between HyperLTL and HyperCTL∗: HyperLTL
can be characterized as the fragment of HyperCTL∗ containing formulas in
prenex form—that is, a series of quantifiers followed by a quantifier-free formula.
A formula ϕ in prenex form is satisfied in HyperCTL∗ by a Kripke structure iff ϕ

is satisfied in HyperLTL by the traces of the Kripke structure. HyperCTL∗ is a
strict generalization of HyperLTL, which extends HyperLTL with the capability
to use quantified formulas as subformulas in the scope of temporal operators.
For example, consider the program (l := 0 � l := 0) � (l := 1 � l := 1). A
low-observer can infer which branch of the center-most nondeterministic choice
is taken, but not which branch is taken next. This is expressed by HyperCTL∗

formula ∀π. X ∀π′. X(lπ ↔ lπ′). There is no equivalent HyperLTL formula.
As we show in Subsection 5.3, the temporal logic SecLTL [17] can be encoded

in HyperCTL∗, but not in HyperLTL. This provides further examples that dis-
tinguish HyperLTL and HyperCTL∗.

5 Related Logics

We now examine the expressiveness of HyperLTL and HyperCTL∗ compared to
several existing temporal logics: LTL, CTL∗, QPTL, ETL, and SecLTL. There
are many other logics that we could compare to in future work; some of those
are discussed in Section 8.

5.1 Temporal Logics

HyperCTL∗ is an extension of CTL∗ and therefore subsumes LTL, CTL, and
CTL∗. Likewise, HyperLTL subsumes LTL. But temporal logics LTL, CTL, and
CTL∗ cannot express information-flow policies. LTL formulas express properties
of individual execution paths. All of the noninterference properties of Section 3
are properties of sets of execution paths [15, 38]. Explicit path quantification
does enable their formulation in HyperLTL.

Even though CTL and CTL∗ have explicit path quantifiers, information-flow
security policies, such as observational determinism (6), cannot be expressed
with them. Consider the following fragment of CTL∗ semantics:

s |= Aϕ iff for all p ∈ Paths(K, s) : p |= ϕ

p |= Φ iff p(0) |= Φ

Path formulas ϕ are modeled by paths p, and state formulas Φ are modeled
by states s. State formula Aϕ holds at state s when all paths proceeding from
s satisfy ϕ. Any state formula Φ can be treated as a path formula, in which
case Φ holds of the path iff Φ holds in the first state on that path. Using this
semantics, consider the meaning of AAϕ, which is the form of observational
determinism (6):

s |= AAϕ

= for all p ∈ Paths(K, s) : p |= Aϕ

= for all p ∈ Paths(K, s) and p′ ∈ Paths(K, s) : p′ |= ϕ
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Note how the meaning of AAϕ is ultimately determined by the meaning of ϕ,
where ϕ is modeled by the single path p′. Path p is ignored in determining
the meaning of ϕ; the second universal path quantifier causes p to “leave scope.”
Hence ϕ cannot express correlations between p and p′, as observational determin-
ism requires. So CTL∗ path quantifiers do not suffice to express information-flow
policies. Neither do CTL path quantifiers, because CTL is a sub-logic of CTL∗. In
fact, even the modal µ-calculus does not suffice to express some information-flow
properties [2].

By using the self-composition construction [7,52], it is possible to express re-
lational noninterference in CTL [7] and observational determinism in CTL∗ [30].
Those approaches resemble HyperCTL∗, but HyperCTL∗ formulas express poli-
cies directly over the original system, rather than over a self-composed system.
Furthermore, the self-composition approach does not seem capable of expressing
policies that require both universal and existential quantifiers over infinite exe-
cutions, like noninference (5) and generalized noninterference (7). It is straight-
forward to express such policies in our logics.

QPTL. Quantified propositional temporal logic (QPTL) [50] extends LTL with
quantification over propositions, whereas HyperLTL extends LTL with quantifi-
cation over traces. Quantification over traces is more powerful than quantifica-
tion over propositions, as we now show.

QPTL formulas are generated by the following grammar, where a ∈ AP:

ψ ::= a | ¬ψ | ψ ∨ ψ | Xψ | Fψ | ∃a. ψ

All QPTL connectives have the same semantics as in LTL, except for proposi-
tional quantification:

p |= ∃a.ψ iff there exists p′ ∈ (2AP)ω : p =AP\a p′ and p′ |= ψ .

Theorem 1. HyperLTL subsumes QPTL, but QPTL does not subsume Hyper-

LTL.

Proof sketch. To express a QPTL formula in HyperLTL, rewrite the formula to
prenex form, and rename all bound propositions with unique fresh names from
a set AP′. These propositions act as free variables, which are unconstrained
because they do not occur in the Kripke structure. Replace each propositional
quantification ∃a in the QPTL formula by a path quantification ∃πa in the
HyperLTL formula. And replace each occurrence of a by aπa

. The result is a
HyperLTL formula that holds iff the original QPTL formula holds.

But not all HyperLTL formulas can be expressed in QPTL. For example,
QPTL cannot express properties that require the existence of paths, such as
∃π.X aπ.

In Section 6, we exploit the relationship between HyperLTL and QPTL to obtain
a model checking algorithm for HyperLTL.
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5.2 Epistemic Logics

HyperLTL and HyperCTL∗ express information-flow policies by explicit quan-
tification over multiple traces or paths. Epistemic temporal logic has also been
used to express such policies [4, 10, 26, 55] by implicit quantification over traces
or paths with the knowledge connective K of epistemic logic [19]. We do not yet
know which is more powerful, particularly for information-flow policies. But we
do know that HyperLTL subsumes a common epistemic temporal logic.

Define ETL (epistemic temporal logic) to be LTL with the addition of K un-
der its perfect recall semantics [4, 19, 54]. The model of an ETL formula is a
pair (K,Agts) of a Kripke structure K and a set Agts of equivalence relations
on AP, called the agents ; each relation models the knowledge of an agent. (In-
terpreted systems, rather than Kripke structures, are often used to model ETL
formulas [19,54]. Interpreted systems differ in style but can be translated to our
formulation.) In the asynchronous semantics of ETL, KAψ holds on state i of
trace t ∈ Traces(K), denoted t, i |= KAϕ, iff

for all t′ ∈ Traces(K) : t[0, i]≈A t′[0, i] implies t′, i |= ϕ,

where ≈A denotes stutter-equivalence on finite traces with respect to A. In
the synchronous semantics of ETL, stutter-equivalence is replaced by stepwise-
equivalence.

The following two theorems show that HyperLTL subsumes ETL:

Theorem 2. In the synchronous semantics, for every ETL formula ψ and every

set Agts of agents, there exists a HyperLTL formula ϕ such that for all Kripke

structures K, we have (K,Agts) |= ψ iff K |= ϕ.

Theorem 3. In the asynchronous semantics, for every ETL formula ψ and

every set Agts of agents, there exists a HyperLTL formula ϕ such that for all

asynchronous Kripke structures K, we have (K,Agts) |= ψ iff K |= ϕ.

Proofs of both theorems appear in the companion technical report [13]. The-
orem 3 requires an additional assumption that K is an asynchronous Kripke
structure, i.e. that it can always stutter in its current state and that it is indi-
cated in an atomic proposition whether the last state was a stuttering step.

HyperLTL and ETL have the same worst-case complexity for model check-
ing, which is non-elementary. But, as we show in Section 6, the complexity of
our model checking algorithm on the information-flow policies of Section 3 is
much better—only NLOGSPACE (for observational determinism, declassifica-
tion, and quantitative noninterference for a fixed number of bits) or PSPACE
(for noninference and generalized noninterference) in the size of the system. For
those policies in NLOGSPACE, that complexity, unsurprisingly, is as good as
algorithms based on self-composition [7]. This ability to use a general-purpose,
efficient HyperLTL model checking algorithm for information flow seems to be
an improvement over encodings of information flow in ETL.
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5.3 SecLTL

SecLTL [17] extends temporal logic with the hide modality H , which allows to
express information flow properties such as noninterference [23]. The semantics
of SecLTL is defined in terms of labeled transition system, where the edges are
labeled with valuations of the set of variables. The formula HH,Oϕ specifies
that the current valuations of a subset H of the input variables I are kept secret
from an attacker who may observe variables in O until the release condition ϕ

becomes true. The semantics is formalized in terms of a set of alternative paths

to which the main path is compared:

AltPaths(p,H) = {p′ ∈ Paths(KM , p[0]) | p[1]=I\H p′[1] and p[2,∞]=I p
′[2,∞]}

where KM is the equivalent Kripke structure for the labeled transition system
M (we will explain the translation later in this section.) A path p satisfies the
SecLTL formula HH,Oϕ, denoted by p |= HH,Oϕ, iff

∀p′ ∈ AltPaths(p,H).
(

p=O p′, or there exists i ≥ 0 :
p[i,∞] |=K ϕ and p[1, i−1]=O p′[1, i−1]

)

A labeled transition system M satisfies a SecLTL formula ψ, denoted by M |= ψ,
if every path p starting in the initial state satisfies ψ.

SecLTL can express properties like the dynamic creation of secrets discussed
in Section 4, which cannot be expressed by HyperLTL. However, SecLTL is
subsumed by HyperCTL∗. To encode the hide modality in HyperCTL∗, we first
translate M into a Kripke structure KM , whose states are labeled with the
valuation of the variables on the edge leading into the state. The initial state is
labeled with the empty set. In the modified system, L(p[1]) corresponds to the
current labels. We encode HH,Oϕ as the following HyperCTL∗ formula:

∀π′. π[1]=I\H π′[1] ∧ X
(

π[1]=O π′[1] W (π[1] �=I π
′[1] ∨ ϕ)

)

Theorem 4. For every SecLTL formula ψ and transition system M , there is a

HyperCTL∗ formula ϕ such that M |= ψ iff KM |= ϕ.

The model checking problem for SecLTL is PSPACE-hard in the size of the
Kripke structure [17]. The encoding of SecLTL specifications in HyperCTL∗

implies that the model checking problem for HyperCTL∗ is also PSPACE-hard
(for a fixed specification of alternation depth ≥ 1), as claimed in Theorem 6.

6 Model Checking and Satisfiability

In this section we exploit the connection between HyperCTL∗ and QPTL to
obtain a model checking algorithm for HyperCTL∗ and study its complexity. We
identify a hierarchy of fragments of HyperCTL∗ characterized by the number of
quantifier alternations. This hierarchy allows us to give a precise characterization
of the complexity of the model checking problem. The fragment of formulas with
quantifier alternation depth 0 includes already many formulas of interest and our
result provides an NLOGSPACE algorithm in the size of the Kripke structure.
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Definition 1 (Alternation Depth). A HyperCTL∗ formula ϕ in NNF has

alternation depth 0 plus the highest number of alternations from existential to

universal and universal to existential quantifiers along any of the paths of the

formula’s syntax tree starting in the root. Occurrences of U and R count as an

additional alternation.

Theorem 5. The model checking problem for HyperCTL∗ specifications ϕ with

alternation depth k on a Kripke structure K is complete for NSPACE(gc(k, |ϕ|))
and it is in NSPACE(gc(k − 1, |K|)) for some c > 0.

The function gc(x, y) denotes a tower of exponentials of height x with ar-
gument y: gc(0, y) = y and gc(x, y) = cg(x−1,y). NSPACE(gc(x, y)) denotes
the class of languages accepted by a Turing machine bounded in space by
O(gc(x, y)). Abusing notation, we define gc(−1, y) = log y and NSPACE(log y) =
NLOGSPACE in y.

Proof. Both directions, the lower bound and the upper bound, are based on the
complexity of the satisfiability problem for QPTL formulas ϕ in prenex normal
form and with alternation depth k, which is complete for NSPACE(g(k, |ϕ|)) [50].

For the upper bound on the HyperCTL∗ model checking complexity, we first
translate until operators ψ U ψ′ as ∃t. t ∧ G(t → ψ′ ∨ (ψ ∧ X t)) ∧ ¬G t. Let
ψ(K,AP′) encode a Kripke structure K, where K = (S, s0, δ,AP, L), as a QPTL
formula (cf. [33]) using the set of atomic propositions AP′, which must contain
atomic propositions replacing those of AP and additional atomic propositions
to describe the states S. The formula ψ(K,AP′) is linear in |K| and does not
require additional quantifiers.

HyperCTL∗ path quantifiers ∃π.ϕ and ∀π.ϕ are then encoded as ∃APπ . ψ

(K,APπ) ∧ ϕAPπ
and ∀APπ.ψ(K,APπ) → ϕAPπ

, where APπ is a set of fresh

atomic propositions including a copy of AP and additional atomic propositions
to describe the states S. The formula ϕAPπ

is obtained from ϕ by replacing all
atomic propositions referring to path π by their copies in APπ. Atomic proposi-
tions in the formula that are not in AP (i.e. their interpretation is not fixed in
K) need to be added to the sets APπ accordingly.

For the lower bound, we reduce the satisfiability problem for a given QPTL
formula ϕ in prenex normal form to a model checking problem K |= ϕ′ of
HyperCTL∗. We assume, without loss of generality, that ϕ is closed (if a free
proposition occurs in ϕ, we bind it with an existential quantifier) and each
quantifier in ϕ introduces a different proposition.

The Kripke structure K consists of two states S = {s0, s1}, is fully connected
δ(s) = S for all s ∈ S, and has a single atomic proposition AP = {p}. The
states are labeled as follows: L(s0) = ∅ and L(s1) = {p}. Essentially, paths
in K can encode all sequences of valuations of a variable in QPTL. To obtain
the HyperCTL∗ formula, we now simply replace every quantifier in the QPTL
formula with a path quantifier. The only technical problem left is that quantifi-
cation in QPTL allows to choose freely the value of p in the current state, while
path quantification in HyperCTL∗ only allows the path to differ in the next
state. We solve the issue by shifting the propositions using a next operator.



278 M.R. Clarkson et al.

Lower bounds in |K|. An NLOGSPACE lower bound in the size of the Kripke
structure for fixed specifications with alternation depth 0 follows from the non-
emptiness problem of non-deterministic Büchi automata. For alternation depth
1 and more we can derive PSPACE hardness in the size of the Kripke structure
from the encoding of the logic SecLTL into HyperCTL∗ (see Subsection 5.3).

The result can easily be transferred to HyperLTL, since in the SecLTL formula
that is used to prove PSPACE hardness, the Hide operator does not occur in the
scope of temporal operators and hence the translation yields a HyperLTL formula.

Theorem 6. For HyperLTL formulas the model checking problem is hard for

PSPACE in the size of the system.

A Remark on Efficiency The use of the standard encoding of the until operator
in QPTL with an additional quantifier shown above is, in certain cases, wasteful.
The satisfiability of QPTL formulas can be checked with an automata-theoretic
construction, where we first transform the formula into prenex normal form, then
generate a nondeterministic Büchi automaton for the quantifier-free part of the
formula, and finally apply projection and complementation to handle the existen-
tial and universal quantifiers. In this way, each quantifier alternation, including
the alternation introduced by the encoding of the until operators, causes an
exponential blow-up. However, if an until operator occurs in the quantifier-free
part, the standard transformation of LTL formulas to nondeterministic Büchi
automata handle this until operator without requiring a quantifier elimination,
resulting in an exponential speedup.

Using this insight, the model checking complexity for many of the formulas
presented above and in Section 3 can be reduced by one exponent. Additionally,
the complexity with respect to the size of the system reduces to NLOGSPACE for
HyperCTL∗ formulas where the leading quantifiers are all of the same type and
are followed by some quantifier-free formula which may contain until operators
without restriction. Observational determinism and the declassification policy
discussed in Section 3 are examples for specifications in this fragment. This
insight was used for the prototype implementation described in Section 7 and it
avoids an additional complementation step for noninference (5).

Satisfiability. The positive result regarding the model checking problem for
HyperCTL∗ does not carry over to the satisfiability problem. The finite-state

satisfiability problem consists of the existence of a finite model, while the general
satisfiability problem asks for the existence of a possibly infinite model.

Theorem 7. For HyperCTL∗, finite-state satisfiability is hard for Σ0
1 and gen-

eral satisfiability is hard for Σ1
1 .

In the proof, located in the companion technical report [13], we reduce the LTL syn-
thesis problem of distributed systems to the satisfiability problem of HyperCTL∗.

7 Prototype Model Checker

The results of the previous section yield a model checking algorithm for all of
HyperCTL∗. But most of our information-flow policy examples do not require
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the full expressiveness of HyperCTL∗. In fact, we have been able implement a
prototype model checker for an expressive fragment of the logic mostly using
off-the-shelf components.

Define HyperLTL2 as the fragment of HyperLTL (and of HyperCTL∗) in which
the series of quantifiers at the beginning of a formula may involve at most one al-
ternation. Every formula in HyperLTL2 thus may begin with at most two (whence
the name) kinds of quantifiers—a sequence of ∀’s followed by a sequence of ∃’s, or
vice-versa. For example,∃π.ψ and∀π1.∀π2.∃π3.ψ are allowed, but∀π1.∃π2.∀π3.ψ is
not. HyperLTL2 suffices to express all the security policies formulated in Section 3.
(Another logic for hyperproperties, ILk

µ [41], similarly restricts fixpoint operator
alternations with no apparent loss in expressivity for security policies.)

Our model checking algorithm for HyperLTL2, detailed in the companion
technical report [13], is based on algorithms for LTL model checking [21,22,57].
Those LTL algorithms determine whether a Kripke structure satisfies an LTL
formula by performing various automata constructions and by checking language
containment. Our algorithm likewise uses automata constructions and language
containment, as well as self composition [7,52] and a new projection construction.

We prototyped this algorithm in about 3,000 lines of OCaml code. Our pro-
totype accepts as input a Kripke structure and a HyperLTL2 formula, then con-
structs the automata required by our algorithm, and outputs a countermodel if
the formula does not hold of the structure. For automata complementation, our
prototype outsources to GOAL [53], an interactive tool for manipulating Büchi
automata. We have used the prototype to verify noninference (5), observational
determinism (6), and generalized noninterference (7) for small Kripke structures
(up to 10 states); running times were about 10 seconds or less.

Since our algorithm uses automata complementation, the worst-case running
time is exponential in the size of the Kripke structure’s state space and doubly
exponential in the formula size. So as one might expect, our prototype currently
does not scale to medium-sized Kripke structures (up to 1,000 states). But our
purpose in building this prototype was to demonstrate a proof-of-concept for
model checking of hyperproperties. We conjecture that practical symbolic model
checking algorithms, such as BMC and IC3, could be used to scale up our ap-
proach to real-world systems.

8 Related Work

McLean [38] formalizes security policies as closure with respect to selective inter-

leaving functions. He shows that trace properties cannot express security policies
such as noninterference and average response time, because those are not proper-
ties of single execution traces. Mantel [34] formalizes security policies with basic

security predicates, which stipulate closure conditions for trace sets.
Clarkson and Schneider [15] introduce hyperproperties, a framework for ex-

pressing security policies. Hyperproperties are sets of trace sets, and are able
to formalize security properties such as noninterference, generalized noninter-
ference, observational determinism and average response time. Clarkson and
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Schneider use second-order logic to formulate hyperproperties. That logic isn’t
verifiable, in general, because it cannot be effectively and completely axioma-
tized. Fragments of it, such as HyperLTL and HyperCTL∗, can be verified.

Alur et al. [2] show that modal µ-calculus is insufficient to express all opacity
policies [9], which prohibit observers from discerning the truth of a predicate.
(Alur et al. [2] actually write “secrecy” rather than “opacity.”) Simplifying defi-
nitions slightly, a trace property P is opaque iff for all paths p of a system, there
exists another path p′ of that system, such that p and p′ are low-equivalent, and
exactly one of p and p′ satisfies P . Noninference (5) is an opacity policy [47] that
HyperLTL can express.

Huisman et al. reduce observational-determinism properties to properties in
CTL∗ [30] and in modal µ-calculus [29] on a self-composed system. Barthe et al.
use self composition to verify observational determinism [7] and noninterference [6]
on terminating programs. Van der Meyden and Zhang [56] reduce a broader class
of information-flow policies to safety properties on a self-composed system ex-
pressible in standard linear and branching time logics, and use model checking
to verify noninterference policies. Their methodology requires customized model
checking algorithms for each security policy, whereas this work proposes a single
algorithm for all policies.

Balliu et al. [4] use a linear-time temporal epistemic logic to specify many
declassification policies derived from noninterference. Their definition of nonin-
terference, however, seems to be that of observational determinism (6). They do
not consider any information-flow policies involving existential quantification,
such as noninference. They also do not consider systems that accept inputs after
execution has begun. Halpern and O’Neill [26] use a similar temporal epistemic
logic to specify secrecy policies, which subsume many definitions of noninterfer-
ence; they do not pursue model checking algorithms.

Alur et al. [1] discuss branching-time logics with path equivalences that are
also able to express certain security properties. The authors introduce operators
that resemble the knowledge operator of epistemic logics. As the logics build on
branching-time logics they are not subsumed by HyperLTL. The relationship to
HyperCTL∗ is still open.

Milushev and Clarke [40–42] propose three logics for hyperproperties:

– Holistic hyperproperty logic HL, which is based on coinductive predicates
over streams. Holistic hyperproperties “talk about whole traces at once; their
specifications tend to be straightforward, but they are difficult to reason
about, exemplified by the fact that no general approach to verifying such
hyperproperties exists” [40]. HyperLTL and HyperCTL∗ are logics that talk
about whole traces at once, too; and they have straightforward specifications
as well as a general approach to verification.

– Incremental hyperproperty logic IL is a fragment of least fixed-point logic [8].
There is a manual verification methodology for IL [40], but no automated
decision procedure.

– Another incremental hyperproperty logic ILk
µ, a fragment of polyadic modal

µ-calculus [3] that permits at most one quantifier alternation (a greatest
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fixed-point followed by a least fixed-point). There is an automated model
checking technique [41] for ILk

µ based on parity games. That technique has
been prototyped and applied to a few programs.

All these logics suffice to express security policies such as noninterference and
generalized noninterference. Like our logics, the exact expressive limitation is
still an open problem.

As the preceding discussion makes clear, the expressiveness of HyperLTL and
HyperCTL∗ versus several other logics is an open question. It’s possible that
some of those logics will turn out to be more expressive or more efficiently
verifiable than HyperLTL or HyperCTL∗. It’s also possible that it will turn
out to be simply a matter of taste which style of logic is more suitable for
hyperproperties. The purpose of this paper was to explore one design option: a
familiar syntax, based on widely-used temporal logics, that can straightforwardly
express well-known hyperproperties.

9 Concluding Remarks

In designing a logic for hyperproperties, starting with HyperLTL was natural,
because hyperproperties are sets of trace sets, and LTL uses trace sets to model
programs. From HyperLTL, the extension to HyperCTL∗ was also natural: we
simply removed the restrictions on where quantifiers could appear. The curtail-
ment to HyperLTL2 was also natural, because it was the fragment needed to
express information-flow security policies. HyperLTL2 permits up to one quanti-
fier alternation, but what about hyperproperties with more? We do not yet know
of any security policies that are examples. As Rogers [45] writes, “The human
mind seems limited in its ability to understand and visualize beyond four or
five alternations of quantifier. Indeed, it can be argued that the inventions. . . of
mathematics are devices for assisting the mind in dealing with one or two addi-
tional alternations of quantifier.” For practical purposes, we might not need to
go much higher than one quantifier alternation.
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17. Dimitrova, R., Finkbeiner, B., Kovács, M., Rabe, M.N., Seidl, H.: Model check-
ing information flow in reactive systems. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 169–185. Springer, Heidelberg (2012)

18. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: On branch-
ing versus linear time temporal logic. Journal of the ACM 33(1), 151–178 (1986)

19. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995)

20. Focardi, R., Gorrieri, R.: Classification of security properties (Part I: Information
flow. In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 331–
396. Springer, Heidelberg (2001)

http://arxiv.org/abs/1401.4492


Temporal Logics for Hyperproperties 283

21. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
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