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Fig. 1. Temporal MDS plots (top) applied to network traffic data, which was collected from a /16 computer network over a period of 24
hours. For each temporal MDS plot the sequentially aligned matrix (bottom) provides an overview of correlations among dimensions.
The visualization reveals a distributed brute-force attack (A, D) and various different port scans (B, C).

Abstract— Multivariate time series data can be found in many application domains. Examples include data from computer networks,
healthcare, social networks, or financial markets. Often, patterns in such data evolve over time among multiple dimensions and are
hard to detect. Dimensionality reduction methods such as PCA and MDS allow analysis and visualization of multivariate data, but
per se do not provide means to explore multivariate patterns over time. We propose Temporal Multidimensional Scaling (TMDS), a
novel visualization technique that computes temporal one-dimensional MDS plots for multivariate data which evolve over time. Using
a sliding window approach, MDS is computed for each data window separately, and the results are plotted sequentially along the time
axis, taking care of plot alignment. Our TMDS plots enable visual identification of patterns based on multidimensional similarity of the
data evolving over time. We demonstrate the usefulness of our approach in the field of network security and show in two case studies
how users can iteratively explore the data to identify previously unknown, temporally evolving patterns.

Index Terms—Multivariate Data, Time Series, Data Reduction, Multidimensional Scaling

1 INTRODUCTION

Today’s world is driven by the continuous collection of data from vari-
ous domains: Computer networks, healthcare, and finance markets are
prominent examples. Particularly in the exploration phase, a key task
in understanding complex data is to group it into a set of discernible ar-
eas (patterns). Real-world data is often multivariate and evolves over
time, posing a challenge to detecting such patterns visually. Visual
analytics aims to support understanding of complex data and finding
patterns. It suggests that analysts are involved into the automatic data
analysis process by steering analysis parameters and exploration of
data by visualization. As a result, analysts are supported to understand
data and draw conclusions for a specific analysis task.
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For example in the field of network security, threats show differ-
ent and often very dynamic behaviors. In so-called port scans, at-
tackers explicitly search for open ports to receive access to a given
system. However, such computer threats constantly evolve over time
and change their behavior. Large amounts of data need to be analyzed
without any prior knowledge about which threats to expect, and when.
Existing approaches such as supervised machine learning, typically
rely on classifiers and thus prior knowledge to detect or predict pat-
terns. Visual data analysis is promising in helping explore and analyze
data in an unsupervised way. Prominent examples of successful high-
dimensional visualization techniques include e.g., parallel coordinates
and glyph-based techniques. However, many high-dimensional data
visualization techniques cannot directly consider the temporal aspect,
or only for selected single dimensions. The so-called time series path
techniques and others (see Section 2) consider multivariate tempo-
ral data, but lack presenting temporal multivariate data with multiple
events at a time.

We propose Temporal Multidimensional Scaling (TMDS) which
takes temporal multivariate data into account and visually presents
the data enabling analysts to identify patterns and explore the data
space, following the visual analytics process. Our approach is based
on two driving questions: Firstly, how to process and visualize tem-
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poral multivariate data to allow analysts explore patterns? Secondly,
once a pattern has been identified, how can we automatically find sim-
ilar patterns? TMDS applies a sliding window approach on the data
and computes a one-dimensional (1D) MDS for each window. The
resulting sequence of 1D MDS mappings are then organized along
the temporal axis: The x-axis represents the time, and the y-axis rep-
resents the MDS similarity value. Similar events are grouped over
time and can efficiently be identified. To analyze the multivariate na-
ture, we augment the visualization with a sequenced diversity matrix
aligned with the MDS plot revealing the different temporal behaviors
of single variables. Furthermore, we introduce a new algorithm to find
similar patterns based on the user selection and the behavior along di-
mensions. TMDS enables the efficient detection of recurring patterns
and further allows to identify evolution of patterns, being based on
varying scales and intervals. Another technical contribution of our ap-
proach is an appropriately aligned visualization of the sequence of 1D
projections. Most existing approaches employ two-dimensional MDS
projections. TMDS relies on 1D MDS projections, taking the second
dimension in the plot to show the change of multivariate data patters
over time.

The remainder of this paper is organized as follows. First, we dis-
cuss related work in Section 2. Then, we give a brief example in
Section 3 about entailed benefits of temporal 1D MDS plots and how
analysis is performed using our prototype. In Section 4, we provide
a three-step pipeline to derive TMDS. In Section 5, we propose two
extensions, which enable the user to visually and automatically iden-
tify patterns. We further show the usefulness of our approach in a case
study with application to network security in Section 6 and provide a
discussion of results in Section 7. Section 8 concludes.

2 RELATED WORK

We briefly discuss related work from multivariate data mining, visual-
ization, and visual analysis of temporal multivariate data.

2.1 Multivariate Data Mining and Visualization

Multivariate data analysis methods consider several dimensions (vari-
ables) simultaneously. Typically, dimensions in multivariate datasets
are related and cannot be considered independently [32]. This is dif-
ferent with respect to multi-dimensional data, where individual dimen-
sions are orthogonal to each other and may be reduced e.g., by feature
selection techniques [31]. State of the art methods for the automated
analysis of multivariate data can be found in the domain of machine
learning [35, 18]. Supervised machine learning techniques require a
priori knowledge about the data patterns to be searched, such as a clas-
sification structure to segment data. On the other hand, unsupervised
techniques are suitable for the analysis of datasets whose patterns are
not known in advance, e.g., including clustering analysis.

Many techniques support visualization for multivariate data, includ-
ing methods like geometric projections (Parallel Coordinates [21], An-
drews curves [3], Star Coordinates [24]), pixel-oriented techniques
(Recursive Pattern [26], Pixel Bar Charts [27]), hierarchical displays
(Dimensional Stacking [30]), or glyph-based techniques (Chernoff
faces [8], Star glyphs [6]). Additional examples for the visualiza-
tion of multivariate data can be found in the survey by Kehrer and
Hauser [25]. Typically, these visualization approaches do not explic-
itly consider the temporal aspect of multivariate data. Either the tem-
poral behavior is visualized only for single dimensions, or a statistical
aggregate of the multivariate variables. A common approach to com-
bine both, the temporal as well as the multivariate aspect, is the appli-
cation of small multiples [39]: This way, multivariate visualizations
can be tracked over time. However, visualizations are sequenced forc-
ing the user to split perception attention which can impede accurate
identification of temporally evolving patterns. An extensive survey of
other visualization techniques for time-oriented data is found in [1].

2.2 Dimensionality Reduction Techniques

Analysis and visualization of high-dimensional data is a difficult prob-
lem. The so-called curse of dimensionality [19] impedes the ability to

compactly visualize and identify patterns in multivariate data. Dimen-
sion reduction techniques target to detect and consider only interesting
dimensions and their relation to each other for analysis. For exam-
ple, Self-organizing Maps (SOM) [29] can be utilized to group data
based on their similarity to each other into a predefined layout. Prin-
cipal Component Analysis (PCA) [23] and Multidimensional Scaling
(MDS) [9] among others, are not tied to producing 2D layouts, but
project the data into a predefined n-dimensional space. Results repre-
sent a linear or non-linear combination of the original dimensions [32].
Dimension reduction techniques are widely used for the analysis and
visualization of multivariate data. Yet, multivariate data is often tem-
porally evolving and the dimension of time needs to be considered.

2.3 Time-Dependent Dimensionality Reduction

Dwyer et al. [12] take first steps and propose to map time to the third
dimension of a two dimensional baseline MDS plot. Conceptually
similar to a space-time-cube, changes over time can be tracked in a
2.5D view. Several approaches have been presented [33, 20, 40, 4],
which project multivariate data to two dimensions. The idea is, that a
single data entry is tracked over time, and the path of such single entry
is visualized in the resulting projection. While these techniques may
allow to detect e.g., cyclic patterns, the displays may also quickly lead
to cluttered structures, as the data items may be plotted to arbitrary
(x,y) coordinates and following them in 2D is a perceptionally difficult
task. Crnovrsanin et al. [10] therefore discuss the usage of 1D plots
for temporal analysis of movement data using PCA.

2.4 Delineation to our Work

The aforementioned methods track time for single data records (en-
tries in a data table) that give rise to a temporal behavior in a 2D plot
with continuous coordinates. Existing approaches typically consider
a discrete projection for every time point, which may include abrupt
changes in the (x,y) position of the data item location. In our approach,
we propose a temporally smoothed version of time-dependent multi-
variate plots, by considering a sliding window approach with overlap
to do the projection. Thereby, the resulting temporal patterns show
higher smoothness, which acts as a filter to suppress abrupt changes
which however, may only have very limited local support. Our ap-
proach is able to emphasize temporal evolving patterns of multivariate
data, whose entries are not associated to each other but possibly share
a common behavior across several dimensions. By using a 1D lay-
out, we also introduce a simpler linear structure (as opposed to 2D
trajectories), which analysts can easily follow and link to data details.
As we show in the case studies (Section 6), this approach allows to
identify patterns at various resolutions and interval sizes, which can
be effectively tracked by the analyst.

3 BASIC IDEA OF TEMPORAL MDS

Our TMDS approach follows a visual analytics process and allows the
user to browse the data and to refine parameters and inputs. TMDS
is suitable for the analysis of any temporal evolving multivariate data,
either numerical or categorical. Our approach first allows the analyst
to select and weight single dimensions of a multivariate input data set,
according to their importance. Then, TMDS applies a sliding win-
dow of given size and overlap to the time-dependent data. For each
window, a 1D MDS analysis is performed. This way, similar entries
are grouped accordingly over time, based on the correlation of dimen-
sions. The analyst may also adjust the weighting of the dimensions,
so that dimensions of interest can be prioritized and the task require-
ments are met. The re-computation of the MDS may reveal several
temporal aligned patterns, as depicted in Figure 1. They are spatially
separated along the y-axis (similarity) but still evolve over time (x-
axis). The patterns are presented as groups of entries that evolve over
time and are aligned on the same similarity level; they can be validated
in combination with the diversity matrix plotted below the MDS. The
diversity matrix is aligned with the window and quantitatively presents
computed diversity indices among dimensions through color. It helps
the analyst to efficiently understand correlations between dimensions



and thus to draw conclusions. The analyst further selects a salient pat-
tern and runs the algorithm to find similar patterns. Similar patterns are
then visually highlighted and separated through color, and listed next
to the visualization. Using visual analytics, the analyst re-configures
TMDS utilizing identified similar patterns as new input. This way, data
can be explored based on new insight. An example result is presented
in Figure 1. The selection is highlighted in magenta. The prototype
provides details on demand and thus allows the analyst to inspect the
raw data of the selection, which reveals a distributed brute-force attack
to different servers. On demand, found pattern data can be exported as
input for subsequent analysis tools.

4 TEMPORAL MULTIDIMENSIONAL SCALING
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Fig. 2. Consecutive three-step pipeline for the TMDS computation. A
dataset comprises the entries E1 to EN (each entry holding multiple di-
mensions), which are processed in temporal ascending order. (1) Based
on the weighted distance matrix, a sliding window with overlap is applied
and (2) 1D MDS computed for each window separately. The result is se-
quentially aligned on the time axis. (3) Because MDS is not invariant to
rotation, we apply a slice flipping heuristic.

Our Temporal Multidimensional Scaling (TMDS) approach com-
putes aligned temporal 1D MDS plots for multivariate data. We apply
a sliding window to the temporal sequence of multivariate data and
compute the MDS for each slice separately. Note that this approach
is applicable to sequential as well as temporal data and therefore re-
quires the data to be loaded in ascending temporal order, making it
also suitable for real-time applications. The results are then plotted
sequentially along the time axis.

MDS is a well-known dimension reduction technique, used to pre-
serve similarities across multivariate data. Compared to e.g., PCA
which requires co-variances, MDS requires a distance matrix as input,
which defines the similarity between entries. Distances can be com-
puted for various data types, including numerical distance between
numerical values, binary distance between strings, cosine distance be-
tween documents in vector space, among others. Hence, MDS suites
our needs of handling categorical data, which we encounter for in-
stance in network security data (Section 6), healthcare data, and fi-
nance data. We compute the distances for categorical data as follows:

distance(A,B) =

|dim|
∑

i=1
[Ai �= Bi] ·wi

|dim| (1)

The distance or dissimilarity between two entries A and B is computed
by first iterating all dimensions from i = 1 to the total amount of di-
mensions |dim|. Using Iverson Brackets [17], the i-th dimensions of
the entries are compared with each other and the result is multiplied
with dimension weight wi. We then compute the average by dividing
by the total amount of dimensions to derive the final distance value.

Weighting single dimensions has direct impact on the similarity cal-
culation and thus the 1D MDS plot. We allow the user to define the
weights wi for each dimension individually. Especially domain ex-
perts typically know dimensions that are from interest for certain tasks
at hand and can make use of their domain knowledge to influence the
computation and the exploration of temporal patterns. The step of
weighting becomes tedious if the data includes loads of dimensions.
Hence, our approach supports predefined weightings, which are pre-
sented as suggestions. Suggestions are predefined but facilitate and

speed up the analysis if combinations of dimensions reoccur among
different datasets. Weighting dimensions is possible in the range of
[0,1]. The lower the weight is, the less impact the weighted dimension
has in the MDS analysis. For example, a dimension weighted with 0 is
excluded from the computation of the distance matrix. To implement
TMDS, we define the following three-step algorithm (Figure 2):

1. Sliding Window: Run sliding window with overlap and user-
defined parameters along the sequence of data items, and com-
pute the distance matrix for all entries in the given window.

2. Temporal 1D MDS: Apply multidimensional scaling to the dis-
tance matrix of each window step. The outcome of each compu-
tation is a one-dimensional ordering of the multivariate records
and the basis for the sequential visualization.

3. MDS Slice Flipping: Multidimensional scaling is not invariant
to rotation. Similarity values upon multiple TMDS computed
slices may not share same similarity positions but be rotated by
180 degrees. As a result, temporally evolving patterns may not
be clearly identifiable. A canonical orientation of the 1D MDS
orderings needs to be obtained. We propose to use a heuristic
based on the orientation of the entries contained in the over-
lap. Salient patterns are marked in Figure 3 (3), which were not
equally clear without our flipping test.

Following, we will give an in-detail overview of these steps. Starting
in Section 4.1, we discuss the sliding window, followed by 4.2, where
we introduce TMDS and slice flipping.

4.1 Sliding Window

Fig. 3. Sliding window approach applied to a multivariate dataset with
15 dimensions and 1420 entries. For a window size of 30 entries, we
applied an overlap of (1) 0 entries, (2) 10 entries, and (3) 20 entries. The
bigger the defined overlap, the more slices are computed, resulting in a
visualization whose layout becomes stable and reveals salient patterns.

To find temporally evolving patterns within multivariate data, we
apply the sliding window approach to the data and compute the dis-
tance matrix for each window separately, serving as input to the 1D
MDS computation. The sliding window approach is suitable, because
it sequentially processes the data taking its temporal behavior into ac-
count. This way, patterns are connected step-wise (window-wise) and
do not require additional cognitive load as it is the case using for exam-
ple small multiples, among other spatially disconnected visualizations.

Suppose we compute the MDS for several windows without any
overlap. Our result is one-dimensional, which means that the dimen-
sion with the highest variance has the highest impact on the result.
In this scenario, the windows do not share any relation by means of
reused entries. This means, for each window the dimension with the
highest variance can be a different dimension, which results in an un-
stable layout. Hence, it would be harder to identify possible patterns.
Figure 3 shows the effect of the sliding window approach applied to
a dataset that contains 1420 entries with a window size of 30 entries.



(1) shows the result of TMDS without any overlap. As expected, the
sequence of 1D projections is not smooth but fluctuates significantly.
With increasing overlap, more windows are computed. (2) shows the
same result, but with an overlap of 10 entries. Patterns do already stand
out prominently. In (3), the overlap is 20 entries, even further increas-
ing the stability, clearly showing evolving temporal patterns. Figure
5 (3) shows the path of reused entries that are included in the chosen
overlap. Reused entries evolve on the same similarity level not caus-
ing a distorted perception of patterns. Adding overlap to the sliding
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Fig. 4. Distinction of cases with respect to window size and offset.

window clearly results in smooth transition in the patterns. In the fi-
nal visualization, reused entries are discarded and each presented slice
contains the same amount of data entries according to the window size.
The complexity of computing the distance matrix for n entries and m
dimensions lies in O(n2 ·m) in worst case, meaning that the chosen
window covers all entries. The application of a classical MDS per
window results in O(n3) due to the expensive step of performing the

eigendecomposition [41]. Thus, the overall complexity lies in O(n3).
However, in practice the window size is not n and thus the computation
time differs with respect to window size and offset. Figure 4 depicts
the distinction of cases with respect to window size and offset. Offset
refers to the amount of entries a window is moved – small offset im-
plies high overlap. Following, we outline the four derived cases with
respect to Figure 4: (1) A big window size and a small offset results
in high computation time, but provides a smooth transition in the pat-
terns. (2) A big window size combined with a big offset requires high
computation time and possibly does not provide smooth transitions.
(3) Applying a small window size and a small offset still requires high
computation time due to the amount of computed windows. However,
transitions in the patterns are likely to be even smoother compared to
case (1), because of the small window size and the reduced amount of
considered entries per slice. (4) In contrast, the application of a small
window size and a big offset reduces the computation time, but does
not provide smooth transitions in the patterns.

We assume it is desired to have low computation time and smooth
temporal slices. A big window size results in increased computation
time, since both distance matrix and MDS are computed for an in-
creased amount of entries. Then choosing a small offset increases the
computation time even more. We argue that regarding the distinction
of cases, cases (3) and (4) are most promising with respect to computa-
tion time and offset. For now, we use pragmatic rule-of-thumbs to set
the offset, e.g., using 10% of the window size with good results. Auto-
matically finding appropriate overlap sizes is left to future work, with
one idea to use a visual salience function to search automatically for
parameters that show interesting visual results. Techniques based on
Hough transform analysis or other interest measures may be a starting
point to this end [38]. A drawback of smoothing is the possibly hid-
ing of outliers. By increasing the window size and thus adding data
entries to a slice, former outliers are likely to join a cluster if the dis-
crepancy decreases among entries. However, outliers that show high
discrepancy to all other entries are preserved.

4.2 Temporal 1D MDS and Slice Flipping

Based on the sliding window, the MDS is computed for each window
separately and then sequentially aligned in the Cartesian coordinate

Fig. 5. The visualization shows the paths of reused entries of subse-
quent MDS slices. (1) shows the initial temporal result. MDS is not
invariant to rotation. We therefore propose two heuristics to the result:
(2) Square all results to level them. (3) Flip slices if more than half of
reused entries change their leading sign in the subsequent slice.

system. The x-axis is the time and the y-axis is the 1D similarity
value derived from the MDS computation. The numerical range of
similarity values along the y-axis is always restricted by the bounds
[−0.5,+0.5]. This is due to the fact that the computation of distances
(see Equation 1), including weighting, is normalized to the range of
[0,1]. We created a pathline visualization to test how good temporal
patterns evolve over time; it visualizes the paths of data entries (over-
lap) separately. Figure 5 (1) shows the initial result. As illustrated,
the pathline alternates between positive and negative values within the
bounds [−0.5,+0.5]. An alternating leading sign for a majority of
reused entries (indicated by alpha-blending) in subsequent slices in-
dicates that also co-located points are likely to alternate their leading
sign, meaning that possible temporal patterns are interrupted. Patterns
evolve on opposite sites instead next to each other. A reasonable so-
lution is presented in Figure 5 (2): all results are squared leading to a
leveling of the results and thus patterns. Squaring the results has the
side effect that adjacent mingled patterns are additionally spatially sep-
arated. However, squaring the same negative as well as positive value
leads to an overplot of patterns, because they are leveled to the same
positive position. This is why, we do not want to discard negative val-
ues. Therefore, we decided to check subsequent slices, if the leading
sign of reused entries changes. If more than half of the reused entries
switch their leading sign, we change the leading sign of all entries con-
tained in the subsequent slice (slice flipping). Thus, we compare the
next but one slice to the current subsequent slice, and so on. Using a
lower or higher threshold for flipping might not improve the visualiza-
tion in quality, because either too few or many slices are likely to flip.
The result of our heuristic is presented in Figure 5 (3), with the effect
that additional temporal patterns become visible.

4.3 Details and Scalability
Our prototype runs as web application in a client server environment.
The computation of the distance matrix as well as of the MDS require
high runtime and thus are computed on the server-side. Our approach
is based on a sliding window, applied to the distance matrix, which
enables us firstly, to reduce the computation of similarity values re-
garding the window size, and secondly, to parallelize the MDS com-
putation. As a result, we have a fully parallelizable approach allowing
an interactive exploration of the data. Given the input of a temporal as-
cending sorted list of multivariate entries, we apply the sliding window
directly on the dataset. Due to the symmetry of the distance matrix,
one thread can compute only one diagonal of the distance matrix for
the given window. Then, the one-dimensional MDS is computed for
the distance matrix using the MDSJ Java package [2]. We note that in
our implementation, in computing the MDS for a given window step,
we reuse already computed distances from previous steps according
to the overlap, and only compute anew distances, which stem from
the newly considered data entries. It might also be possible to con-



sider incremental projection schemes which provide further speedup,
but leave this for future work. The final flipping of the slices takes
place in linear time and therefore does not require optimization. How-
ever, we use SVG on the client-side, which restricts the amount of data
being interactively visualized. In order to also increase the visual scal-
ability, the client-side can be replaced with efficient representations
such as WebGL, among others.

5 VISUAL SIMILARITY SEARCH AND PATTERN FINDING

The TMDS visualization provides an aggregate view to a time series of
multivariate data. Specifically, the sequence of 1D MDS plots shows
gradual changes of 1D distributions of entries, reflecting on the sim-
ilarity relationships of the data entries and their change over time.
However, the 1D plots do not show the behavior of the underlying
dimensions. This detail information is needed in two cases: Firstly,
if patterns are visually separated, the user needs details on the dimen-
sions to find possible explanations of the MDS pattern. Secondly, in-
creasing the amount of dimensions can result in less prominent visual
patterns; having information on correlations of dimensions helps to
interactively select (reduce) individual dimensions and facilitate the
analysis by excluding potentially irrelevant dimensions. Therefore,
we provide facilities to manually brush a data region and browse corre-
sponding entries to find correlations among dimensions. However, this
task is challenging even for a small set of dimensions, because various
dimension permutations need to be taken into account. Following, we
introduce two techniques: A visual approach using a matrix that visu-
alizes correlations among dimensions and windows, and an automatic
approach to find similar patterns, based on a user selection.

5.1 Visually Identifying Patterns
The visual identification of multivariate patterns is mapped to identi-
fying salient patterns within the TMDS visualization. To support the
process of finding patterns also dimension-wise, we introduce a diver-
sity matrix as a heatmap, which is displayed below the TMDS plot,
aligned with the sliding window. In this heatmap, each column corre-
sponds to one window and each row to one dimension.

Diversity quantitatively reflects the amount of differing types or val-
ues within the dimensions and can be computed in various ways. It
helps the user to draw conclusions based on the diversity correlations
which describe the dimensions. We implemented two information the-
oretic measures to assess the diversity of dimension values per win-
dow. Considering that, we determine the different categories (follow-
ing referred to as i) of values per dimension by binning. The Shannon
Entropy H is computed as follows [36]:

H =−
n

∑
i

pi · log2(pi) (2)

According to the definition of the Shannon Entropy, pi describes the
proportion of a character i occurring in a string. Applied to our sce-
nario of having multivariate categorical data, pi describes the prob-
ability of category i occurring within a dimension. In contrast, the
Simpson Index D is computed as follows [37]:

D = 1−
n

∑
i

mi · (mi −1)

m · (m−1)
(3)

mi describes the amount of occurrences of category i and m the total
amount of the categories per dimensions. We apply min-max normal-
ization to color code single diversity values with respect to all dimen-
sions and windows. The used colormap maps low diversity to black
and high diversity to white along a brown gradient. Figure 6 shows
the use of both the Shannon Entropy and the Simpson Index diversity
measures for a test dataset of the domain of network security, contain-
ing approximately 15.000 entries and 16 dimensions. We observe high
correlation between the Entropy and the Simpson index in our appli-
cations. While we implemented these two in our prototype, additional
information theoretic measures can be chosen, depending on task and
data. The diversity heatmaps provide an overview of the diversity of

Fig. 6. Diversity Matrix. Application of Shannon Entropy (top) and Simp-
son Index (bottom). Columns are temporally aligned with the TMDS.
Diversity is mapped to color (black is low diversity and white indicates
high diversity) and reveals correlations between dimensions (rows).

attributes and their changing over time. It is useful for identifying cor-
related dimensions for dimension filtering. At the same time, it is use-
ful to compare changes in the MDS plot with changes in the diversity
across the data dimensions, for exploring a) interesting time slides,
and b) obtaining starting points for explaining the MDS patterns by
properties of the underlying multivariate data.

5.2 Finding Similar Cohorts
In the previous Section 5.1, we described how patterns can be visually
identified using our proposed TMDS in combination with the diversity
matrix. Salient patterns that can be identified using the TMDS, typi-
cally consist of several data entries building a temporal cohort. This
means, the entries share alike similarity values over a certain time pe-
riod. Such patterns can be salient during one time period, but hidden
during another time period. Patterns are declared as hidden if they cor-
relate with other patterns and/or are distributed within other patterns.
This effect can occur because of the sheer amount of other data entries
which can influence the projection. To reveal other related patterns, we
offer the user the option to manually select corresponding data entries,
based on which related cluster of entries are automatically computed
and highlighted. We argue that using an approach similar to the com-
putation of the distance matrix (proposed in Section 4), will reveal
similar patterns aligned with the layout of the TMDS.

Function findSimilarPatterns(D,S, threshold)
d ← 0
similarities ← []
foreach entry E in D do

d ← distance(E,S)
similarities ← sortedInsert(d,similarites)

end
return 1D DBSCAN(similarities, threshold)

End
Algorithm 1: Find similar patterns.

Algorithm 1 provides a short overview on how similar patterns are
found. Input are the overall data D, the selection S and a user-defined
threshold. We follow two consecutive steps: Firstly, calculate a dis-
tance value per entry and user-defined selection. Secondly, sort all
distance values and cluster them. We compute the per entry distance d
between each entry and the selection as follows:

distance(E,S) =

|dims|
∑
i

(
rows(S)

∑
j

[Ei �= Si, j] ·wi

)
· 1

rows(S)

|dims| (4)

In contrast to Equation 1, we transpose the input and calculate the
distance per dimension instead of per entry. The distance between



one entry E and the user-defined selection of entries S is computed by
first iterating all dimensions from i = 1 to the total amount of dimen-
sions |dims|. Then, all rows for the i-th dimension are iterated from
j = 1 to the total amount of rows (entries) rows(S). Using Iverson
Brackets [17], the i-th dimension of the entry is compared to all i-th
dimensions of the selection S and then the average is computed. To
determine the final distance value d, we compute the average value
among all dimensions. This distance value, determined for each data
entry individually, is inserted in a list which is sorted in descending
order with respect to the distance value. Clusters of similar entries,

Fig. 7. One-dimensional DBSCAN algorithm for similarity values using
a user-defined threshold t.

compared to the user-selection, are further derived by performing a
one-dimensional density-based clustering (using the DBSCAN algo-
rithm [13], see Figure 7). We set the threshold to 0.01 per default
(applied to all examples in this paper). The threshold depends on how
granular the user wants to find similar patterns. The higher the thresh-
old, the higher the distance between found clusters is, allowing a high
discrepancy within the clusters. The density-based algorithm performs
as follows: Considering the threshold, the algorithm starts at the first
entry of the similarity list, and successively compares the similarity
value n (currently visited) to the value n+1. We distinguish between
three cases:

• If the difference between those two values is smaller than the
threshold, the entries are combined to a pattern cluster.

• If the entry of n already belongs to a pattern cluster, the entry for
n+1 is added to the cluster.

• If the distance is greater than the defined threshold, the entry for
n+1 starts a new pattern cluster.

Using this algorithm, we adapt to the creation of the distance matrix,
which influences the outcome of the TMDS. This way, our algorithm
finds patterns that already have been considered by the MDS compu-
tation. To derive the complexity of our proposed algorithm for finding
similar patterns, we split the algorithm into the three elementary parts:
Firstly, the complexity of computing the distance of all points to the se-
lection lies in O(n2). Secondly, the complexity of sorting all similarity
values is O(n · log(n)). Thirdly, the 1D DBSCAN has the complexity

O(n). Hence, the overall complexity of our algorithm lies in O(n2) in
worst case.

6 CASE STUDY: NETWORK SECURITY

We demonstrate our technique in the field of network security. In
the first case study in Section 6.1, we apply our technique to a real
NetFlow dataset and report the gathered findings, which we discussed
with our group’s system administrators. To preserve privacy, we do
not publish results based on data of the recent past, but use an older
dataset from our university data center. The data is based on a privacy-
preserving and anonymized data collection infrastructure used in pre-
vious research [15]. To validate identified patterns, we provide a
ground truth based evaluation of our approach in Section 6.2, and an-
alyze a network security dataset from the VAST Challenge 20131.

6.1 NetFlow Dataset: 24-Hour Network Overview
The temporal analysis of network security datasets is a highly rele-
vant field of research. Analysis goals are suitable for our TMDS ap-
proach, because security analysts and system administrators have large

1http://vacommunity.org/VAST+Challenge+2013

datasets (e.g., NetFlow data), which reflect the ongoing connections
and data flows in the underlying computer network. Within such data,
the analyst can observe various attack patterns.

Previous work in network security typically focuses either on gen-
eral, temporal independent, patterns (e.g., [15]), or on temporal pat-
terns (e.g., TNV [16]), which can typically not be analyzed promptly
due to scalability and level-of-detail issues. At first sight, TMDS might
look similar to PortVis [34], yet our approach does fundamentally dif-
fer as discussed in Section 3. PortVis solely uses time and port range
as axes to represent the events and thus particularly focuses on port
scans. Our approach does not only focus on ports, but takes arbitrary
(weighted) dimensions into account, and is therefore able to identify
today’s complex temporal attack patterns showing general behavior.
Other work also uses the idea of representing sliding windows as con-
secutive columns [14], but focuses on providing details of heteroge-
neous streams, instead of providing a visualization to focus on recur-
ring patterns. TVi [5] also operates on temporal slices using entropy,
but uses PCA-based techniques to analytically identify anomalous be-
havior using a timeline visualization combined with histogram charts.

In this case study, we focus on all loud events of a full period of
24 hours of a public /16 computer network; we want to obtain a rough
image of interesting events with different characteristics. To facili-
tate this analysis, we use Apache Spark2 to preprocess and sample the
NetFlow data files, which are about 4 to 10 GB per day, to generate a
suitable CSV file of incoming data flows only. This preprocessing step
reduced the network flows to 16,474 records. Focusing solely on TCP
traffic leads to 6,908 records as visualized in Figure 1.

6.1.1 Data Processing

After loading the CSV file into our interactive prototype, we weight
the different main dimensions with respect to increasing the impact
of the IP addresses and the destination port. Because we analyze in-
coming network traffic, we are particularly interested in how possible
attackers access services within our network. In such cases, the source
port (srcport) is less helpful to distinguish between different attack pat-
terns, because it is assigned by the operating system or router from a
ephemeral port range, respectively. However, the destination port (dst-
port) is relevant to assign attacks to similar attack vectors. A higher
weight of such ports leads to visual clusters of attacks to the same
service (e.g., focusing on port TCP/80, which is the default port for
HTTP traffic). After weighting the dimensions, the TMDS is com-
puted within seconds and the visualization display is loaded.

6.1.2 Findings and Insights

It is typical for network traffic that most connections are diverse, and
thus hard to distinguish – legitimate traffic behaves as expected and
does not evince clear patterns or clusters. We observe the same situa-
tion in this case study. This is why many records are diversely spread
on the vertical axis (light blue dots pointed out in Figure 1). However,
several other interesting and unexpected patterns are salient.

Fig. 8. Manual selection of salient patterns used to initiate the search
for similar patterns (clusters). Resulting similar patterns are color coded
according to their similarity ranking.

We discovered various salient visual patterns using TMDS, which
are labeled from A to D in Figure 1. Finding these events with diverse
characteristics without visual support of TMDS, would require the an-
alyst to issue various manual queries on the data. Manual queries are
hard to express and time-consuming without any prior knowledge.

2https://spark.apache.org/



• Pattern A: Distributed Brute-Force Attack – A distributed bot
network performs a long-term brute-force attack on port TCP/22
with the aim to break into reachable SSH servers. Using our pat-
tern finding algorithm with an arbitrary selection of the pattern as
input (see e.g. Figure 8) reveals that the attack was operated over
an even longer time period. All events related to this specific
attack are presented in Figure 1 and are colored magenta.

• Pattern B: Massive Port Scan – Drilling-down the visual pat-
tern (highlighted in dark blue) reveals a massive port scan from
a single external IP address to a specific exclusive set of ports
(TCP/80, TCP/81, TCP/443, TCP/8000, TCP/8080) of various
internal computers; the attacker is not related to the ongoing
brute-force attack. The scan was operated from 10:36 until
10:56. The goal of this scan was to check for running webservers
on several common ports.

• Pattern C: Single Port Scan – This pattern reveals a port scan to
our network looking for accessible webservers on port TCP/80.
In addition, some port scans search for open SMTP server on port
TCP/25, which is typically performed to identify mail servers.
Open mail servers can be used as open relay for sending spam.

• Pattern D: Brute-Force Continuations – The magenta color
refers to the same characteristics as seen in Pattern A. Some at-
tackers are still trying to attack SSH services, however in a much
more subtle way than during night time as seen in Pattern A.

6.2 VAST Challenge Dataset: Identification of Events
As described in the previous Section 6.1, TMDS can be successfully
applied to real network traffic. However, it is challenging to evaluate
the effectiveness, because no ground truth data is available. Therefore,
we apply our approach to the VAST Challenge 2013 Mini-Challenge
3 (MC3), which provides a realistic artificial dataset of a large com-
pany and a ground truth to compare with. The dataset contains several
suspicious events in a computer network over a period of two weeks.
Our aim is to validate if TMDS is capable of identifying notable events
within this complex challenge. In contrast to the work by Chen et al.
[7] who developed a highly interactive collaborative visual analysis
system to address the challenge, our focus is on visually supported
pattern finding. Furthermore, we focus only on the NetFlow dataset,
while Chen et al. make use of all available datasets including NetFlow
data, monitoring logs of a Big Brother (BB) system, and data of an
intrusion prevention system (IPS).

6.2.1 Data Processing
For the VAST Challenge dataset we used similar data processing steps,
as discussed in Section 6.1.1. The aim is to focus on external attacks
to the company network. We filtered the available NetFlow data for in-
coming traffic and applied a heuristic to focus only on incoming uni-
directional flows. We further filtered for all records having a source
address within 10.0.0.0/8 (which reflects the whole Internet in the arti-
ficial data) and a destination address within 172.0.0.0/8, which reflects
the internal company network. Additionally, we removed responses to
low port numbers, which are most likely responses to outgoing con-
nections initiated from the company network. After visualizing the
data, we encountered that DoS attacks lead to vast amounts of net-
work flow. On that score, we decided to apply an adjusted stratified
sampling based on destination ports and date. We further use higher
sampling rates for high-volume ports (e.g., port TCP/80 and TCP/25).
In contrast to global sampling techniques, adjusted stratified sampling
still enables the exposure of other subtle patterns, which otherwise are
missed. We want to note, that we did not optimize the TMDS weight-
ings for the specific attacks. We generally used timestampweight = 0.0
to exclude the timestamp dimension, and a weight of 1.0 for all other
dimensions. The window was set to 100 and the offset to 10 entries.

6.2.2 Ground Truth Validation
Following, we present an extract of screenshots of the most salient vi-
sual TMDS patterns, which directly correlate to suspicious events and

can partly be validated using the ground truth data. The TMDS pat-
terns cover a time period of multiple days. An overview of all ground
truth events is presented in Table 1.

Event ID Subtlety Event Type Data Source TMDS Pattern

(1) Questions only Videoconference - - -
(2) Questions only Threatening Letter - - -
(3) Subtle Port Scans NetFlow/BB � Fig. 9
(4) Subtle Port Scans NetFlow � Fig. 9
(5) Obvious DoS NetFlow � Fig. 10
(6a) Subtle Server Crash NetFlow/BB � -
(6b) Subtle Server Return NetFlow (�) -
(7) Subtle Port Scans NetFlow � Fig. 10
(8a) Obvious DoS NetFlow/BB � Fig. 11
(8b) Obvious DoS NetFlow (�) Fig. 11
(9a) Subtle Server Crash NetFlow/BB � -
(9b) Subtle Server Return NetFlow (�) -
(10) Subtle Malicious Redirects NetFlow � -
(11) Obvious Exfiltration NetFlow - -
(12) Obvious Port Scans NetFlow � Fig. 12
(13) Obvious Port Scans NetFlow � Fig. 12
(14) Obvious Exfiltration NetFlow - -
(15) Questions only Threatening Letter - - -

(16) Obvious Network Down3 NetFlow � -
(17) Obvious Port Scans NetFlow/IPS � Fig. 13
(18) Obvious Port Scans NetFlow/IPS � Fig. 14
(19) Obvious Failed DoS NetFlow/IPS � Fig. 14
(20) Obvious Failed Exfiltration IPS - -
(21) Obvious Port Scans NetFlow/IPS � Fig. 14
(22) Subtle Botnet Infection NetFlow - -
(23) Obvious Botnet Communication NetFlow - -
(24) Obvious Port Scans NetFlow/IPS � -
(25) Obvious Port Scans NetFlow/IPS � -
(26) Obvious Botnet DoS Attacks NetFlow/IPS - -
(27) Obvious Botnet DoS Attacks NetFlow/IPS - -
(28) Obvious Port Scans NetFlow/IPS � -
(29) Obvious Port Scans NetFlow/IPS � -

Table 1. The ground truth for the VAST Challenge 2013 MC3 consists
of 29 official events. After analyzing the data with default weightings, we
compared our findings with the official ground truth and used a check
mark to highlight successfully identified event patterns using TMDS.

A

B

C

Fig. 9. TMDS for the first day on 2013-04-01 00:00 to 23:59 revealing
various visual patterns related to Event (3) and (4) in Table 1.

From the given data it is not possible to identify Event (1) and (2),
because they were not visible in the data at all. The organizers of
the VAST Challenge provided the option for participants to ask spe-
cific questions, which would have revealed more details to such events.
The first official identified event in the data is Event (3), which is clas-
sified by the data provider as subtle event. Using TMDS, Figure 9
points out this event as Pattern A and B. The diverse blue and green
colored patterns on the top-left and bottom-left relate to normal legiti-
mate incoming network traffic. Using details on demand, we are able
to inspect the underlying flow data of the patterns and can judge and

3The company takes the network down to investigate security concerns and

to install an intrusion prevention system (IPS).



classify them. Pattern A is indeed suspicious and relates to an attack
from source IP 10.6.6.6 to 172.30.0.x machines, which qualifies ac-
cording to the ground truth “as subtle because firewall allows mainly
ports 25 and 80”. Pattern B is a result of Event 4 and is described as
“high volume web browsing traffic”. The diversity matrix below the
TMDS plot highlights correlations (black rectangles) between source
IP, destination IP, and destination port using the Shannon Entropy. Due
to the low entropy, we see that the attacker successively generated al-
most identical requests. The pattern is “followed by portscans”, which
is made visible as subtle Pattern C on 2013-04-01 22:18.

A

B

Fig. 10. TMDS for the 2nd day on 2013-04-02 00:00 to 23:59 highlights
an obvious DoS attack (Pattern A) and a subtle port scan (Pattern B).

Figure 10 shows the TMDS plot for the second day. The salient pat-
tern A is a DoS attack lasting from 05:22 to 07:22 and originates from
10 attackers to webserver 172.30.0.4. According to the ground truth,
this webserver becomes temporarily unresponsive (Event 6a), which
cannot be seen by TMDS plots, because we focus our analysis on in-
coming traffic only and do not highlight missing data. Additionally,
we do not integrate the Big Brother (BB) system monitoring dataset,
which would have identified this event. Event 7, related to subtle port
scans from 10.6.6.6 and 10.7.7.10 attacking primarily port TCP/25, is
displayed as Pattern B in Figure 10. The patterns become clearly visi-
ble by cluster colors after selecting a part of Pattern A as reference.

A

B

Fig. 11. TMDS for the 3rd day on 2013-04-03 00:00 to 23:59 with sud-
den pattern change (A) related to an ongoing distributed DoS attack and
another attacker (B) attacking primarily another webserver.

On the 3rd day, Figure 11 distinctly shows a major pattern change
from 9:30 until around 11:48, visible as Pattern A and related to an-
other ongoing distributed DoS attack. We note that the pattern is not
homogeneous with respect to the found clusters (shown as various col-

ors). The pattern is dominated by the orange cluster, which actually
represents Event 8a in the ground truth (a distributed DoS originating
from various attackers). In contrast, the magenta colored dots, which
continue in Pattern B, relate to Event 8b; attacker 10.15.7.85 primarily
attacks a different webserver (172.20.0.15) compared to the others.

Fig. 12. TMDS for the 6th day on 2013-04-06 00:00 to 23:59 revealing
unexpected diverse port scanning patterns. The firewall seems to be
not working anymore, because heavy port scans on arbitrary ports do
reach the company network.

On the 6th day, the TMDS reveals a complete change of the network
behavior. Until now, the firewall seemed to successfully block most of
the unknown destination ports from external access. However, while
exploring the patterns on the sixth day in Figure 12, it becomes imme-
diately apparent that the various patterns result from flows to arbitrary
destination ports and thus lead to less defined clusters. This obser-
vation matches the description in the ground truth: An administrator
computer got infected (which cannot be seen in the data at all) and an
attacker decided “to change firewall settings, opening all ports” in the
company network. The different port scans are visible in the TMDS
plot, however the exfiltrations (Events 11 and 14) are only visible, if
we would consider outgoing traffic. The display is almost completely
cluttered by heavy port scans (blue and green colored clusters), which
originate from 10.9.81.5 and 10.10.11.15 (Events 12 and 13).

A

B
C

Fig. 13. TMDS for the 10th day on 2013-04-10 00:00 to 23:59 highlights
three port scans, which are summarized as Event 17 in the ground truth.

From the overall challenge description, we know that the company
installed an intrusion prevention system. Based on the TMDS plots
of the 10th day, as depicted in Figure 13, the network traffic seems to
be back to normal operation. However, the plot also reveals entropy
changes starting around 12:20, which reveal three interesting clusters.
Pattern A and B can be identified again as portscans from attacker
10.138.235.111 and 10.6.6.7, while Pattern C is mostly dominated by
10.13.77.49. All three patterns directly relate to Event 17.

The patterns on 2013-04-11, as depicted in Figure 14, are very di-
verse. Especially the light gray cluster broadly spreads from around
11:55 until 12:57 revealing a distributed DoS attack (Event 19). The
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Fig. 14. TMDS for the 11th day on 2013-04-11 00:00 to 23:59 highlight-
ing three distinctive port scans. The scattered gray-colored dots from
11:55 until 12:57 reveal a diverse distributed DoS attack (Event 19).

attack seems to facilitate a high volume of connections and the ground
truth confirms that attackers use “a mix of duration and payload sizes”,
thus leading to more diverse and less clear patterns. A port scan from
10.12.15.152 between 10:35 and 11:21 is visible as Pattern A and is
colored magenta (Event 18). Similarity clustering and respective color
assignment reveal that Pattern C, D, and E actually belong to the same
long-term port scan from a single attacker 10.6.6.7 (Event 21).

6.2.3 Summary and Limitations
As summarized in Table 1, the ground truth contains a total amount
of 29 events, while three events (6, 8, 9) consist of two coherent sub
events. Three other events (1, 2, 15) are not data-dependent, because
they are part of questions, which are not part of the data. Event 20 is
only visible in IPS data. We focused on incoming NetFlow data only,
while six events (11, 14, 22, 23, 26, 27) do relate to outgoing network
traffic, because the suspicious traffic comes from internal machines.

This leaves us with a total of 19 events, which we aimed to detect
with TMDS within our case study. We successfully identified the dis-
tinctive patterns of 16 events. Overall, we only missed three events (6,
9, 10), and hence identified more than 84% of applicable ground truth
events. Besides that, we were able to identify additional suspicious
events, which we did not report, because even they were interesting
from a system administrator’s perspective – they were not part of the
official ground truth data and hence could not be validated for certain.

TMDS was able to reveal interesting patterns, which actually cor-
responded to suspicious events verified by the ground truth. However,
compared to the work of Chen et al. [7], our system provides a general
approach for the analysis of multivariate data and therefore does not
provide additional correlated views tailored to the needs of security
analysts. Interestingly, we were able to detect most of the patterns,
although further manual analysis (details on demand) of the underly-
ing data of identified patterns was needed to finally judge and classify
the event. For example, it is not directly visible in TMDS which hosts
are attacked. To identify actual hosts, a manual selection of the pat-
tern is needed, which retrieves a list of underlying NetFlow records.
At this step further visualizations (e.g., Parallel Coordinates) can be
integrated to summarize records belonging to an identified suspicious
pattern. Even without integrated views, TMDS yet provides effective
identification rates for valid patterns. Consequently, the integration of
TMDS in security applications seems to be promising and can improve
various visual analytics applications.

7 EXTENSIONS AND DISCUSSION

TMDS is geared to the visual analytics process [28] and enables a
novel analysis of temporal multivariate data. We demonstrated in Sec-
tion 6 that TMDS is visually able to make temporal and sequential pat-
terns salient, involving domain knowledge and interaction. As pointed
out, the application of TMDS to network data works fine, and we re-
trieve plausible results using rules of thumb. Yet we cannot provide
fixed parameters (e.g., window size, step size), because it depends on

the data characteristics and size. One way to suggest plausible param-
eters, is to generate multiple plots, taking into account the window and
overlap size discussion of Section 4.1. Afterwards, apply visual qual-
ity metrics to the plots such as Hough transform or contour tracking.

We note that for pragmatic reasons and as a first step, for the MDS
projection we chose a rectangular windowing function for all data en-
tries contained in a sliding window. As our sliding window in practice
spans a larger number of entries, the changes introduced by the un-
weighted exit and entry of entries on each sliding step do each not
have a huge impact on the projection result. However, we expect that
for smaller window sizes and/or larger offsets, we would require a non-
uniform weighting scheme to provide sufficient stability of the projec-
tions. E.g., Gaussian or triangular weighting schemes centered on the
sliding window may be useful [11]. We tested with different parame-
ters, finding that with an offset of circa 10% of the window size, and
window size of at least tens of entries, we achieve sufficiently stable
results for unit weighting. We note we leave assessment of the effect
of alternative weighting schemes in respect to window size, offset, and
data and analysis tasks as an important subject for future work.

Another possible extension to our approach represents the addi-
tional visualization of interesting dimensions. Suppose, several hun-
dred dimensions are taken into account. Finding automatically inter-
esting or relevant dimensions and plot them on top of the visualization
is challenging. We therefore recommend to make use of the proposed
diversity matrix and apply ordering heuristics for certain use cases.

In addition, the application to categorical data is only preliminary
and can be extended in various ways. For instance, involving the
user [22] and adding semantic information like hierarchies, etc., in
the categories, can improve results and enhance the analysis process.

8 CONCLUDING REMARKS AND PERSPECTIVES

We presented a novel approach to identify patterns in multivariate data
evolving over time. We introduced TMDS as a temporally smoothed,
time-dependent 1D MDS plot of multivariate data. The plot allows to
explore for data areas of interest, based on evolving structures in the
temporal 1D MDS plot. A linked heatmap shows attribute diversity
and allows to compare the global MDS patterns for properties of the
underlying attributes, supporting the analysis in detail. The use of a
sliding window enables fast parallel computation, but also smooths the
MDS result by preventing abrupt changes between entries based on the
similarity value. In combination with the introduced diversity matrix,
correlations between dimensions can be efficiently spotted. This way,
the system supports conclusions drawn from visualized patterns.

Dealing with multivariate or high-dimensional data is a difficult
problem in general. TMDS can be applied to data with various di-
mensions. However, if TMDS does not reveal salient patterns due to
the vast amount of dimensions, it is up to the user to restrict the anal-
ysis to a domain specific set, which can for example be efficiently
achieved using the suggestion functionality. For the identification of
patterns, we proposed a density based algorithm following the com-
putation of the distance matrix. It enables the segmentation of visual-
ization with respect to similar patterns that evolve over time. We fur-
thermore showed the usefulness of our approach in a network security
case study, which considered a real dataset as well as a ground-truth
dataset provided by the VAST Challenge 2013.

Our sliding window approach provides an initial size for first results
but requires refinement by the user in order to make patterns salient. In
future work, we plan to evaluate the sliding window to provide a rule
for different datasets as well as tasks and applications. We will also
focus on improvements regarding real-time processing and scalability
in the domain of network security, so that TMDS can be used in a big
data environment providing results for incoming new data.
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