
Temporal Occupancy Grid for mobile robot

dynamic environment mapping

Nikos C. Mitsou, and Costas S. Tzafestas

School of Electrical and Computer Engineering

Division of Signal, Control and Robotics

National Technical Univ. of Athens

Zografou Campus, Athens 15773, Greece

Email: nmitsou@mail.ntua.gr, ktzaf@softlab.ntua.gr

Abstract— Mapping dynamic environments is an open
issue in the field of robotics. In this paper, we extend the well
known Occupancy Grid structure to address the problem of
generating valid maps for dynamic indoor environments.
We propose a spatiotemporal access method to store all
sensor values (instead of preserving only one value for each
cell as in the common occupancy grid case). By searching
for similar time series, we can detect moving objects that
appear only in a limited number of possible configurations
(e.g. doors or chairs). Simulated experiments demonstrate
the potentialities of the proposed system.

I. INTRODUCTION

Robotic mapping is regarded as one of the most impor-

tant problems in the field of robotics. Truly autonomous

robots must be able to create an accurate map of their

environment. During the past few years, many algorithms

have emerged that produce excellent maps of unknown

environments in real time [9], [12].

However, most mapping algorithms are based on the

assumption that the environment is static. In the case of

dynamic environments, these algorithms are most likely to

fail. Places with high dynamism (e.g. doors or passages)

cannot be classified correctly as free or occupied areas.

The most common approach to deal with the dynamic

effects is to consider them as noise and thus remove

them from the map ([8], [7]). By applying this filtering,

however, we ignore important information of the environ-

mental structure. The most important consequence of this

is that localization will be less accurate when the robot

is examining these areas as sensor measurements will

not match with the removed features. Therefore, mapping

algorithms that can cope with the dynamic nature of the

environment are of great importance.

In this paper, we propose a new mapping technique,

the Temporal Occupancy Grid (TempOG) algorithm. The

TempOG algorithm is capable of mapping environments

where objects change places over time. We classify ob-

jects in the robot environment into three categories: a)
Static objects, objects that do not change their position

over time (e.g. walls, beds or locked doors) b) Low-

dynamics objects, objects that appear in a specific number

of places (e.g. chairs or doors) and c) High- dynamics ob-

ject, objects that move arbitrarily in the environment and

can be found in many different positions (e.g. humans).

The proposed algorithm can correctly identify and model

static, Low- dynamics and High- dynamics objects.

The basic idea behind TempOG is that we extend the

typical occupancy grid [13] through the time dimension.

We assign a time index (a special B+ tree used to index

time intervals) to every cell of the grid and we store all

occupancy probabilities of the cell into the index. In this

way, we can correctly conclude on the state of every cell.

To extract moving objects from the environment (e.g.

doors, chairs or any areas that change over time), we

consider time index leaf nodes as time series and we

search for similarities in subsequent time-series. In this

work, we assume that robot odometry measurements are

perfect, so robot position is known at any time and no

localization is needed.

This paper is organized as follows: In Section II,

we present a brief survey of related work in the area

of mapping dynamic environments. In Section III, we

present the proposed algorithm and in Section IV we

describe what kind of information can be extracted from

the implemented structure. Section V describes the simu-

lations conducted and presents the experimental results

obtained. Finally, conclusive remarks and future work

directions are given in Section VI.

II. RELATED WORK

In the last few years, many attempts have been made

towards mapping of dynamic environments. Two lines of

research have emerged: a) detection and modeling of mov-

ing people and b) identification of different environmental

configurations.

There exist many approaches that deal with the first

line. For example, in [11] a sonar range sensor, a cam-

era and differentiating techniques were used, in [10] an

expectation maximization algorithm was applied and in

[17] a probabilistic filtering algorithm was implemented

all to detect moving people in the robot environment.

For the second line, which is the subject of this paper,

the authors of [1] implemented a map differencing tech-

nique to find objects that move slowly in the robot envi-

ronment. Models of non-stationary objects were learned

with the use of an expectation maximization algorithm

from a sequence of occupancy grid maps captured in

different points in time. However, the moving objects

must be uniquely identified by their shape, otherwise

wrong associations might be learned.

In [4], the authors use particle filters and conditional

binary Bayes filters to estimate the state of doors in the

environment. In their experiments, binary state objects

were successfully detected in a predefined environment.

In [2], an expectation maximization algorithm was

also used to detect and model doors. Laser and camera

readings were used to identify walls, moving and non-

moving doors.

In [18], a fuzzy clustering technique was presented

to capture the typical configurations of the dynamic

environment. Sub-maps were collected in different points

in time and were grouped into possible configurations.

The environment was assumed to be static during the

collection of the sub-maps.

In [19], two occupancy grids were maintained, the first

was used to model the static parts of the environment

while the second to store the dynamic objects. However,

no different configurations of the environment were de-

tected.

In [3], the authors follow a similar idea by extending

the Occupancy Grid algorithm through the time dimen-

sion. In their work, three or more Temporal Occupancy

Grids with different sample rates (timescales) were pre-

served in order to conclude on the state of every cell.

However, in order to classify cells as occupied a simple

aggregation is performed not exploiting in full extent the

information contained in the stored data.

In the following sections, we will presented the pro-

posed algorithm. Contrary to the previous works, the algo-

rithm in this paper can identify all different configurations

of an unknown environment with the use of a laser range

finder and without the assumption that the environment

will be static during the experiments or that the moving

objects will be uniquely identified by their shape.

III. TEMPORAL OCCUPANCY GRID (TEMPOG)

Intuitively, an ideal solution to the mapping problem

would exploit the whole history of the robot perception

of the environment. Following this intuition, we preserve

in an efficient way all robot stimulus of the environment

and utilize the information for mapping of non-stationary

environments. Contrary to existing approaches that store

aggregate values per cell, we store the whole history

of evolution; in this way, we can extract much more

information of the environment (e.g. detection of different

environmental configurations).

To achieve this, we extend the Occupancy Grid across

the time axis, resulting in a new structure, the Temporal

Occupancy Grid (TempOG). TempOG stores the history

of the occupancy probability for each cell through an

appropriate index structure, the Time Index [5]. Thus an

environment of n × n cells, contains n × n Time Index

structure to form a forest of Time Indexes.

A short introduction to the Time Index follows.

A. Time Index

Time Index is a special case of B+ tree [14] 1 that

is used for storage and retrieval of values that are valid

1B+tree is a widely used index structure in the database domain

Fig. 1. An example of a Time Index of order 3

during specific time periods. A Time Index of order n is

a search tree with the following properties:

• The root has at least two sub–trees unless it is a leaf

and at most n children.

• Each non-root and non-leaf node holds k pointers

to sub trees and k − 1 separators (k ≥ ⌈n/2⌉ and

k ≤ n)

• Key values appear in the leaf nodes.

• Leaf nodes are at the same level.

• Leaf nodes are linked.

The Time Index was specifically designed for indexing

temporal data. The time dimension is represented using

the concept of time intervals, as in [5]. A Time interval

[ti, tj] is a set of consecutive (equidistant or not) time

points, where ti is the first point and tj is the last one. A

single time point t can be represented as [t, t].
The Time Index differentiates from the B+ Tree in the

fact that due to the monotonic nature of time, deletions

never occur while updates occur in an append mode. So,

new entries will always be inserted in the rightmost node

of the tree and the complexity of the insertion will always

be O(1). When the rightmost node is full, a new node is

created and the changes propagate upwards, just as in B+

trees2. (An extensive comparison of available time indexes

can be found in [16]).

An example of a Time Index is shown in Figure 1.

8 time intervals exist in this tree: [0, 5], [5, 10], [10, 12],
[12, 20], [20, 30], [30, 35], [35, 36] and [36, 44]. Each i th

interval points to value di, except for the sixth interval

([30, 35]) which points to value null.

B. Temporal Occupancy Grid – TempOG

As we have already mentioned, we use a n × n grid

and an underlying forest of n× n Time Indexes (one for

each cell of the grid). Each index stores the probability

of the corresponding cell being occupied at a given time

interval.

Example

Consider the example of Figure 2, where the robot is

standing in front of a door. The door is partitioned into

three grid cells and it is closed during the interval [0, t1),
open during [t1, t2) and closed during [t2, now). In this

2In a simpler case, where we are not interested in efficiently traversing
the occupancy history, we can use a simple linked list instead of a Time
Index to avoid the rebalancing cost.

Fig. 2. TempOG: A robot in front of a door. The closed door
configuration is split into three cells.

example, we assume that the door is a binary state object

and the cells can take either the free or the occupied value.

Initially, the Time Indexes of the three cells are empty.

At time point 0 when the door is closed, the sensor values

will indicate that the three cells are occupied. A time

interval will be created in the leaf nodes of the three Time

Indexes that will store the occupied value with start point

0 and stop point 0. At the next time point (time point 1),

the occupied value will still be detected and the previous

time interval will be expanded to end at time point 1.

When the time point t1 is reached, this time interval will

end at t1. At this time point, the door opens and the cells

are detected to be free. So a new time interval will be

created that will hold the free value. In the end, the Time

Indexes of the three cells that correspond to the door will

be storing the values of Figure 3 a).

In real robot environments, the probability of a cell

being occupied can take any value from zero to one.

However, due to sensor measurement noise, subsequent

measurements of an obstacle could yield in slightly dif-

ferent occupancy values. To avoid creating time intervals

for every slightly different value, we use a threshold to

group similar values. For example, if the current time

interval stores the value 0.5 and a new value of 0.51

arrives, no new time interval will be created, but the

already created interval will be used to store the value

and its end time point will be updated. The value of the

threshold is important: If a small value is selected, more

time intervals will be created requiring more processing

resources. On the other hand, if a big value is selected,

important features of the environment might be lost.

Another important issue is the fact that only a few

cells are related to every sensor measurement. Therefore,

the cells occupancy is not known during some time

intervals (gaping effect). This means that leaf nodes of

the underlying Time Index can point to null values. In

the above example, for instance, imagine the case, at time

point t1, where a human stands between the robot and the

door. At this point, the robot cannot observe the state of

the door cells. If at t2 the human exits the scene, the state

of the door cells will be again known and the Time Index

Fig. 3. TempOG: a) A simple example. b) The gaping effect.

will be storing the values of Figure 3.

The algorithm for grid construction is presented in

Figure 4. When a new sensor measurement arrives, the

occupancy probabilities of the affected cells are calcu-

lated and propagated to the corresponding Time Indexes;

depending on the incoming values, the latest time intervals

are updated or new time intervals are created.

Build Grid()

FOR each cell c i BEGIN
Initialize Time Index (TI(c i));

END

FOR each measurement v i referring to cell c i BEGIN
interval = Get Last Time Interval(TI(c i));
IF (now − interval.stop) > thres 1 THEN BEGIN

//gaping effect
Create New Time Interval(TI(c i),v i,now)

END
ELSE BEGIN

IF (|v i - interval.value| > thres 2)
THEN BEGIN

//gaping effect
Create New Time Interval(TI(c i),v i,now)

END
ELSE BEGIN

interval.stop = now;
END

END
END

Fig. 4. Grid Building Algorithm

IV. EXTRACTING INFORMATION FROM THE

TEMPORAL OCCUPANCY GRID

TempOG efficiently stores the occupancy history of

each cell of the environment. This wealth of information

can be exploited for extracting valuable information re-

garding the robot environment.

In the following paragraphs, we present some represen-

tative applications of the TempOG structure.

A. Generating map dynamics

By using TempOG, we can easily generate the map

dynamics. This map indicates how fast the occupancy

of the areas/ cells changes over time. As a metric for

the cell’s dynamics, we use the standard deviation of

the probabilities of the Time Index of the cell. A small

standard deviation indicates that the values in the Time

Index are close to each other and the cell is static. On

the other hand, a big standard deviation indicates great

differences in the values of the Time Index and, thus, a

dynamic cell.

This algorithm is presented in Figure 5.

Get Cell Dynamics(cell c)
//calculate standard deviation
mean = Get Mean Value(TI(c));
For each value in TI(c)

v =v + | value - mean |

return v / get Length of T ime Index(TI(c));

Fig. 5. Dynamic cells

B. Generating static map

By static objects we refer to objects that do not change

their position over time (e.g. walls, beds, locked doors,

etc.). The algorithm presented in the previous paragraph

can be also used to detect the static objects of the envi-

ronment. Cells with low dynamics and a high probability

of being occupied are considered as static.

A pseudo-algorithm for deciding whether a cell is static

is shown in Figure 6.

Is Static(cell c)
IF (Get Cell Dynamics(c) < thres1) AND

(Get Mean Value(c) > thres2)
return STATIC

ELSE
return NON STATIC

Fig. 6. Static cells

C. Detecting Dynamic Objects

Dynamic objects are objects whose position changes

over time. We can distinguish them into two categories:

• Low Dynamic objects: are objects that appear in a

specific number of places. Chairs and doors belong

to this category.

• High Dynamic objects: are objects that move arbi-

trarily in the environment and can be placed in many

different positions. Humans belong to this category.

In the following paragraphs, we present how dynamic

objects can be detected.

1) Detecting Low Dynamic Objects: As already stated,

low dynamic objects are moving objects that can be

positioned in a number of different configurations. The

most common example is a door that can be either open

or closed. The detection of low dynamic objects requires

the ability to detect all possible object configurations.

With TempOG, we can detect Low Dynamic Objects

without any prior knowledge of the object size or motion.

The detection of Low Dynamic Objects is carried out in

two steps:

• Step 1: Find possible object configurations by group-

ing neighboring areas that follow the same motif.

Associate Object Configurations()

FOR each cell c in cells C BEGIN
N = Get Neighboring Cells(c);
FOR each n ∈ N BEGIN

IF (distance(Time Series(c),Time Series(n))¡τ)
THEN

Associate Cells(c,n);
END

END

Fig. 7. Detect object configurations

Fig. 8. The Time Index and the corresponding Time Series

• Step 2: Find configurations that belong to the same

moving object.

Below, we provide more detail on each of these steps:

a) Step 1: Find possible object configurations: A

low dynamic object can be considered to cover more

than one cell in the environment (a door, for example,

might cover three or more cells). Such an object falls into

different configurations/ states (in the previous example,

the states could be open and closed). In order to detect

these configurations, we search through the history of

all cells to find neighboring cells that change with the

same motif. These cells correspond to one of the possible

configurations of the object. For example, in the case of

a door, all cells of the closed door configuration would

have the same values, regardless of the door’s state.

To find cells that change with the same motif, we treat

the values in the leaf nodes of a Time Index as a Time

Series (a collection of observations made sequentially in

time) that describes the cell occupancy. An example of a

Time Index for a specific grid cell and its equivalent time

series is presented in Figure 8.

A single time series describes the evolution of the oc-

cupancy of the corresponding cell over time. Similar time

series indicate similar cell occupancies. Thus, in order to

find a single configuration of a moving object, we aim

in finding neighboring cells with similar time series. An

appropriate algorithm is shown in Figure algo:findConf.

There exist various similarity measures in the data

Fig. 9. The Time Series of the two configurations and the combined
Time Series

Find Two Configuration Objects

FOR each p1 in patterns BEGIN
FOR each p2 in patterns BEGIN

combination = p1.getTimeSerie() +
p2.getTimeSerie();

IF (combination.isValidObject()) THEN
p1.associate(p2);

END
END

}

Fig. 10. Find two-state objects

mining community. In this work, we use the Manhattan

distance, a special case (p = 1) of the Minkowski distance

[15]:

DMinkowski(T1, T2) = p

√

∑n

i=1
(t1i − t2i)p

Any other distance measure could be applicable.

When similarity of two time series is above a given

threshold, the corresponding cells are assumed to be

covered by the same configuration.

b) Step 2: Associate configurations: In this step,

we search for correlations among the patterns found in

the previous step. We search for patterns that represent

different configurations of the same object. The simpler

case is the case of two-state objects, i.e. objects that

can appear in two different positions. In such objects,

their configurations are complementary; when the one

is occupied the other one is free. Thus, in order for

two different patterns to belong to the same object, their

combined Time Series must contain the occupied value at

any time, as shown in Figure 9.

The above method is too restrictive. Consider the case

where a human passes through an open door. At this

time, the open door cells will appear as occupied and

the combined Time Series will be invalid (value 2 ¿ 1

for some time points). Also, the robot might not observe

both the patterns at the same time points (gaping effect).

In this case, the unobserved areas of the Time Series are

filtered out during the evaluation.

The pseudo-code of the algorithm can be found in

Figure 10.

Following the same rationale, we can search for objects

with three, four, five etc different configurations. The

difference is that we have to combine and evaluate more

Find Highly Dynamic Objects()

FOR each occupied cell c in measurement M BEGIN
IF Is Static(c) == NON STATIC THEN

IF NOT Part Of Configuration(c) THEN
Is High Dynamic Object(c)

END
END

Fig. 11. Detect High Dynamic object

than two Time Series.

In order for the algorithm to correctly associate the

different patterns, the moving objects must change their

positions with different time rates. If, for example, two

doors follow the same motion pattern, the algorithm will

be confused in the pattern association step.

2) Detecting High Dynamic Objects: We can detect

High Dynamic Objects as follows: We extract the oc-

cupied cells indicated by the latest sensor measurement.

Those cells that are not static and do not belong to a Low

Dynamic Object configuration are automatically identified

as part of a High Dynamic object. The pseudo algorithm

is presented in Figure 11.

Although we preserve the occupancy history of the

environment, with the above algorithm we cannot track

High Dynamic Objects or extract their trajectory. The

objective of the algorithm is to generate the Highly

Dynamic map of the environment.

D. Focused TempOG Exploitation

So far, the applications of TempOG involve the whole

history of observation. In practice however, a user might

be interested in retrieving the history for a specific period

of interest described through a time interval of the form

[tstart, tend]. Adjusting the above described algorithms

to deal with the focused environmental monitoring is

straightforward.

V. EXPERIMENTS

In order to validate the proposed structure, extensive

simulated tests have been performed. In our experiments,

a simulated ActiveMedia Pioneer II Robot was equipped

with a laser range finder. The goal of the experiments

was to present the effectiveness of our method in creating

a valid map of the environment. Furthermore, we were

interested in evaluating the algorithm’s ability to detect

doors that have changed their state during the experiment.

For each experiment, we present the occupancy grid

map as it would be generated by the common occupancy

grid algorithm and the map as generated by the proposed

algorithm. In this map, we present the static areas of the

environment as black areas and the unexplored areas as

gray. Also, we present all the patterns that were found in

the environment with different colors. Patterns found to

represent the same object are drawn with the same color

and are connected with a line.

Fig. 12. Robot environment. The yellow line represents the robot path
(from A to B and back to A)

A. Implementation Issues

The main disadvantage of the proposed method is the

fact that great amounts of memory might be required by

the spatiotemporal structure to monitor a highly dynamic

environment during a long period of time. We propose the

following three solutions that can decreased the amount

of memory needed:

• We can compress the time series [6].

• We can define a time window outside of which

values are store in the disk or deleted for ever.

• We can replace portions of time series as references

to objects.

B. Experiment on non - crowded environment

The first experiment has been carried out in a long

hallway. The simulated environment used in this exper-

iment can be found in Figure 12. Red areas are doors

that change their state during the robot exploration. All

doors have two possible states (open and closed) except

for door D1 which has three possible states (one closed

and two different open states).

In Figure 13, the robot has created a correct map of the

static areas of the environment. Also, all the doors have

been identified correctly as moving objects but only six of

them have their configurations been assigned to them. For

example, the door D3 has been identified to correspond to

patterns P3 and Ṕ3. On the other hand, although all three

configurations of door D1 were detected, they could not

be assigned as one object. The reason for this is that the

Ṕ1 configuration could not been monitored enough, so the

corresponding time series is not adequate to assignment.

In the case of door D8, only one configuration could be

detected (P8). The other configuration (Ṕ8) was mistak-

enly taken for static object. This happened because every

time this area was observed (door open), it was sensed as

occupied area. Whenever this area was unoccupied, the

robot could not observe it because the door was closed.

In Figure 14, the typical occupancy grid map of the

environment is presented. We can observe that only one

configuration for each door is drowned (either the closed

or the open configuration). Also, in the cases of the D1,

D4 and D5 doors, not all points of their configurations

were detected.

Fig. 13. Generated Map.

Fig. 14. Occupancy Grid Map

C. Experiment on crowded environment

In order to evaluate the effectiveness of the algorithm

under tougher conditions, we used a more challenging

scenario. We added a number of moving people inside

the robot environment. Three different simulations are

presented: Experiment with 2.a) 20 people, 2.b) with

40 people and 2.c) with 60 people. Different people

behaviors were implemented with regard to the motion

speed and the changing direction rate.

The results can be found in Table I. We can see

that although the environment was extremely dynamic,

the extracted map is of high quality. Static areas of the

environment are correctly identified. Almost all different

configurations of low dynamics objects are detected. The

generated map of Experiment 2.a) is almost identical to

the map of Experiment 1. In experiment 2.b), the robot

mistaken an area close to a door as a possible door

configuration. In the last simulation, more associations

between the different configurations are corrupted. The

main reason to these corruptions is the fact that robot

visibility is reduced due to the moving people. The

doors are not frequently observed and moving people

can be mistakenly recognized as Low Dynamics object

configurations.

Another issue is that unrealistic configurations are

detected. Areas that do not belong to any Low Dynamic

object are identified as new possible configurations. How-

ever, these configurations can be related to people that

move slowly in the environment. These people can be

considered as Low Dynamic objects and thus be modeled

by the algorithm.

VI. CONCLUSIONS

In this paper, we presented a spatiotemporal structure to

model and generate maps of dynamic environments. Our

approach uses a forest of Time Indexes to preserve all

occupancy probabilities for each cell. With this structure,

we showed that many important dynamic features of the

environment are preserved and not filtered out as in many

existing algorithms. By traversing the leaf nodes of the

Time Indexes, we can extract information such as the

static objects map, the dynamic and static areas of the

environment and the moving objects. Simulated experi-

ments have indicated the potentialities of the algorithm.

An important advantage of the proposed structure is the

fact that all the algorithms that use Occupancy Grids can

be easily modified to work with the proposed structure

with no further adjustments. For example, existing algo-

rithms for detection and tracking of moving objects (peo-

ple, robots) and algorithms for localization on dynamic

environments can be applied as is and are expected to

generate the same results.

However, our goal for the future is to search for

algorithms that will exploit the spatiotemporal nature of

the proposed structure. It would be interesting to extend

existing algorithms for dynamic environment localization

and for people detection and tracking or create new ones

that will detect patterns in time and take advantage of this

additional knowledge. Another goal is to test TempOG on

a real robot and examine the results. An issue that will

most probably arise is the need for localization due to

the odometry errors that unavoidably come with the robot

motion. So, a SLAM algorithm will be investigated.

ACKNOWLEDGMENT

This work was partially co-funded by the European

Commission and the Hellenic General Secretariat for

Research and Technology (GSRT) under Measure 3.3

of the Operational Programme ”Information Society” in

the 3rd Community Support Framework (National Project

Name: DIANOEMA, ID: 35).

REFERENCES

[1] D. Anguelov, R. Biswas, D. Koller, B. Limketkai, S. Sanner, and
S. Thrun. Learning hierarchical object maps of non-stationary
environments with mobile robots. In Proc. of the 17th Annual

Conference on Uncertainty in AI (UAI), 2002.

[2] D. Anguelov, D. Koller, E. Parker, and S. Thrun. Detecting
and modeling doors with mobile robots. In Proc. of the IEEE

International Conference on Robotics and Automation (ICRA),
2004.

[3] D. Arbuckle, A. Howard, and M. J. Matarić. Temporal occupancy
grids: a method for classifying spatio-temporal properties of the
environment. In IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 409–414, Lausanne, Switzerland, Oct
2002.

[4] D. Avots, E. Lim, R. Thibaux, and S. Thrun. A probabilistic
technique for simultaneous localization and door state estimation
with mobile robots in dynamic environments. In Proc. of the

Conference on Intelligent Robots and Systems (IROS), Lausanne,
Switzerland, 2002.

[5] R. Elmasri, G. T. Wuu, and Y. J. Kim. The time index: An access
structure for temporal data. In 16th VLDB, pages 1–12, 1990.

[6] E. Fink and K. B. Pratt. Indexing of compressed time series.
In Data Mining in Time Series Databases. World Scientific,
Singapore.

[7] D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile
robots in dynamic environments. Journal of Artificial Intelligence

Research, 11:391–427, 1999.
[8] D. Fox, W. Burgard, S. Thrun, and A. Cremers. Position estimation

for mobile robots in dynamic environments. In Proc. of the AAAI

Fifteenth National Conference on Artificial Intelligence, 1998.
[9] J. Gutmann and K. Konolige. Incremental mapping of large cyclic

environments. In Proc. of the IEEE International Symposium on

Computational Intelligence in Robotics and Automation (CIRA),
pages 318–325, Monterey, California, November 1999.

[10] D. Hähnel, R. Triebel, W. Burgard, and S. Thrun. Map building
with mobile robots in dynamic environments. 2003.

[11] G. Q. Huang, A. B. Rad, and Y. K. Wong. A new solution to
map dynamic indoor environments. In International Journal of

Advanced Robotic Systems, Vol. 3, 2006.
[12] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM:

A factored solution to the simultaneous localization and mapping
problem. In Proc. of the AAAI National Conference on Artificial

Intelligence, Edmonton, Canada, 2002. AAAI.
[13] H. Moravec and A. Elfes. High resolution maps from wide angle

sonar. In Proc. of the IEEE Int. Conf. on Robotics Automation

(ICRA), 1985.
[14] B. C. Ooi and K. L. Tan. B-trees: Bearing fruits of all kinds.

In X. Zhou, editor, Thirteenth Australasian Database Conference

(ADC2002), Melbourne, Australia, 2002. ACS.
[15] Y. T. Qian, S. Jia, and W. W. Si. Markov model based time

series similarity measuring. In Proc. of the Second International

Conference on Machine Learning and Cybernetics, pages 278–
283, 2003.

[16] B. Salzberg and V. Tsotras. Comparison of access methods for
time-evolving data. In ACM Computing Surveys (CSUR), 1999.

[17] D. Schulz, W. Burgard, D. Fox, and A. Cremers. Tracking multiple
moving targets with a mobile robot using particle filters and
statistical data association, 2001.

[18] C. Stachniss and W. Burgard. Mobile robot mapping and lo-
calization in non-static environments. In Proc. of the National

Conference on Artificial Intelligence, Pittsburgh, PA, USA, 2005.
[19] D. F. Wolf and G. S. Sukhatme. Online simultaneous localization

and mapping in dynamic environments. In IEEE International

Conference on Robotics and Automation, pages 1301–1306, 2004.

a) Simulation with 20 people

b) Simulation with 40 people

c) Simulation with 60 people

TABLE I

LEFT IMAGE PRESENTS THE SIMULATED ENVIRONMENT. CENTER IMAGE PRESENTS THE MAP AS GENERATED BY THE TEMPOG ALGORITHM.

RIGHT IMAGE PRESENTS THE CLASSIC OCCUPANCY GRID OF THE ENVIRONMENT.

