
ARTICLE

Temporal omics analysis in Syrian hamsters
unravel cellular effector responses to
moderate COVID-19
Geraldine Nouailles 1,2,17✉, Emanuel Wyler 3,17✉, Peter Pennitz 1, Dylan Postmus 2,4,

Daria Vladimirova5, Julia Kazmierski 2,4, Fabian Pott 2,4, Kristina Dietert 6,7, Michael Muelleder8,

Vadim Farztdinov8, Benedikt Obermayer 9, Sandra-Maria Wienhold 1, Sandro Andreotti10,

Thomas Hoefler 5, Birgit Sawitzki11, Christian Drosten 4, Leif E. Sander 12, Norbert Suttorp12,

Markus Ralser13,14, Dieter Beule 9, Achim D. Gruber 6, Christine Goffinet 2,4, Markus Landthaler 3,15,

Jakob Trimpert 5,18✉ & Martin Witzenrath1,12,16,18✉

In COVID-19, immune responses are key in determining disease severity. However, cellular

mechanisms at the onset of inflammatory lung injury in SARS-CoV-2 infection, particularly

involving endothelial cells, remain ill-defined. Using Syrian hamsters as a model for moderate

COVID-19, we conduct a detailed longitudinal analysis of systemic and pulmonary cellular

responses, and corroborate it with datasets from COVID-19 patients. Monocyte-derived

macrophages in lungs exert the earliest and strongest transcriptional response to infection,

including induction of pro-inflammatory genes, while epithelial cells show weak alterations.

Without evidence for productive infection, endothelial cells react, depending on cell subtypes,

by strong and early expression of anti-viral, pro-inflammatory, and T cell recruiting genes.

Recruitment of cytotoxic T cells as well as emergence of IgM antibodies precede viral

clearance at day 5 post infection. Investigating SARS-CoV-2 infected Syrian hamsters thus

identifies cell type-specific effector functions, providing detailed insights into patho-

mechanisms of COVID-19 and informing therapeutic strategies.

https://doi.org/10.1038/s41467-021-25030-7 OPEN

1Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of Pulmonary Inflammation,

Berlin, Germany. 2 Berlin Institute of Health (BIH), Berlin, Germany. 3 Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for

Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany. 4Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität

Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany. 5 Institute of Virology, Freie Universität Berlin, Berlin, Germany. 6 Institute of

Veterinary Pathology, Freie Universität Berlin, Berlin, Germany. 7Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany.
8Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Core Facility – High-Throughput

Mass Spectrometry, Berlin, Germany. 9Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Core Unit Bioinformatics, Berlin, Germany.
10 Bioinformatics Solution Center, Freie Universität Berlin, Berlin, Germany. 11Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität

Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany. 12Charité – Universitätsmedizin Berlin, Corporate Member of

Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany. 13 The Francis

Crick Institute, Molecular Biology of Metabolism Laboratory, London, UK. 14Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität

Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Berlin, Germany. 15 IRI Life Sciences, Institute for Biology, Humboldt-Universität zu

Berlin, Berlin, Germany. 16German Center for Lung Research (DZL), Berlin, Germany. 17These authors contributed equally: Geraldine Nouailles,

Emanuel Wyler. 18These authors jointly supervised this work: Jakob Trimpert, Martin Witzenrath. ✉email: geraldine.nouailles@charite.de; emanuel.

wyler@mdc-berlin.de; jakob.trimpert@fu-berlin.de; martin.witzenrath@charite.de

NATURE COMMUNICATIONS |         (2021) 12:4869 | https://doi.org/10.1038/s41467-021-25030-7 |www.nature.com/naturecommunications 1

12
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25030-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25030-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25030-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25030-7&domain=pdf
http://orcid.org/0000-0003-1973-3119
http://orcid.org/0000-0003-1973-3119
http://orcid.org/0000-0003-1973-3119
http://orcid.org/0000-0003-1973-3119
http://orcid.org/0000-0003-1973-3119
http://orcid.org/0000-0002-9884-1806
http://orcid.org/0000-0002-9884-1806
http://orcid.org/0000-0002-9884-1806
http://orcid.org/0000-0002-9884-1806
http://orcid.org/0000-0002-9884-1806
http://orcid.org/0000-0002-8132-7237
http://orcid.org/0000-0002-8132-7237
http://orcid.org/0000-0002-8132-7237
http://orcid.org/0000-0002-8132-7237
http://orcid.org/0000-0002-8132-7237
http://orcid.org/0000-0002-9551-0411
http://orcid.org/0000-0002-9551-0411
http://orcid.org/0000-0002-9551-0411
http://orcid.org/0000-0002-9551-0411
http://orcid.org/0000-0002-9551-0411
http://orcid.org/0000-0002-7962-2165
http://orcid.org/0000-0002-7962-2165
http://orcid.org/0000-0002-7962-2165
http://orcid.org/0000-0002-7962-2165
http://orcid.org/0000-0002-7962-2165
http://orcid.org/0000-0003-3700-1691
http://orcid.org/0000-0003-3700-1691
http://orcid.org/0000-0003-3700-1691
http://orcid.org/0000-0003-3700-1691
http://orcid.org/0000-0003-3700-1691
http://orcid.org/0000-0002-5667-6750
http://orcid.org/0000-0002-5667-6750
http://orcid.org/0000-0002-5667-6750
http://orcid.org/0000-0002-5667-6750
http://orcid.org/0000-0002-5667-6750
http://orcid.org/0000-0002-9116-630X
http://orcid.org/0000-0002-9116-630X
http://orcid.org/0000-0002-9116-630X
http://orcid.org/0000-0002-9116-630X
http://orcid.org/0000-0002-9116-630X
http://orcid.org/0000-0001-5655-4350
http://orcid.org/0000-0001-5655-4350
http://orcid.org/0000-0001-5655-4350
http://orcid.org/0000-0001-5655-4350
http://orcid.org/0000-0001-5655-4350
http://orcid.org/0000-0001-7486-5582
http://orcid.org/0000-0001-7486-5582
http://orcid.org/0000-0001-7486-5582
http://orcid.org/0000-0001-7486-5582
http://orcid.org/0000-0001-7486-5582
http://orcid.org/0000-0001-7923-0519
http://orcid.org/0000-0001-7923-0519
http://orcid.org/0000-0001-7923-0519
http://orcid.org/0000-0001-7923-0519
http://orcid.org/0000-0001-7923-0519
http://orcid.org/0000-0002-0476-9947
http://orcid.org/0000-0002-0476-9947
http://orcid.org/0000-0002-0476-9947
http://orcid.org/0000-0002-0476-9947
http://orcid.org/0000-0002-0476-9947
http://orcid.org/0000-0002-3284-0632
http://orcid.org/0000-0002-3284-0632
http://orcid.org/0000-0002-3284-0632
http://orcid.org/0000-0002-3284-0632
http://orcid.org/0000-0002-3284-0632
http://orcid.org/0000-0002-4502-0393
http://orcid.org/0000-0002-4502-0393
http://orcid.org/0000-0002-4502-0393
http://orcid.org/0000-0002-4502-0393
http://orcid.org/0000-0002-4502-0393
http://orcid.org/0000-0002-3959-004X
http://orcid.org/0000-0002-3959-004X
http://orcid.org/0000-0002-3959-004X
http://orcid.org/0000-0002-3959-004X
http://orcid.org/0000-0002-3959-004X
http://orcid.org/0000-0002-1075-8734
http://orcid.org/0000-0002-1075-8734
http://orcid.org/0000-0002-1075-8734
http://orcid.org/0000-0002-1075-8734
http://orcid.org/0000-0002-1075-8734
http://orcid.org/0000-0003-1616-0810
http://orcid.org/0000-0003-1616-0810
http://orcid.org/0000-0003-1616-0810
http://orcid.org/0000-0003-1616-0810
http://orcid.org/0000-0003-1616-0810
mailto:geraldine.nouailles@charite.de
mailto:emanuel.wyler@mdc-berlin.de
mailto:emanuel.wyler@mdc-berlin.de
mailto:jakob.trimpert@fu-berlin.de
mailto:martin.witzenrath@charite.de
www.nature.com/naturecommunications
www.nature.com/naturecommunications


T
he enduring severe acute respiratory syndrome cor-
onavirus 2 (SARS-CoV-2) pandemic has emphasized the
urgent need for experimental models to rapidly identify

pathomechanisms and therapeutic targets of corona virus disease
2019 (COVID-19).

COVID-19 causes a wide range of disease manifestations,
spanning from asymptomatic infections to acute respiratory
distress syndrome (ARDS) and fatal multi-organ dysfunction1.
Disease severity is influenced by age, sex, and specific comor-
bidities, making it evident that host-specific factors influence the
course of the disease and require further investigation. While
blood of COVID-19 patients is accessible to detailed longitudinal
investigation irrespective of disease severity, and bronchoalveolar
lavage (BAL) can be safely performed in intubated patients,
pulmonary tissue responses remain inaccessible in mild and
moderate COVID-19 courses, since lung tissue is only available
upon autopsy from patients with fatal disease. Hence, experi-
mental models of COVID-19 are needed, which reflect the
complexity of human responses to SARS-CoV-2 infections,
including the spatiotemporal dynamics of airway and alveolar
infection, local pulmonary immune responses, the activation of
systemic inflammatory, complement and coagulation cascades,
the impairment of endothelial barrier function, and also
mechanisms of resilience, resolution, and repair.

The hamster family (Cricetinae) is of particular interest for
experimental modeling of COVID-19, as we and others have
observed that animals without genetic modifications can be
infected with SARS-CoV-2 and develop phenotypes ranging from
mild to lethal COVID-19, depending on age and species2–6.
Notably, immune cell influx into the lungs, bronchointerstitial
pneumonia and diffuse alveolar damage in hamsters bear
resemblance to COVID-19 in human patients7–9.

Since its initial description as animal model for SARS-CoV10,
the Syrian hamster has been used to study different aspects of
SARS-CoV and Middle East respiratory syndrome (MERS) cor-
onavirus infection11–13. Consequently, it now serves as a versatile
non-transgenic rodent model to study SARS-CoV-2 infection and
therapeutic interventions such as antiviral treatments, immuno-
modulatory therapies, and vaccines3,7,14. The disease observed in
hamster species primarily affects the lower respiratory tract,
which more closely resembles the common courses of human
disease as opposed to clinically severely affected transgenic mice,
in many of which infection of the central nervous system (CNS) is
the predominant manifestation of the disease15,16.

Despite the advantages of hamster models for investigating
COVID-19 pathogenesis, unavailability of molecular tools and
reagents for hamsters limits investigations of immuno-patho-
mechanisms, leaving unanswered how closely SARS-CoV-2
evoked disease in hamsters models human COVID-19. We
therefore in-depth evaluated SARS-CoV-2-infected Syrian ham-
sters (Mesocricetus auratus), elucidating the innate and adaptive
steps of immunity and pathogenesis by pairing single-cell RNA
sequencing (scRNA-Seq) data from lung cells and white blood
cells (WBC), histopathology and quantitative proteomics analysis
of lungs and blood following nasal SARS-CoV-2-infection of
Mesocricetus auratus. We compared our findings with own data
from scRNA-Seq and proteomics analyses from human bio-
samples of COVID-19 patients. This enabled in-depth investi-
gations on central COVID-19 pathomechanisms in
compartments inaccessible in humans, particularly in moderate
disease.

In this work, we show that (i) monocyte-derived macrophages
in lungs are exerting the earliest and strongest transcriptional
response to infection, (ii) epithelial cells show weak alterations,
(iii) early in the infection, endothelial cells strongly express anti-
viral, pro-inflammatory, and T cell recruiting genes without

evidence for productive infection, and (iv) recruitment of cyto-
toxic T cells, as well as emergence of IgM antibodies, precedes
viral clearance at day 5 post infection.

Results
SARS-CoV-2 induces self-resolving moderate pneumonia and
robust pulmonary immune cell recruitment in Syrian ham-
sters. After infection with SARS-CoV-2 (Supplementary Fig. 1),
clinical disease manifested in Syrian hamsters with moderate
transient weight loss analogous to previous reports (refs. 2,3,6,
Supplementary Fig. 2a). High viral loads were detected in
respiratory tracts at 2, 3, and 5 days post infection (dpi). At 14
dpi, only minimal viral RNA load remained, and no replication-
competent virus was detected in the respiratory tract (Supple-
mentary Fig. 2b–d).

Similar to previous observations2,9, histopathology identified
necrosuppurative bronchitis and bronchointerstitial pneumonia
at 2 and 3 dpi, characterized by intrabronchial and intraalveolar
infiltration by neutrophils and macrophages as well as severe,
diffuse alveolar damage. Numbers and density of infiltrating
immune cells, hyperplasia of bronchial and alveolar epithelial
cells as well as alveolar and interstitial edema and endothelialitis
peaked at 5 dpi. By 14 dpi, cellular influx into alveolar spaces was
largely resolved, with fewer neutrophils, macrophages, and
lymphocytes observed within the interalveolar septa, while
marked hyperplasia of alveolar epithelial cells remained (Supple-
mentary Fig. 2e–n). Again, consistent with previous reports2,9 no
evidence of thrombotic events were observed.

To obtain higher resolution of pulmonary responses, we
performed scRNA-Seq. Cell type clusters detected in lungs
corresponding to leukocyte-subset-signatures included alveolar,
interstitial, and monocytic macrophages, Treml4+-monocytes,
neutrophils, dendritic cells, B, T, and natural killer (NK) cells.
We further identified resident cell types, including alveolar
epithelial cells type 1 (AT1) and 2 (AT2), ciliated epithelial,
endothelial, and smooth muscle cells, and fibroblasts (Figs. 1a,
S3a). By integrating scRNA-Seq-derived cell frequencies with
manually counted cell numbers over time, we mapped
dynamics of infection-induced pulmonary leukocyte recruit-
ment compared to uninfected animals (Fig. 1b, c). The influx of
monocyte-derived macrophages peaked at 5 dpi. NK and T
lymphocyte recruitment to lungs was first detected at 5 dpi and
peaked at day 14 (Fig. 1c). Peak of lung inflammation on 5 dpi
(Supplementary Fig. 2l) coincided with the highest proportion
of inflammatory macrophages (monocytic macrophage cluster)
and proliferating cytotoxic cells (T/NK cell cluster) among lung
cells (Supplementary Fig. 3b).

Notably, despite pronounced neutrophilic bronchitis (Supple-
mentary Fig. 2g), overall neutrophil frequencies remained low
and changes were non-significant. In line with histopathology, the
peak of neutrophil recruitment was at 2 dpi, when neutrophil
proportions presented ~3% of lung cells (Fig. 1e). In contrast,
monocytic macrophages population at day 5 peaked at ~25% of
lung cells (Figs. 1d, e, S3b). Relative numbers of pulmonary tissue
cell subsets fluctuated mildly, declining proportionally as
inflammatory cell influx rose (Supplementary Fig. 3c, d). At 14
dpi, increased numbers of AT2 matched histopathology observa-
tions of epithelial hyperplasia, indicating tissue repair (Supple-
mentary Figs. 2i, k, 3c).

Analogously, we analyzed scRNA-Seq data from WBC
populations to study systemic responses evoked by pulmonary
SARS-CoV-2 infection. Detected cell populations included
neutrophils, monocytes, dendritic, NK, B, and T cells and various
subpopulations thereof (Figs. 1f, S3e). Infected hamsters dis-
played significant leukopenia at 3 and 5 dpi. By 14 dpi this trend
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was inverted and peripheral blood leukocyte numbers were
significantly higher than in naive animals (Figs. 1g, S3f).
Increased proportions of neutrophils were found at 2 dpi and
increasing proportions of T cells at 14 dpi (Figs. 1h, S3b).
Notably, calculated neutrophil–lymphocyte ratios only transiently
increased at 2 dpi to a minor extent, matching observations in
humans with non-severe as opposed to severe COVID-1917,18

(Fig. 1i). Overall, scRNA-Seq cell profiling defined kinetics of
immune cell trafficking in greater detail.

Bulk transcriptomics, proteomics, and single-cell RNA
sequencing reveal activation of anti-SARS-CoV-2 pro-
inflammatory immunity in hamsters. After evaluating immune
cell dynamics, we performed bulk RNA-sequencing of lungs and
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blood and matched proteomics of lungs and serum to gain
insights into alterations of SARS-CoV-2-induced immune
responses.

Gene ontology (GO) enrichment analysis of the infection-
triggered most differentially expressed genes in lungs and blood
provided expected GO terms such as defense response to virus,
innate immune response, and cell activation (Supplementary
Fig. 4a, b). Pulmonary gene sets related to type 1 interferon (IFN)
signaling correlated with the presence of viral RNA, thus vanished
by 14 dpi. Similarly, pulmonary gene sets related to response to
interferon-gamma (Ifng) were highest at 5 dpi (Supplementary
Fig. 4c). In blood, type 1 IFN signaling and response to IFN-γ
gene sets were highest at 2 and 3 dpi (Supplementary Fig. 4d),
perhaps reflecting recruitment of specific cells from blood to
lungs. Overall, bulk RNA-seq identified an anti-viral immune
response that was effectively resolved when the virus was cleared.

The proteome host response was in line with the sequencing
data, with differentially expressed serum proteins peaking at 3 dpi
and lung proteins at 5 dpi (Supplementary Fig. 4e). Agreement
between bulk RNA sequencing and proteomics was consistent in
lungs at 5 dpi (r= 0.9) (Supplementary Fig. 4f). The principal
component analysis (PCA) is detailed in the supplementary note,
showing that the maximal response was observed at 5 dpi
(supplementary note PCA on bulk transcriptomic data and
PCA on bulk proteomics data). Functional terms connected with
immune response, such as innate and adaptive immunity,
activation of complement system, humoral immune response,
and regulation of immune system processes were most enriched
(Figs. 2a, S4g). In lungs, response to interferon-beta peaked at 3
dpi and stayed high until 5 dpi (Fig. 2a). Most processes were
resolved by 14 dpi.

We next aimed at comparing our data to published datasets
from COVID-19 patients. In hamster serum, 37 differentially
expressed proteins were identified (α= 0.01, providing FDR
below 6%), 17 compared to control and 31 proteins compared to
14 dpi when most effects are resolved. Of 31 proteins, 20 have
been reported in human COVID-19 studies, 7 (Actg1, Apoa1,
Apoc1, Gsn, Hp, Itih3, Lbp) of which correlate with disease
severity19, all showing the same direction (Supplementary
Fig. 4h).

In hamster lungs, at peak response (5 dpi) we identified 150
differentially expressed proteins. 13 differentially expressed
proteins have been reported to be regulated in human plasma20

with 9 showing the same trend (Supplementary Table 2). Of
these, 6 proteins (C4b, Hp, Hpx, Ighm, Igkv7-33, Itih3) are also
changed in hamster serum (Fig. 2b). Although a comparison to
moderate disease in human lung tissue is not possible, 22 proteins
are reported to be regulated in human BAL fluid of critically ill
patients21. The few proteins showing opposite regulation to

COVID-19 patients were confirmed by bulk sequencing. Five out
of 7 conflicting responses, namely C4b, Hpx, Rbp4, Cfd, and Agt
in hamster serum compared to human plasma as well as 8 out of
12 for hamster lung tissue compared to human BAL were
confirmed.

Next, we refined transcriptome analyses with scRNA-Seq and
related identified bulk GO terms to cell types, concentrating on
inflammatory mediators (Fig. 3). Indeed, various pro-
inflammatory chemokines were expressed by lung cells and
showed distinct cellular and temporal expression patterns.
Classical pro-inflammatory cytokines, e.g., Il1a and Il1b
transcripts were elevated only early at 2 and 3 dpi in alveolar
and monocytic macrophages, and alveolar macrophages and
Treml4+ monocytes, respectively. By 5 dpi, AT2 cells showed a
unique range of upregulated inflammatory mediators such as
Cxcl17, Lipopolysaccharide Binding Protein (Lbp), fibrinogen
gamma gene (Fgg), and clusterin (Clu). At the same time point,
we found, among others, downregulation of the Il6 receptor
(also known as CD126) and S100a4. Transiently decreased
expression of these two inflammatory mediators might be part
of the efficient yet self-regulating inflammatory response in this
disease model. Galectin 3-binding protein (Lgals3bp) gene stood
out as being upregulated in many cell types from 2 dpi to 5 dpi
(Fig. 3). Notably, we likewise measured increased levels of
Lgals3bp protein in lungs (Fig. 2c), which was shown to be
regulated also in plasma of COVID-19 patients and correlated
with severity19.

Taken together, we identified clear changes in transcriptome,
proteome and pro-inflammatory signatures on single-cell level in
response to SARS-CoV-2 infection, displaying highly active
immune responses that to large extents were also described in
COVID-19 patients.

Migratory myeloid cells dominate pulmonary transcriptional
response to SARS-CoV-2 infection in Syrian hamsters and
COVID-19 patients. To pinpoint individual roles of identified
cells in anti-SARS-CoV-2 immunity, we analyzed the 15–20 most
differently expressed genes in each cell subset. In early stages of
infection at 2 dpi, robust, local transcriptome changes were
observed primarily in lung monocytic and interstitial macro-
phages, neutrophils, and endothelial cells, whereas AT1 and AT2
epithelial cells and alveolar macrophages showed comparably
little change in mRNA expression (Fig. 4a). A common set of
anti-viral effector genes was found upregulated in many cell
types22. These include e.g., interferon-stimulated gene 15 (Isg15),
MX dynamin like GTPase (Mx)1, Mx2, Interferon-induced protein
with tetratricopeptide repeats 3 (Ifit3), and Sp100, as well as
transcription factors, such as Interferon regulatory factor (Irf) 7
and Irf9 (Fig. 4a, Supplementary Fig. 5a). Blood transcriptome

Fig. 1 Single-cell dynamics in lungs and blood of SARS-CoV-2 infected Syrian hamsters. a Uniform manifold approximation and projection (UMAP) plot

of identified cell populations in Syrian hamster lungs. Colors representing individual cell types are depicted in legend. b Cell count of isolated cells per lung

lobe over time (2, 3, 5, and 14 days post infection (dpi)) and control group (naive, “d0”). c Count of hematopoietic cells per lung lobe in naive hamsters and

over time pi. d Changes in cellular density of lung cells in UMAP projection. Coloration indicates log2 fold change between control group and 5 dpi.

e Percentage of hematopoietic cells per lung lobe in naive hamsters and over time pi. f UMAP plot of identified cell populations in blood samples. g Cell

count of isolated cells per mL blood in naive hamsters and over time pi. h Percentage of identified cell populations in blood samples over time pi and naive

animals. i Neutrophil–lymphocyte ratio in blood samples over time pi and naive animals. a, d and f Clusters defined by Louvain clustering, n= 3 per time

point. b, c, e, g, h and i Bar plots are plotted per cell type in the order: naive, 2 dpi, 3 dpi, 5 dpi, and 14 dpi (colors fade from dark to light). Data display

means ± SD. n= 3 per time point. Ordinary one-way ANOVA, Dunnett’s (b, g, i) and Šídák’s multiple comparisons (c, e, h) test versus corresponding 0 dpi

(naive). ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001. AT1 and AT2: alveolar epithelial cell type 1 and 2, DC: dendritic cells, NK, natural killer cells.

Exact p-values in order of appearance: b ∗p= 0.0255; ∗∗p= 0.0078 c alveolar: ∗∗p= 0.0041; ∗p= 0.0102, monocytic: ∗p= 0.0213; ∗p= 0.0226; ∗∗∗∗p <

0.0001; T/NK: ∗∗∗∗p < 0.0001; ∗∗∗p= 0.0002; B cells: ∗p= 0.0106 e alveolar: ∗∗∗∗p < 0.0001; monocytic: ∗∗p= 0.0010; ∗p= 0.0138; ∗∗∗∗p < 0.0001;

T/NK: ∗p= 0.0225; ∗∗p= 0.0099 g ∗∗p= 0.0033; ∗p= 0.0174; ∗∗∗p= 0.0004 h classical monocytes: ∗∗∗∗p < 0.0001; neutrophils: ∗∗∗∗p < 0.0001; ∗∗p=

0.0040; ∗p= 0.0257; T cells: ∗∗∗p= 0.0004; B cells: ∗∗∗∗p < 0.0001; ∗∗∗∗p < 0.0001 i ∗∗p= 0.0024.
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analysis recapitulated this early transcriptional activity at 2 dpi
(Fig. 4b, Supplementary Fig. 5b), but declined by 5 dpi, whereas
the signature persisted in the lungs until 14 dpi (Supplementary
Fig. 5a, b).

Genes that differed most between classical blood monocytes
and their counterparts in lungs encoded chemokines and

activation markers, including CXC chemokine ligand 10 (Cxcl10),
Slamf9, Il18bp, Ifitm2, Ccl8, Ccl4, and Ccl5 (Fig. 4c, Supplemen-
tary Fig. 5c), indicating that activation and acquisition of effector
function occurred in lungs. Although AT2 cells are a main target
of SARS-CoV-2 in lungs23, they displayed weaker and later
transcriptional changes upon infection compared to monocytic
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macrophages (Figs. 4a, d, S5a, d). Notably, at 14 dpi differential
transcriptional responses related to defense resolved in blood and
lung cells. Instead, we observed upregulation of cell cycle
proliferation genes in AT2 cells including Marker of Proliferation
Ki-67 (Mki67), Ubiquitin-conjugating enzyme E2 C (Ube2c),
Aurora B kinase (Aurkb), and Stathmin (Stmn1) (Supplementary
Fig. 5a). This transcriptome profile indicated initiation of a repair

program by AT2 cells, proliferating to replace damaged
AT1 cells24. Finally, we put our hamster lung scRNA-Seq data
in context with BAL scRNA-Seq data from patients with
moderate-to-severe COVID-1925 and healthy controls26. As in
hamster data, we observed stronger transcriptional responses in
macrophages compared to epithelial cells (Supplementary Fig. 5e).
Furthermore, the upregulated gene program containing e.g.,
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Fig. 3 Induction of inflammatory mediators are strongest and earliest in myeloid cells. Dotplots of differentially expressed cytokines and inflammatory
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CXCL10, CCL2, or CCL8 was substantially overlapping (Supple-
mentary Fig. 5f).

To test whether hamster tissue responses are representative of
infected human epithelial cells, we next referred to our scRNA-
Seq dataset derived from nasopharyngeal swabs of 19 COVID-19
patients and 5 healthy controls27. Here again, human and
hamster epithelial cells derived from infected individuals and

animals, respectively, showed a similar, moderate induction of
most inflammatory mediators (Supplementary Fig. 6a, b). As
notable difference, strong induction of neutrophil-recruiting
chemokines targeting CXC chemokine receptor (CXCR) 2, such
as CXCL1, CXCL3, CXCL6, and CXCL8, were found only in
human basal and secretory cells with severe COVID-19 but were
absent in moderately-ill Syrian hamsters (Supplementary Fig. 6a,
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Fig. 3). Aside from the epithelial inductions of neutrophil-
attractant transcripts unique to severe COVID-19, SARS-CoV-2
infected hamsters and patients displayed strikingly similar pro-
inflammatory immune profiles specifically in migratory
myeloid cells.

Early activation of TLR/NF-kB-dependent transcription of
pro-inflammatory cytokines in monocytic macrophages by
SARS-CoV-2 infection. Next, we asked whether observed cellular
transcriptional responses to SARS-CoV-2 infection were influ-
enced by the presence of virus in individual cell types. First, we
determined fractions of cells expressing SARS-CoV-2 entry
receptors, Angiotensin-converting enzyme 2 (Ace2) and trans-
membrane serine protease 2 (Tmprss2), putative alternative
receptors, Basigin (Bsg) and Furin, and cofactors, such as neu-
ropilins (Nrp1), and heparan sulfate (exostosin-1, Ext1))28–30 in
hamster lungs (Fig. 5a, Supplementary Table 3). Ciliated epithelial

cells most frequently expressed Ace2 (~4–22%), as did a smaller
proportion of AT2 cells (~3–5%) (Supplementary Table 3). By
in situ-hybridization, we visualized SARS-CoV-2 RNA in bron-
chial epithelial cells (Fig. 5b), and AT1 (Fig. 5c, arrowhead) and
AT2 (Fig. 5c, arrow) cells, whereas endothelial cells were con-
sistently devoid of virus (Fig. 5b, hash). Importantly, viral RNA
was detected in high numbers of intrabronchial and intraalveolar
macrophages (Fig. 5d, arrows) at early time points. A fraction of
macrophages contained high loads of virus without cell debris,
pointing toward uptake of cell-free virus (Fig. 5d, inset). For
comparison, a control staining section of alveoli is shown
(Fig. 5e).

ScRNA-Seq data suggested that most viral RNA content was
found in monocytic macrophages, and not in epithelial cells
(Fig. 5f, Supplementary Table 3). For epithelial and endothelial
cells, frequencies of virus-positive cells were highest at 3 dpi,
declining by 5 dpi to become absent at 14 dpi, indicating removal
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of virus-containing cells (Supplementary Table 3). In contrast,
alveolar macrophages showed highest viral loads at 5 dpi (~25%),
paralleling decline of virus-positive tissue cells, thus pointing
toward potential increase in phagocytic activities (Supplementary
Table 3). We attempted to identify viral replication from our
scRNA-Seq data without obtaining significant results (analysis
details and results depicted in supplementary note assessing viral
replication from sequencing data).

To further investigate how cell-specific gene expression is
modulated by cell-associated viral RNA, we tested the correlation
between gene expression and viral load in monocytic macro-
phages. We first compared gene expression levels in monocytic
macrophages that did (vRNA+), or did not (vRNA−) contain
viral RNA (Figs. 5g, S7a). This revealed a set of genes that only at
early disease stages (2 dpi, 3 dpi), were present at higher levels in
vRNA+ monocytic macrophages (Supplementary Fig. 7a). Gene
ontology and KEGG pathway analysis showed that this gene set
was enriched for Toll-like receptor (TLR) signaling (Supplemen-
tary Fig. 7b). Specifically, this gene set contained a range of pro-
inflammatory cytokines such as Cxcl10 or Ccl2 (Fig. 5g), which
are activated by the NF-kB pathway downstream of TLRs31. On
the other side, expression levels of NF-kB independent ISGs such
as Isg15 or Mx2, induced by interferons or cytosolic RNA
sensors32, were only slightly more elevated in vRNA+ compared
to vRNA– monocytic macrophages (Fig. 5g). Therefore, we
investigated representative genes, Isg15 and Cxcl10, in more detail
(Fig. 5h, i). Isg15 expression was found in about 2/3 of AT2 and
all monocytic macrophages at 2 dpi. Isg15 levels in gene-positive
cells were higher at 2 dpi in vRNA+ AT2 cells and at 2, 3, and 5
dpi vRNA+ monocytic macrophages compared to corresponding
vRNA– cells (Fig. 5h). In comparison, Cxcl10 was nearly absent in
AT2 cells at 2 dpi and 3 dpi. Cxcl10-positive cell fractions and
gene expression levels were significantly higher in vRNA+

monocytic macrophages compared to vRNA– cells at 2, 3, and
5 dpi (Fig. 5i). We further analyzed dose-dependency of this
transcriptional response to virus in monocytic macrophages. Cells
were binned in three groups of equal size with increasing content
of viral RNA. We found that at earlier time points (2 and 3 dpi),
but not at 5 dpi, cells with higher amounts of viral RNA-signal,
also expressed more Cxcl10 (Fig. 5j).

Overall, this indicated that sensing of viral RNA activated
monocytic macrophages in a dose-dependent manner, leading to

increase of NF-kB-regulated pro-inflammatory chemokines. At 5
dpi, broad inflammation likely masked direct viral RNA-triggered
responses by activating expression of pro-inflammatory genes in
vRNA+ and vRNA– cells equally. In contrast, AT2 cells showed
less activation of both NF-kB-dependent and -independent
transcriptional responses as compared to monocytic
macrophages.

Endothelial cells participate in anti-viral and pro-inflammatory
responses. Having observed vast similarities of human and Syrian
hamster immune responses in moderate SARS-CoV-2 infection
on transcriptomic and proteomic levels, we next turned our
attention to dissection of molecular mechanisms in lung tissue
compartments that have so far not been assessed longitudinally in
moderate COVID-19 patients, since invasive tissue sampling is
hardly possible.

Endothelial cells likely participate in COVID-19 pathogenesis33,34,
but little is known about dynamics of their responses to inflammation
in vivo. Subclustering of cells of endothelial origin identified
endothelial cells of lymphatic and bronchial vasculature, pulmonary
arteries, capillaries, and veins with unique features (Fig. 6a,
Supplementary Fig. 8a, b). Interestingly, bronchial endothelial cells,
pulmonary artery, and capillary endothelial cells all displayed strong
and early anti-viral gene expression profiles at 2 dpi (Fig. 6b).
Pulmonary arterial endothelial cells responded most rapidly to
infection, with high expression of Cxcl10, Tnfsf10, and Ccl7 by 2 dpi
(Fig. 6c). Responses of bronchial vasculature, pulmonary capillary
and pulmonary vein endothelial cells were similar but delayed,
peaking at 5 dpi. In addition to distinct temporal dynamics of
endothelial activation in different tissues, we observed a spatial
regulation of expression of monocyte and effector T cells attractants.
Pulmonary artery and vein endothelial cells preferentially transcribed
Ccl7, a chemoattractant binding multiple CC receptors, including
CCR1-3, CCR5, and CCR1035. Pulmonary capillary endothelial cells,
however, preferentially expressed the pleiotropic Ccl8, binding at least
CCR2, CCR3 and CCR536, while bronchial vasculature endothelial
cells were characterized by Ccl2 (Fig. 6c). ICAM-1 and VCAM-1
upregulation, occurs following inflammatory stimuli to allow for
leukocyte transmigration37, and was highest in bronchial endothelial
cells and pulmonary artery cells at 5 dpi, corresponding to influx of
T cells (Fig. 6c). Overall lung endothelial cells shared an anti-viral
gene profile but revealed distinct patterns of chemokines targeting

Fig. 5 Virus RNA in monocytic macrophages leads to dose-dependent activation of pro-inflammatory cytokines by TLR signaling. a Feature plots of

entry factor expression in Uniform manifold approximation and projection (UMAP) projection. Coloration indicates expression values of indicated genes.

b–e Detection of viral RNA by in situ-hybridization. Labeled are supposed endothelium (b, hash), bronchial epithelial cells (b, arrowhead), AT1

(c, arrowhead) and AT2 (c, arrow). (d, inset), macrophages containing viral RNA and cell debris (arrowhead), and an example of high levels of viral RNA

without cell debris in the inset (arrow). For b–e red signals viral RNA and blue hemalaun counterstain. Time points: b, c from 2 dpi, d from 3 dpi, e staining

control. Bars: b, d, e= 50 µm, c= 100 µm, Inset in d= 20 µm. Micrographs representative of n= 6 per time point pi. f Cells in the UMAP projection are

colored by amount of viral RNA (log10 transformed percentage of viral RNA per cell), along with overview of identified cell types in lungs. g Dotplot of

cytokine expression in monocytic macrophages containing viral RNA compared to those without viral RNA. Coloration and point size indicate log2 fold

change and adjusted (adj.) p-value for each time point 2, 3, and 5 dpi. Adjusted (adj.) p-values were calculated by DEseq2 using Benjamini–Hochberg

corrections of two-sided Wald test p-values. h, i Bar- and boxplots of Isg15 (h) and Cxcl10 (i) gene expression in AT2 and monocytic macrophages along,

comparing cells containing viral RNA to those without for 2, 3, and 5 dpi. Barplot shows percentage of cells positive for respective gene. Boxplots show

gene expression levels in cells positive for respective gene, j Bar- and boxplots of Cxcl10 in monocytic macrophages and fraction of Cxcl10 positive cells for

each time point pi and naive animals, with cells grouped by increasing virus levels for 2, 3, and 5 dpi. h–j Barplots, data display means ± SD, n= 3 animals

per time point. Significance levels calculated using two-sided generalized linear mixed-effects models. For box plots, the middle line in the boxplot displays

the median, the box indicates the first and third quartile, whiskers the 1.5 interquartile range (IQR), cell gene expression data derived from n= 3 animals

per time point two-sided Wilcoxon rank-sum test on all cells (i.e., not only the ones expressing the gene) for boxplots. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.0001.

See “Methods” for details. AT1 and AT2: alveolar epithelial cell type 1 and 2, DC: dendritic cells, NK, natural killer cells; d0: day 0= naive, d14: 14 dpi. Exact

p-values in order of appearance in (h) upper panel: ∗p= 0.0338; lower panel: ∗∗p= 0.0093; ∗p= 0.014; ∗∗∗p < 0.0001; ∗∗∗p < 0.0001; ∗∗∗p < 0.0001;

i upper panel: ∗p= 0.0270; ∗∗∗p < 0.0001; ∗∗∗p < 0.0001; ∗∗∗p < 0.0001; lower panel: ∗∗∗p < 0.0001; ∗∗∗p < 0.0001; ∗∗∗p < 0.0001; j upper panel: ∗∗∗p <

0.0001; ∗∗p= 0.0004; ∗∗p= 0.0022; ∗p= 0.0131; ∗∗∗p < 0.0001; ∗∗∗p < 0.0001; ∗∗p= 0.0003; ∗∗p= 0.0033; ∗∗∗p < 0.0001; lower panel: ∗∗∗p < 0.0001;
∗∗p= 0.0015; ∗∗p= 0.0064; ∗∗p= 0.0034; ∗∗∗p < 0.0001; ∗∗∗p < 0.0001; ∗∗∗p < 0.0001.
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primarily monocytes and Th1 cells. Unlike cells of epithelial origin,
endothelial cells failed to show evidence of proliferation and cell cycle
activity that could have indicated their participation in tissue repair
processes during the study period (DNA topoisomerase 2-alpha
(Top2a), Mki67, Ube2c) (Fig. 6c).

Type 1 effector T cells are efficiently recruited to lungs in
SARS-CoV2 infection. Our initial cellular analysis of scRNA-Seq
data from lung samples had grouped T and NK cells in one set of
connected clusters, and we had observed their significant increase

in lungs at 5 and 14 dpi (Fig. 1). We hypothesized that cytotoxic
immunity might be linked to viral clearance observed at 5 dpi,
and elimination by 14 dpi (Supplementary Fig. 2). Therefore, we
subclustered NK and T cells to identify 4 subpopulations based
on Cd3e, Cd4, Cd8a, and Natural Killer Cell Granule Protein 7
(Nkg7) gene expression (Fig. 7a, Supplementary Fig. 9a), CD4+

T cells (Cd3e+Cd4+), CD8+ T cells (Cd3e+Cd8a+), NK cells
(Cd3e−Nkg7+) and innate lymphoid-(ILC) like cells (Cd3e−

Cd4−Cd8a−Nkg7−). CD4+ T, CD8+ T and NK cell numbers
increased with infection time and peaked at 5 dpi (Fig. 7b). SARS-
CoV-2 infection initiated type 1 immunity and cytotoxic effector
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Fig. 6 Endothelial cells show subtype and time specific activation of cytokines. a Uniform manifold approximation and projection (UMAP) plot of lung

endothelial cell subpopulations. Clusters defined by Louvain clustering, n= 3 per time point. Colors representing individual cell types are depicted in legend.
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top 10 most changing genes as ranked by adjusted (adj.) p-value. Adjusted (adj.) p-values were calculated by DEseq2 using Benjamini–Hochberg
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mechanisms in lungs (Fig. 7c, Supplementary Fig. 9b). The
fraction of NK cells expressing interferon gamma (Ifng) increased
significantly at 2 dpi and peaked at 3 dpi (Fig. 7d, left). In con-
trast, Ifng+ effector T cells (Ifng+ CD4+, and CD8+ T cells)
peaked at 5 dpi (Fig. 7d, right). By 14 dpi, both Ifng+ NK and T
cell responses had declined to naive levels (Fig. 7d).

NK cells and CD8+ T cells expressed high levels of cytotoxic
genes, but upregulation of Gzma was highest in CD4+ T cells
(Fig. 7c, Supplementary Fig. 9b). Cytotoxic effector function of
T cells was evident, 60% of all CD4+ T and 70% of all CD8+

T cells expressed Gzma at 5 dpi (Fig. 7e). Furthermore, we
detected cells carrying both a specific cell type marker (for AT1/
AT2/endothelial cells, or monocytic macrophages), and

simultaneously the cytotoxic cell marker Gzma. These possible
doublets were absent in naive animals and appeared particularly
and reproducibly for endothelial and AT1 cells at the peak of
effector T cell recruitment 5 dpi (Fig. 7f), indicating possibly
either killer-target interaction or T cell transmigration. The latter
notion was supported by the strong immigration of lymphocytes
in the endothelium observed in histopathology (Fig. 7g).

Induction of high-affinity neutralizing antibodies is the
primary aim of most vaccination strategies against viruses. In
the here described primary infection with SARS-CoV-2, neu-
tralizing antibodies were evident by 5 dpi and declined mildly
until 14 dpi (Fig. 7h). Matching course of µ heavy chain protein
levels measured by proteomics (Ighm, Fig. 2b). Peak of T cells and
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neutralizing IgM antibodies corresponded with vanishing virus,
indicating successful adaptive effector programs.

Discussion
Detailed understanding of COVID-19 pathophysiology is
imperative for the development of therapies to reduce numbers of
patients developing lung injury. Notably, recent patient-centered
research on COVID-19 was compromised by three blind spots: (i)
biomaterial is usually sampled after hospital admission, therefore
the early phase of infection and host response has rarely been
investigated. (ii) the BAL procedure to access the alveolar com-
partment is too dangerous for non-intubated patients with
COVID-19 pneumonia, so that alveolar host responses can hardly
be investigated in mild and moderate COVID-19. (iii) Lung tissue
can exclusively be harvested after death in COVID-19 patients,
precluding from investigations of non-myeloid alveolar or
endothelial host responses in early disease, and enabling for
analysis of later disease stadium only in case of fatal outcome.
Thus, we performed in-depth analysis of the full course of
moderate, self-limited disease that develops in SARS-CoV-2
infected Syrian hamsters. In this model, lungs are fully accessible,
providing for detailed analysis of myeloid and non-myeloid
compartments including vascular endothelium. Yet, while the
immune response is qualitatively similar between human and
hamsters in central aspects, the viral dose applied in experimental
infections is likely to be higher than in natural aerosol infection.
Consequently, infection kinetics, viral decay rate, and immune
responses are accelerated38,39. In line, we observed the pulmonary
peak of viral load, inflammation, and cellular response between 3
and 5 dpi, whereas at 14 dpi the infection was resolved and
mechanisms of tissue regeneration were induced. This course of
disease confirms observations in other animal models including
non-human primates.

Syrian hamsters developed rapid, but moderate, neutrophil
recruitment predominantly to bronchi and lung parenchyma,
which resolved by 3 dpi. We also observed little of the typical
neutrophil-dependent alveolar damage. Although single-cell
RNA-sequencing analysis likely underestimates the numbers of
this fragile cell type40, these findings suggest a minor role for
neutrophils. Nonetheless, the neutrophil response is noteworthy,
as many other respiratory viruses, e.g., Influenza A Virus and
MERS Virus, initiate little or no neutrophil trafficking in
rodents41. In fact, blood N/L ratios in COVID-19 patients were
reported as markers for disease severity, and neutrophil extra-
cellular traps, as well as reactive oxygen species, are suspected to
contribute to adverse vascular events42,43. Confirming our clas-
sification of hamsters as a moderate disease model, N/L ratios

were only mildly elevated at 2 dpi, and gene signatures of dys-
functional immunosuppressive neutrophils were observed in
severe COVID-19 patients44, but not in Syrian hamsters.

In line with COVID-19 patient reports, alveolar macrophage
numbers did not decrease in moderate disease settings25, and
monocytic macrophages were the largest cell population recruited
to the lungs, with notable recruitment from 2 dpi on, and peak
presence at 5 dpi27,44. Monocyte trafficking to lungs was initiated
by local expression of CCR2 ligands, and endogenous chemokine
expression served as a feedforward loop. Consequently, macro-
phages were the predominant inflammatory cell type in alveolar
spaces as identified by histopathology. Moreover, macrophages
presented the earliest and strongest transcriptional response to
the infection, primarily responding to intracellular viral RNA
with pro-inflammatory cytokines such as CXCL10, CCL2, and
others. Notably, the monocytic macrophage pro-inflammatory
expression profile was rather productive than dysregulated as it
tended more toward effector T cell recruiting chemokines tar-
geting CXCR3 and CCR5, and less toward pro-inflammatory
cytokine expression. This matches observations on moderate
versus severe courses of COVID-19 in patients and stands in
contrast to findings in animal models with severe disease pro-
gression such as K18-hACE2 mice16,25. It seems unlikely that
intracellular viral RNA found in macrophages is the result of
active infection of these cells, as they have been demonstrated to
be largely resistant to infection ex vivo45. scRNA-Seq data
obtained from African green monkeys infected with SARS-CoV-2
likewise did not support virus replication in macrophages46.
Instead, virus uptake may derive from complement receptor and
Fc receptor-mediated phagocytosis of complement and antibody-
labeled virus, as suggested by neutralizing antibody titers at 5
dpi47. Further, we observed early increase in complement factors
and IgM µ chain by proteomics analysis in lung tissue. Taken
together, the Syrian hamster model endorses the hypothesis that
monocyte-derived macrophages are a primary source of the
strong pro-inflammatory response observed in COVID-19, yet
highlights that their presence not necessarily results in fatal
outcome48.

Presumably, in the lungs SARS-CoV-2 primarily infects AT2
cells23. Of note, only few of them were infected and they reacted
with only marginal transcriptional responses, which is probably
explained by the recent observation in human lungs that less than
10% of AT2 cells express the crucial entry receptor ACE245.
Moreover, coronaviruses are endowed with a multitude of
mechanisms that block immunological cascades downstream of
interferon signaling and cytoplasmic RNA sensing49. Only a small
subset of in vitro highly infected cells express pro-inflammatory

Fig. 7 Syrian hamsters exhibit a strong cytotoxic T/NK cell response at day 5 post infection. a Uniform manifold approximation and projection (UMAP)

plot of lung T/NK cell subclustering indicating cell subpopulations. Clusters defined by Louvain clustering, n= 3 per time point. Colors representing

individual cell types are depicted in legend. b Count of lung T cell subpopulations and NK cells per lung lobe. c Dotplot of master regulators of T cell

differentiation and effector genes. Coloration and point size indicate log2 fold change and adjusted (adj.) p-value, respectively. Adjusted (adj.) p-values

were calculated by DEseq2 using Benjamini–Hochberg corrections of two-sided Wald test p-values. Data from n= 3 animals per time point. d Fraction of

Ifng+ cells in CD4+ T, CD8+ T and NK cells at 2, 3, 5, and 14 days post infection (dpi) and naive. e Fraction of Gzma+ cells in CD8+ T cells at 2, 3, 5, and 14

dpi and naive. f Fraction of AT2 cells, monocytic macrophages, endothelial cells, and AT1 cells containing both at least one cell type marker gene (AT2:

Sftpa1, Sftpc—monocytic macrophages: Fcn1, Saa3—endothelial cells: Cldn5, Plvap—AT1: Ager, Aqp5) together with Gzma. Data display means ± SD, n= 3

animals per time point. g Histopathology of blood vessels at different time points, scale bar for all time points: 50 µm. Micrographs represent n= 6 animals

per time point pi. h Serum neutralization titers of SARS-CoV-2 infected hamsters at 5 and 14 dpi. Serum titers of naive, 2 and 3 dpi did not neutralize up to

detection limit 1:4 (dotted line). Data display n= 3 animals with mean per time point. b, d, e Bar plots are plotted per cell type in the order: naive, 2 dpi, 3

dpi, 5 dpi, and 14 dpi. (colors fade from dark to light). Data display means ± SD. n= 3 animals per time point. Ordinary one-way ANOVA, Šídák’s multiple

comparisons test versus corresponding 0 dpi (naive). P-values: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001. AT1 and AT2: alveolar epithelial cell type

1 and 2, NK: natural killer cells, ILC: Innate lymphoid cells. d0: day 0= naive, d14: 14 dpi. Exact p-values in order of appearance: b CD4: ∗∗p= 0.0036; ∗p=

0.0261; NK: **p= 0.0046 c IfnγNK: ∗∗∗∗p < 0.0001; ∗∗∗p= 0.0003; ∗∗p= 0.0024; IfnγCD4: ∗∗∗p= 0.0002; IfnγCD8: ∗∗∗∗p < 0.0001; GzmaCD4: ∗∗∗∗p <

0.0001; GzmaCD8: ∗∗∗∗p < 0.0001.
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genes50,51. Thus, despite being the primary target for viral repli-
cation, epithelial cells were not accountable for early systemic
propagation of anti-viral or pro-inflammatory signatures.

Endothelial barrier dysfunction, resulting from endothelial cell
stress or death, evokes lung edema and thus contributes to lung
failure in severe COVID-1934,52–54. However, mechanisms driv-
ing endothelial barrier failure in COVID-19 are not well under-
stood, as the endothelial compartment is not accessible in living
humans suffering from COVID-19. Autopsy studies reported
presence of viral particles in human endothelial cells34, but
infection of endothelial cells by SARS-CoV has been
questioned55. In SARS-CoV-2 infected non-human primates viral
infection of endothelial cells was not observed46. Here, we found
that endothelial cells showed a rapid and strong induction of anti-
viral response genes, but considering the absence of histopatho-
logical evidence for intraendothelial virus, we speculate that virus-
positive endothelial cells found by scRNA-Seq were not infected,
but were rather an artifact originating from contact with ambient
virus or its RNA2,9. Concomitant cellular and molecular inflam-
matory responses in blood suggested that systemic responses were
additive to direct, local endothelial cell activation. Notably, this
observation is in line with our recent findings that virus-free
plasma of COVID-19 patients induced significant endothelial gap
formation and loss of junctional VE-cadherin in human endo-
thelial monolayers and lung tissue33. Endothelialitis, as observed
in autopsies of deceased COVID-19 patients, was also found in
infected hamsters2,9 and corresponded to their transcriptional
pro-inflammatory chemokine responses34. Histopathological
evidence of pronounced lymphocyte trafficking via capillary
endothelial cells also correlated with endothelial Ccl8 expression.

Lymphocyte recruitment in response to CXCR3 and CCR5
targeting chemokines resulted in the presence of CD4+ and CD8+

T cells with cytotoxic expression pattern in lungs starting at 3 dpi.
Most importantly, viral clearance coincided with appearance of
effector T and NK cells stressing their relevance for resolution of
SARS-CoV-2 infection and highlighting their importance in vac-
cination strategies. Studies from other coronaviruses suggest that
type 1 immunity is the primary mechanism controlling the
infection56,57. In severe COVID-19, blood CD4+ T, CD8+ T, and
NK cells expressed markers of exhaustion58, a finding not mir-
rored in moderately sick Syrian hamsters. In contrast, T and NK
responses were effective and self-resolving. This matches obser-
vations of broad T cell antigen-specificity in the majority of
resolved cases independent of mild or severe infection59. In our
study, we found SARS-CoV-2 neutralizing antibodies at 5 dpi,
likely of IgM type, as early appearance and corresponding elevated
Ighm protein levels suggested. Seroconversion in COVID-19
patients occurred 7–14 days post diagnosis with IgG titers
appearing at later time points60,61.

At 14 dpi, infectious virus was no longer detected in hamster
lungs, and most transcriptional activity had returned to basal
levels. Upregulation of mitotic markers in AT2 cells may reflect
regeneration mechanisms after clearing the infection.

The pulmonary capillary microvascular niche in lungs supports
alveolar epithelial repair mechanisms following injury, e.g., by
secretion of MMP14, VEGF, thrombospondin-1 (THBS1)62.
Analysis of pulmonary endothelial cell subclusters revealed that
bronchial, pulmonary capillary and pulmonary vein endothelial
cells showed increased expression of Thbs1 at 5, but not 14 dpi.
Similarly, no increase in Mmp14 or Vegf expression was detected
at 14 dpi. In murine influenza characterized by lung injury and
pronounced alveolar damage, a pulmonary population of pro-
liferating endothelial cells is present at 14 dpi63 that was absent in
SARS-CoV-2 infected Syrian hamsters, indicating that
the alveolar endothelial and epithelial damage remained moderate
in our model. Most notably, lung endothelial cells showed an

anti-fibrotic gene signature at 14 dpi (Nr4a164, Akap1265, Nrarp
(downstream of Notch-signaling))66, indicating regeneration
rather than repair of lung tissue, thereby matching histopathology
findings.

Taken together, we provide evidence that Syrian hamsters
recapitulate the course of moderate human SARS-CoV-2 infec-
tion. Hamsters displayed nearly prototypic antiviral immune
responses starting with rapid, yet self-restricted neutrophilic
response, along with a fast and strong monocytic innate immune
response following activation after virus uptake, augmenting local
anti-viral responses and pro-inflammatory CC chemokine pro-
duction recruiting a potent type 1 T cell response that probably
contributed to elimination of pulmonary residing virus via
cytotoxic effector mechanisms. Neutralizing antibodies of IgM
type aided in preventing viral spread and fostered cellular virus
uptake. Viral infection and inflammatory response in and by lung
epithelium is not predominant. Upon successful elimination of
virus, alveolar epithelial repair mechanisms started, along with
endothelial suppression of fibrotic programs, thus enabling pul-
monary regeneration in convalesced hamsters.

Hence, Syrian hamsters represent a highly suitable model to
study the pathophysiology of moderate COVID-19, virus-directed
and immunomodulatory therapies, and potentially vaccines.
SARS-CoV-2 infected Syrian hamsters mount immune responses
consistent with COVID-19 patients and enable for detailed
investigations on the kinetics and role of specific cell populations,
highlighting the dominant contribution of monocytic macro-
phages, endothelial cells, and T cells to inflammatory responses
and resolution of SARS-CoV-2 infection.

Although we present several lines of evidence suggesting a
comparable course of disease in Syrian hamsters and moderate
COVID-19 in humans, the extent to which results from this
animal model can be translated to human patients is limited. This
limitation particularly arises from the unavailability of human
samples from time points post infection, yet pre symptom onset,
as well as lung tissue samples from living human subjects. Due to
the lack of an available cell atlas for our model system, we used a
combination of marker expression and label transfer from
available Mus musculus and human datasets for manual curation
of lung and blood cell atlases for Syrian hamster. Owing to the
limited amount of molecular tools and reagents available for
hamsters, such as antibodies, it is not possible to confirm key
findings from our transcriptomic analysis e.g., by immunostain-
ing of tissue sections or by ELISAs for cytokines in the blood.

Methods
Ethics statement and animal husbandry. All experiments involving animals were
approved by institutional and governmental authorities (Freie Universität Berlin
and LaGeSo Landesamt für Gesundheit und Soziales Berlin, Germany, permit
number G 0086/20). Female and male Syrian hamsters (Mesocricetus auratus;
breed RjHan:AURA, Janvier Labs, France) were housed in biosafety level 3 (BSL-3)
conditions in individually ventilated cages with enrichment. Food and water was
provided ad libidum. Daily cage temperature and relative humidity measurements
ranged from 22–24 °C and 40–55%, respectively. Animals were acclimatized for a
minimum of 7 days prior to infection.

Virus stocks. SARS-CoV-2 isolate (BetaCoV/Germany/BavPat1/2020)67 was
kindly provided by Daniela Niemeyer and Christian Drosten, Charité Berlin,
Germany. Virus stocks were propagated under BSL-3 conditions in Vero E6 cells
(ATCC CRL-1586). All hamsters described here received virus from the
same batch.

Animal infection. At 10–12 weeks of age hamsters were intranasally infected with
1 × 105 pfu SARS-CoV-2 under anesthesia (0.15 mg/kg medetomidine, 2 mg/kg
midazolam and 2.5 mg/kg butorphanol) by applying 60 µL MEM with 1 × 105 pfu
SARS-CoV-2 or plain cell culture medium for mock-infected animals. Anesthesia
was antagonized with 0.15 mg/kg atipamezole immediately following intranasal
application2. Clinical signs and weight were monitored daily. Animals with >15%
body weight loss over 48 h were euthanized in accordance with animal-use
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protocols. Euthanasia was performed by cervical dislocation under the anesthesia
described above2. 1 mL peripheral blood was collected in EDTA-coated syringes.
The left lung lobe was collected for histopathology, the right caudal lobe for single-
cell analysis, the right cranial lobe for virological assessments and the right medial
for bulk RNA as well as proteomics analysis. Experimental design and analysis are
summarized in the Supplementary material (Supplementary Fig. 1a). Numbers of
animals (n) analyzed per read-out and sample type are depicted in Supplementary
Fig. 1b. Data for clinical, virological, and transcriptome analysis were derived from
two independent experiments (E1 and E2), per experiment n= 12 hamsters were
infected as described above, per experiment 3 animals from these groups were
sacrificed at 2, 3, 5, and 14 dpi to collect samples. For transcriptome analysis (n= 3
per time-point) as well as n= 3 naive hamsters were used. For the presentation of
clinical and virological data, subjects from E1 and E2 were combined (n= 6 per
time point). For proteome analysis, samples from the same hamsters that were used
for transcriptome analysis were employed, additionally, samples from 1 to 4
hamsters and time-point controls (mock-infected, n= 3–6 per time point) from an
independent third experiment (E3) where animals underwent the exact same
infection and treatment were used for proteome analysis to achieve a larger
sample size.

Viral burden assessment. Virus titers were determined by serial dilutions of lung
homogenates (50 mg) plated on Vero E6 cells, cells were fixed in 10% formalin,
stained with crystal violet (0.75% aqueous solution) and plaques were counted by
eye in appropriate dilutions2.

For RNA extractions and quantitative RT-PCR, RNA from oropharyngeal
swabs, lung tissue, and whole blood was isolated with the innuPREP Virus DNA/
RNA Kit (Analytic Jena) according to the manufacturer’s instructions. One-step
RT-qPCR reaction with the NEB Luna Universal Probe One-Step RT-qPCR (New
England Biolabs) and the 2019-nCoV RT-qPCR primers and probe E_Sarbeco68

quantified viral RNA on an Applied Biosystems OneStepPlus qPCR cycler (Thermo
Fisher).2. Viral RNA copies were calculated per 1 × 105 hamster Rpl18 transcripts.
Primers and probes are listed in the Supplementary Information (Supplementary
Table 1).

Measurement of neutralizing antibodies titer. Serum neutralization tests were
performed by two fold serial dilutions (1:4 to 1:512) of complement inactivated
(56 °C, 2 h) hamster serum plated on sub-confluent monolayers of Vero E6 cells.
50 pfu SARS-CoV-2 were added per well and incubated for 72 h at 37 °C, fixed with
10% formalin for 24 h and stained with crystal violet (0.75% aqueous solution).
Serum neutralization was considered effective in wells that did not show any
cytopathic effect, the highest effective dilution was counted.

Histopathology and in situ-hybridization of SARS-CoV-2 RNA. For histo-
pathology and in situ-hybridization (ISH), lungs were processed as described2. Left
lung lobes were immersion-fixed in 10% formalin, pH 7.0, for 48 h, embedded in
paraffin, and cut into 2 µm sections. Hematoxylin and eosin (HE) staining and in
situ-hybridizations were performed as described7 using the ViewRNA™ ISH Tissue
Assay Kit (Invitrogen) following the manufacturer’s instructions with minor
adjustments. SARS-CoV-2 RNA was localized with probes detecting N gene
sequences (NCBI database NC_045512.2, nucleotides 28,274–9533, assay ID:
VPNKRHM). An irrelevant probe for detection of pneumolysin was used to
control for sequence-specific binding4. Amplifier and label probe hybridizations
were performed following the manufacturer’s instructions using fast red as chro-
mogen with hemalaun counterstain. Tissues were histopathologically evaluated by
board-certified veterinary pathologists (KD, ADG) in a blinded fashion following
standardized recommendations9, including pneumonia-specific scoring
parameters41 as described for SARS-CoV-2 infection in hamsters2.

Single cell isolation from whole blood and hamster lungs. Protocols were
adapted for BSL-3 facility regulations. For isolation of cells from whole blood, 250
µL blood were lysed in red blood cell lysis buffer (BioLegend), washed and cen-
trifuged according to the manufacturer’s instructions. Resulting RBC-free pellets
were resuspended in low-BSA buffer (1× PBS, 0.04% BSA), filtered with 40 µm
FloMi filters (Merck) and counted by hemocytometer in trypan blue.

For isolation of single cells caudal lung lobe was removed and placed in storage
medium (1× PBS, 0.5% BSA) until further processing. Storage and isolation media
contained 2 µg/mL ActinomycinD. Tissues and cells were centrifuged at 350 × g for
6 min at 4 °C. Lung lobes were mechanically disassociated with tweezers for 2 min
in enzymatic digestion medium containing 3.4 mg/mL Collagenase Cls II (Merck)
and 1 mg/mL DNase I (PanReac AppliChem) in 2 mL Dispase medium (Corning)
per lung lobe followed by 30 min incubation at 37 °C and 5% CO2. After
dissociation of digested lung tissue, cell suspensions were pressed through 70 µm
cell strainers with plungers. Red blood cells were lysed (BioLegend), washed with
an excess of PBS/BSA and resuspended in low-BSA buffer (1× PBS, 0.04% BSA),
and filtered with 40 µm low-volume FloMi filters (Merck). Cells were counted in
trypan blue.

Single cell RNA sequencing. Barcoding, cDNA Library generation, and sequen-
cing; filtered cells were adjusted to a final concentration of ~1000 cells/μL in

1× PBS with 0.04% BSA and subjected to partitioning into Gel-Beads-in-Emulsions
(GEMs) aiming to recover 6000 single cells per hamster and organ by following the
instructions for the Chromium Next GEM Single Cell 3′ GEM, Library & Gel Bead
Kit v3.1 (10× Genomics). Resulting single-cell libraries were quantified using Qubit
(ThermoFisher) and quality-controlled using the Bioanalyzer system (Agilent).
Sequencing was performed on a Novaseq 6000 device (Illumina), with SP or S1
flow cells (read1: 28 nucleotides, read2: 64 nucleotides).

Bulk RNA sequencing. For lung RNA Bulk Sequencing the medial lung lobe was
removed and stored in RNA Later Solution for a maximum of 24 h at 4 °C
(ThermoFisher). Lung tissue was homogenized using the TissueLyser II system
(Qiagen) and homogenates stored in Trizol reagent (Zymo research). For WBC
RNA Bulk Sequencing, white blood cells were isolated as described for scSeq fol-
lowed by lysis in Trizol reagent. RNA extractions were performed according to the
Direct-zol RNA Miniprep protocol (Zymoresearch). Bulk RNA sequencing
libraries constructed using the Nebnext Ultra II Directional RNA Library Prep Kit
(New England Biolabs), and sequenced on a Nextseq 500 device with read
length 76.

Proteomics sample preprocessing. Lung tissue and serum were added to lysis
and inactivation buffer (RIPA) and boiled for 10 min at 95 °C before storage at
−80 °C. Samples were thawed on ice, volume was adjusted to 50 µl with water and
25 µl of 50 U benzonase, 50 mM ABC, 2 mM MgCl2 added before incubation for
30 min at 37 °C. Lysates were processed on a Biomek i7 workstation using the SP3
protocol as previously described with single-step reduction and alkylation69.
Samples were used for LC-MS/MS analysis without additional conditioning or
clean-up.

Liquid chromatography−mass spectrometry analysis (LC−MS). High-
throughput analysis of serum and lung tissue; Peptide separation has been
accomplished in a 5-min water to acetonitrile gradient on an Agilent Infinity II
HPLC coupled to a Sciex Triple TOF 6600 mass spectrometer (IonDrive TurboV
Source) operating in ScanningSWATH mode with minor changes in the liquid
chromatography method70. As follows: 5 µg of peptides were loaded and resolved
in a linear gradient from 1 to 35% buffer B in 4.5 min before increasing to 40% B in
0.5 min and washing for 0.2 min with 80% buffer B before equilibration for 2.2 min
with initial conditions (buffer A: 0.1% formic acid, buffer B: 100% ACN, 0.1%
formic acid). For library generation by gas phase fractionation (GPF), 6 single 1 µg
injections of pooled serum samples were analyzed by online nanoflow liquid
chromatography tandem mass spectrometry on an Ultimate3000 Thermo Scientific
Q Exactive Plus Orbitrap, LC-MS instrument (Thermo Fisher Scientific, Waltham,
USA). The peptides were concentrated for 3 min on a trap column (PepMap C18,
5 mm × 300 μm× 5 μm, 100Ǻ, Thermo Fisher Scientific) with a buffer containing
2:98 (v/v) acetonitrile/water containing 0.1% (v/v) trifluoroacetic acid at a flow rate
of 20 μl/min. They were separated by a 250 mm LC column (Acclaim PepMap C18,
2 μm; 100 Å; 75 µm, Thermo Fisher Scientific). The mobile phase (A) was 0.1% (v/v)
formic acid in water, and (B) 80% acetonitrile in 0.1% (v/v) formic acid. In 155min
total acquisition time gradient B increased in 90min to 25%, and in 30 min to 40%
with a flow rate of 300 nl/min. The MS instrument was operated in the data
independent mode as followed: the Orbitrap worked in centroid mode with 4m/z
DIA spectra (4m/z precursor isolation windows at 17,500 resolution, AGC target
1e6, maximum inject time 60ms, 27 NCE). An overlapping window pattern from
narrow mass ranges using window placements (i.e., 395–505, 495–605, 595–705,
695–805, 795–805, 895–905m/z) was set. Two precursor spectra, a wide spectrum
(395–505m/z at 35,000 resolution) and a narrow spectrum matching the range
using an AGC target of 1e6 and a maximum inject time of 60 ms were interspersed
every 25 MS/MS spectra at resolution of 17,500. Typical mass spectrometric con-
ditions were as follows: spray voltage, 2.1 kV; no sheath and auxiliary gas flow;
heated capillary temperature: 275 °C; normalized HCD collision energy 27%. As
lock mass acted the background ion m/z 445.1200.

Computational proteomics. For Mesocricetus auratus serum samples, a project
specific library was generated by gas-phase fractionation, whereas the lung tissue
library was constructed using standard settings in library free mode with DIA-NN
(version 1.7.12)71. Proteins were annotated either using a protein database gen-
erated by translation of the Ensembl 99 annotation of the M. auratus genome
sequence, or the Uniprot reference proteome (UP000189706). The latter was not
used for statistical or functional analysis but is available through PRIDE
(PXD025164). The libraries were automatically refined based on the project dataset
at 0.01 global q-value (using the Generate spectral library option in DIA-NN) as
previously described19. The output was filtered at 0.01 false discovery rate (FDR) at
the peptide level.

Materials proteomics. Hydrophobic Sera-Mag magnetic carboxylate modified
particles (44152105050250 Fisher Scientific), hydrophilic Sera-Mag magnetic car-
boxylate modified particles (24152105050250 Fisher Scientific), Twintec skirted low
bind plates (0030129512 Eppendorf), TCEP (646547 Sigma Aldrich), SDS
(A7249.1000 Applichem), CAA (22788 Merck/Millipore), ammonium bicarbonat
(/871.2 Roth), 100% ACN (955-212 Fisher Scientific), 80% ethanol (1.00983.2500
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Millipore), 230 µl Biomek Tips (B85903 Beckmann Coulter), Eppendorf 500 µl
deep well plates (30501101 Eppendorf), Waters Acquity UPLC 700 µl plates
(186005837 Waters GmbH) Sequencing grade modified Trypsin (V5117 Promega),
Pierce Quantitative Fluorometric Peptide Assay (number 23290), formic acid
(85178 Thermo Scientific), water (1.15333.2500 Merck), protease inhibitor cocktail
complete mini (Roche 04693124001), benzonase nuclease (Sigma Aldrich E1014-
25KU).

Proteomics data pre-processing. Four serum samples showed low quality and
were removed. Peptides with excessive missing values (>30% per group) were
excluded from analysis. Batch correction was applied. The peptide matrix was
filtered using factor Proteotypic keeping only peptides belonging to one protein
group. To obtain a quantitative protein data matrix, the log2-intensities of peptides
belonging to one protein group were summarised by maxLFQ method72 into
protein log intensity.

Proteomics statistical analysis. Statistical analysis of proteomics data was carried
out using internally developed R scripts. Linear modeling was based on the R
package LIMMA73. Following model was applied to the sets of lung/serum samples
(log(p) is log2 transformed expression of a protein): log(p) ~ 0+ Class(Day)+
Gender

Here, categorical factor Class(Day) has 8 levels:
Infected(D02), Infected(D03), Infected(D05), Infected(D14),
Control(D02), Control(D03), Control(D05), Control(D14)
Categorical factor Gender has two levels: male, female.
The following contrasts were evaluated to trace time dependence of response to

viral infection (Note that Contrast5 addresses the average difference between
infected and recovered animals and Contrast6 addresses the difference between
infected and control animals on average):

Contrast1: Infected(D02) –Control(D02)
Contrast2: Infected(D03) –Control(D03)
Contrast3: Infected(D05) –Control(D05)
Contrast4: Infected(D14) –Control(D14)
Contrast5: [Infected(D02)+ Infected(D03)+ Infected(D05)]/3 [Control(D02)

+ Control(D03)+ Control(D05)]/3− [Infected(D14)− Control(D14)]
Contrast6: [Infected(D02)+ Infected(D03)+ Infected(D05)]/3− [Control

(D02)+ Control(D03)+ Control(D05)]/3
In serum set of samples there was only one control group at 3 dpi and it was

used to build contrasts replacing control groups at other dpi’s.
For finding regulated features following criteria were applied:
Significance level alpha was set to guarantee false discovery rate below 10% at

the response maximum (5 dpi) in both sample types. We found that alpha= 0.01
was delivering regulated proteins with Benjamini–Hochberg FDR below 8% in lung
tissue and below 6% in serum and used it for feature selection.

The log fold change criterion was applied to guarantee that the measured signal
is above the average noise level. As such we have taken mean residual standard
deviation of linear model: log2(T)=mean residual SD of linear modeling (T= 1.45
in lung and T= 1.37 in serum).

Functional analysis of proteomics data. Functional analysis was carried out using
gprofiler2 R package74. For selecting the most (de)regulated GO terms we applied
filter: 2≤ term size ≤200. Redundancy of terms was then reduced using REVIGO75.
Default REVIGO settings were applied. Analyses for each Contrast 1–6 and then all
in parallel were carried out with Benjamini–Hochberg FDR threshold 0.2.
Organism for search was specified as mauratus—Mesocricetus auratus (Syrian
hamster). Statistical domain scope was set to custom, list of all identified proteins
was provided as background.

Statistical analyses of clinical hamster data. GraphPad Prism 9.1.2 software was
used for statistical analysis of clinical data. The statistical details of all analyzed
experiments are given in the respective figure legends.

Annotation of the M. auratus genome. The M. auratus genome (MesAur1.0)
sequence and annotation (gtf file, version 99) was downloaded from Ensembl. We
noticed that 3′-UTRs in this annotation were frequently too short to capture all
transcriptome reads and particularly the 3′ end reads in single-cell RNA-sequen-
cing, so we extended all 3′-UTRs for coding genes by 1000 bp. The Ifit2 gene was
extended by 2000 bp. For key genes analyzed in this manuscript, we verified that
this extension did not lead to overlaps with downstream genes. The details of this
approach are depicted in the supplementary note under Elongation of 3′-UTRs in
the Ensembl 99 MesAur 1.0 annotation.

The Ensemble annotation was extended by mapping ENSEMBL gene ids
without annotated gene names to entrez identifiers and to the homolog associated
gene names using biomaRt76. Wherever existing, we extracted the gene name from
the NCBI’s All_Mammalia.gene_info (download from ftp://ftp.ncbi.nlm.nih.gov/
gene/DATA/GENE_INFO/Mammalia/) table, capturing 1067 gene names.
Otherwise, we used available homolog associated gene names yielding 1193
additional entries.

Analysis of bulk RNA-sequencing data. Reads were aligned to the genome using
hisat277 and quantified using quasR78. We then performed gene set enrichment
analysis with tmod79 and Hallmark, Reactome and GO BP gene sets from MSigDB
v7.080, ranking genes by the product of the sign of the log2 fold change and log10
adjusted p-value and converting hamster gene names to human using the biomaRt
mouse-to-human mapping.

Analysis of single-cell RNA-sequencing data. Data analysis was done in R81,
using Seurat82 and packages from tidyverse83, and glmer84. All used code with
annotation is available through Github at https://github.com/Berlin-Hamster-
Single-Cell-Consortium.

Raw single-cell sequencing data were processed using CellRanger 3.1.0 (10×
Genomics) with standard parameters, based on a combined MesAur1.0/SARS-
CoV-2 (GenBank entry MN908947) reference. Raw feature barcode matrices from
the CellRanger output were read into Seurat using the Read10X function and a
Seurat object created using the CreateSeuratObject function. Cells with more than
7% mitochondrial reads, based on the percentage feature expression of the
mitochondrial genes Cox1, Cytb, Nd1, Nd2, Nd4, Nd5, Nd6 were excluded (reads
from other mitochondrial genes were not detected in the data). Furthermore, cells
with less than 1000 (lung) or 500 (blood) detected genes were also excluded from
downstream analysis. Sample sets (all lung, or all blood, or blood/lung combined
from the individual time points) were then integrated using the SCTransform
workflow, as illustrated on the Seurat website85. Briefly, the Seurat object was split
by the hamster that the data points originated from and separately transformed
using SCTransform to normalise and scale the data. To prevent batch specific/
animal specific effects from obscuring results, these split objects were integrated
using the SelectIntegrationFeatures, PrepSCTIntegration, FindIntegrationAnchors,
and IntegrateData functions in succession. PCA and UMAP dimensional reduction
analyses respectively were performed on the integrated object, using 30 dimensions
for the UMAP as the SCT workflow reportedly shows more robust results with
higher dimensionality. Cells were subjected to Louvain clustering using the
FindNeighbours and FindClusters (with a resolution parameter of 0.8 for lung
samples and 0.5 for the blood samples) functions.

As there are currently no publicly available datasets derived from our model
system that could be used for fully automated cell type assignment, we used a
combination of marker expression and label transfer from available Mus musculus
and human datasets. To annotate clusters in the lung scRNAseq data, we used
Seurat’s TransferData workflow85 and two different reference datasets: Tabula
Muris86 and the Human Lung Cell Atlas87. Integration was performed using
matching gene names between mouse and hamster, with gene names in the human
data converted to mouse using biomaRt. We then used the predicted cell type of the
majority of cells in each cluster as well as cell type marker genes from the literature
and public databases to guide cluster annotation88,89. The following populations
were confirmed: Alveolar macrophages (Siglecf+, Marco+)90, interstitial
macrophages (C1qb+)91, monocytic macrophages (Ccr2+, Ccr5+, Arg1+)92,93,
Treml4+-monocytes (Treml4+)94, neutrophils (S100a8+, Cxcr2+, Camp+)44,95,
myeloid dendritic cells (mDC) (Flt3+, H2-Ab1hi, Irf8lo, Tcf4lo) and plasmacytoid
dendritic cells (pDC) (Flt3+, H2-Ab1hi, Irf8hi, Tcf4hi)86,96–98, T/NK/cells (Cd3e+,
Cd4+ or Cd8a+, Gzma+, Nkg7+)86,95,99–101, B cells (Cd79b+, Ms4a1+)44,102,
alveolar epithelial cells type 1 (Rtkn2+)91, endothelial cells (Pecam1+)90, ciliated
epithelial cells (Foxj1+)102, alveolar epithelial cells type 2 (Lamp3+)102, smooth
muscle cells (Tagln+, Acta2+)91,103, fibroblasts (Dcn+)91 as well as myofibroblasts
(Dcn+, Taglnhi, Acta2hi).

For the analysis of single-cell sequencing data for blood samples, we performed
initial clustering and identified, cluster marker genes using the FindAllMarkers
function. Clusters expressing high levels of erythrocyte marker genes Snca, Fam46c,
and Alas2 were identified as erythrocyte contamination104–106. Cells in these
clusters, as well as a cluster of most likely dead cells, marked by the expression of
mitochondrial genes, were removed and the data was re-integrated using the
workflow described above. Cell type annotations were assigned to the identified
cluster using the follow marker genes: Classical (inflammatory) monocytes (Ccr2+,
Cx3cr1lo, Adgre1+); non-classical (residential) monocytes (Ccr2-, Cx3cr1hi,
Adgre1+)107–109; mature neutrophils (Cxcr2+, S100a8+, Camplo, Retnlo, Ltflo) and
immature neutrophils (Cxcr2+, S100a8+, Camphi, Retnhi, Ltfhi)44,95,110,111; myeloid
dendritic cells (Flt3+, H2-Ab1hi, Irf8lo, Tcf4lo) and plasmacytoid dendritic cells
(Flt3+, H2-Ab1hi, Irf8hi, Tcf4hi)86,96–98; T cells (Cd3e+, Cd4+ or Cd8a+) and
activated T cells (Cd3e+, Cd4+ and/or Cd8a+, Gzma+)86,95,99,101, natural killer
(NK) cells (Cd3e-, Nkg7+)95,100; B cells (Cd79a+, Ms4a1+)44,102,112 and platelets
(Gng11+, Ppbp+)22,113. While cluster 17 showed no expression of Ccr2, the levels of
Adgre1 and Cd14 were considerable and it was considered as comprising classical
monocytes for the purposes of this study114.

Previously published scRNAseq data of bronchoalveolar lavages originating
from COVID-19 patients data from Liao et al.25 was processed using the same
(Seurat) workflow in R. We kept cells with less than 10% mitochondrial reads, less
than 50,000 UMIs and less than 6000 genes and used IntegrateData to combine
different samples. We then again used the Human Lung Cell Atlas reference and
TransferData to annotate clusters.

Differential cell density was calculated as previously described115 by plotting the
log2 ratio of two separate 2D kernel density estimators interpolated on the UMAP
coordinates of each cell.
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Gene ontology and KEGG pathway analysis was performed using the STRING
database at string-db.org116.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw and processed data is available at the NCBI gene expression omnibus, entry
“GSE162208”. The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository117 with the dataset
identifier “PXD025164”. Publicly available datasets that were used in this manuscript can
be found at “GSE145926”25, combined with on sample “GSM3660650”26, as well as “doi:
10.6084/m9.figshare.12436517 [https://figshare.com/articles/dataset/COVID-19_severity_
correlates_with_airway_epithelium-immune_cell_interactions_identified_by_single-
cell_analysis/12436517]”27. Source data are provided with this paper.

Code availability
The code used for data analysis is available at github.com, https://github.com/Berlin-
Hamster-Single-Cell-Consortium and via https://doi.org/10.5281/zenodo.4983546118 the
code is citable. Further Supplementary data is available at http://www.mdc-berlin.de/
singlecell-SARSCoV2.
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