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ABSTRACT

Recent commodity depth cameras have been widely used in
the applications of video games, business, surveillance and
have dramatically changed the way of human-computer in-
teraction. They provide rich multimodal information that
can be used to interpret the human-centric environment.
However, it is still of great challenge to model the tempo-
ral dynamics of the human actions and great potential can
be exploited to further enhance the retrieval accuracy by
adequately modeling the patterns of these actions. To ad-
dress this challenge, we propose a temporal-order preserving
dynamic quantization method to extract the most discrimi-
native patterns of the action sequence. We further present
a multimodal feature fusion method that can be derived in
this dynamic quantization framework to exploit different dis-
criminative capability of features from multiple modalities.
Experiments based on three public human action datasets
show that the proposed technique has achieved state-of-the-
art performance.

Categories and Subject Descriptors

I.2.10 [ARTIFICIAL INTELLIGENCE]: Vision and Scene
Understanding—3D/stereo scene analysis

General Terms

Algorithms

Keywords

Human action recognition, temporal modeling, temporal dy-
namic quantization, multimodal feature fusion
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Recent commodity depth sensors (e.g. Kinect) provide us
high-quality data that was expensive to obtain in the past.
With the access to the multimodal data including RGB,
depth and skeleton stream, the field of human-computer
interaction has been dramatically changed in the last few
years. The natural user interface (NUI) in terms of gesture
recognition and speech recognition has now been applied
in the field of video games, education, business and health
care. Among all these applications, human action recogni-
tion plays a key role and directly determines the quality of
those products and services.

Although intensive research efforts have been made to this
area, human action recognition is still a very challenging
problem due to the complexity of the spatio-temporal pat-
terns of the human actions. Other factors including the noise
of the sensing data and the variations of size and execution
rate of individual human subjects also make the problem
challenging [20].

The temporal modeling is one of the most challenging
problems in human action recognition. There are many
visual words and histogram based methods [6, 16, 21, 19]
which can effectively discriminate human actions composed
of distinct postures. However, the lack of interpretation on
the temporal layout of the actions makes these methods con-
fused by actions of similar postures but in different temporal
order, for example, “sitting down” and “standing up”. Other
methods such as graph model-based methods [7, 3] and mo-
tion template-based methods [8, 20] emphasize on the mod-
eling of the temporal dynamics. But they frequently suffer
from the temporal misalignment due to the temporal trans-
lation and execution rate variation. The temporal pyramid
[14, 10] was proposed to interpret the temporal order of a
video, but their uniform partition of the temporal sequence
cannot handle the variation of execution rate either.

To address the issues of the temporal misalignment and
the execution rate, we formulate the temporal modeling
problem from a new perspective which aims at finding an
optimal quantization of the temporal sequence. We also
give a solution to the optimization problem by proposing
the Temporal-order Preserving Dynamic Quantizing Algo-
rithm. The general framework of the proposed approach is
illustrated in Figure 1. The video sequence is dynamically
partitioned by the temporal quantization and an aggrega-
tion procedure is performed to produce a quantized vector
from each partition. This partition-aggregation process is



Figure 1: The general framework of the proposed

approach.

recursively performed on the sequence of frames in a hierar-
chical way and finally produces a quantized representation
of fixed size for the original video sequence. The above pro-
cess is applied to multimodal features and generates their
own feature-based quantization of the sequence. Supervised
learning is then employed to learn the temporal model of the
actions and predict the label of the new sequence upon the
obtaining of the dynamic quantization vectors. The recog-
nition rate can be further enhanced by leveraging the fusion
of multimodal features in the same quantization frame.

The main contributions of the paper are:

1. We provide a quantization-based perspective for the
problem of temporal modeling of human action se-
quences and propose a novel temporal-order preserving
dynamic quantization method as the solution.

2. We present a multimodal feature fusion approach which
exploits the discriminative capability of features from
different data modalities; and

3. We demonstrate the performance of the proposed ap-
proach by evaluating it on three different human action
datasets. Experimental results show the proposed ap-
proach has achieved state-of-the-art performance.

The remainder of the paper is organized as follows. We
provide a brief review of the related work in Section 2. The
Dynamic Temporal Quantization method is presented in
Section 3. Multimodal feature fusion is discussed in Section
4. Experiments and performance evaluations are presented
in Section 5. Finally, we conclude the paper in Section 6.

2. RELATED WORK
Many of the existing approaches for human action recogni-

tion focus on the spatio-temporal feature and local motions
and do not explicitly model the temporal patterns of the
action sequence. Most of these works are histogram-based.
Space-time interest point (STIP) [4] and its extensions [9]
were introduced to describe the local spatial-temporal fea-
tures. Normally, a bag-of-word representation was then used
to discriminate different types of human actions. Xia and
Aggarwal [15] extended the 3D cuboid [2] and described the
local depth cuboid by measuring the depth cuboid similarity.
In [6], the bag-of-3D-points from the depth maps was sam-
pled and clustered to model the dynamics of human actions.
Similar ideas were proposed in [19], where the histogram of
oriented gradient (HoG) was computed from the depth mo-
tion maps to classify human actions. Oreifej and Liu [10]
proposed the 4D normals from the surface of the 3D point
cloud and introduced the histogram of oriented 4D normals
(HON4D) to achieve higher discriminative capability.

With the success of skeleton joints estimation from the
depth images [11], joint-based features [12, 16, 21] are widely
exploited in the human action recognition. Joint features
were further quantized into code words and histogram of 3D
joints (HOJ3D) [16] and histogram of visual words [21] were
employed to describe the action sequences. The above meth-
ods all adopt the histogram-based representations of fea-
tures. Although the distribution of the spatial-temporal fea-
ture has good discriminative capability in its feature space, it
doesn’t preserve the temporal layout of the individual prim-
itive postures of the action. The missing of a holistic repre-
sentation in the temporal dimension may lead to the poor
performance in actions with similar postures but different
temporal order. Different from the above histogram-based
approaches, there are many methods focusing on the tem-
poral order of the sequence and model the temporal dynam-
ics in a holistic way. Motion template-based approaches [8,
20] introduced another way of modeling the temporal char-
acteristics of human actions. In these methods, a number
of motion templates indicating different action classes were
trained. Dynamic Time Warping (DTW) was employed to
warp the sequences of variant length and execution rate.
The labels of the unknown action sequences were then de-
termined by measuring the similarity between the unknown
sequences and the motion templates.

Temporal Pyramid [14, 10] was developed to capture the
temporal structure of the sequence by uniformly subdivid-
ing the sequence into partitions. Spatio-temporal feature
descriptors were then applied to each partition. Since the
uniform partition along the temporal axis is employed, the
temporal pyramid is less flexible to handle execution rate
variation. Adaptive temporal pyramid [18] was proposed to
overcome the above disadvantage by subdividing the tempo-
ral sequence according to the motion energy. A Super Nor-
mal Vector is generated from the space-time partition and
served as the comprehensive representation of the sequence.
However, this method rely on sophisticated features such as
3D surface normals and polynormals which are inapplicable
to more general problems.

Vemulapalli [13] proposed a body-part representation of
the skeleton and modeled the geometric transformation be-
tween different body parts in the 3D space. The temporal
dynamics in terms of the 3D transformation were captured
and projected as a curved manifold in the Lie group. Clas-



sifications on the curves eventually determined the labels of
the action.

Compared with the histogram-based methods, holistic tem-
poral modeling methods achieved a comprehensive represen-
tation of the temporal dynamics and preserved the temporal
order of the sequence.

3. TEMPORAL-ORDER PRESERVING DY-

NAMIC QUANTIZATION
The modeling of the temporal dynamics of action sequences

is one of the most challenging problems in human action
recognition. Many temporal modeling methods [8, 20, 14]
suffer from the temporal misalignment problem due to the
variations in the execution rate. A more sophisticated mod-
eling method which considers the dynamics quantization of
the sequence is desired.

3.1 Dynamic Temporal Quantization
In order to address the misalignment caused by the vari-

ations of the execution rate, the action sequences must be
dynamically quantized. Ideally, the quantization needs to
be in accordance with the transition between sub-actions
of the sequences. Two requirements must be satisfied to
achieve such quantization, 1) frames with close human pos-
tures are clustered together, 2) the temporal order of the
sequence must be preserved.

The problem can then be formulated as follows. De-
note S = {s1, s2, · · · , sn} as an action sequence with n

frames. Each frame si in the sequence is represented by
a k-dimensional feature vector xi = (xi1, xi2, · · · , xik). The
length n of each sequence can vary across different videos,
so we wish to dynamically quantize each video into a new
sequence V = {v1,v2, · · · ,vm} of fixed size m. Each ele-
ment of feature vector vj in this new sequence represents
an unknown hidden stage of a category of human action,
whose temporal order is preserved. Mathematically, we use
ai ∈ {1, 2, · · · ,m} to denote a frame si in the original se-
quence S is assigned to the quantized vector vai

in V . Obvi-
ously, for any two consecutive frames si and si+1 in original
sequences, in order to preserve their temporal order in the
quantized sequence, their assignments ai and ai+1 should
satisfy ai ≤ ai+1.
Then, a natural way to jointly optimize the assignment

a = {a1, a2, · · · , an} and the quantized sequence V can be
obtained by jointly minimizing

min
a,V

n∑

i=1

‖vai
− xi‖

2
, (1)

s.t. ∀i ∈ [1, n− 1], ai ≤ ai+1, ai ∈ [1,m]

where ‖·‖ can be any distance measurement. For conve-
nience and efficiency consideration, we use Euclidean dis-
tance in the proposed algorithm.

It is nontrivial to jointly solve the optimal assignment a

that satisfies the constraint of preserving the temporal order
in each video, along with the optimal quantized sequence
V . Our idea is to break down this optimization problem
iteratively in a coordinate descent fashion.

Aggregation step: given the assignment a is fixed and
Euclidean distance is adopted, it is not difficult to show
that each element vj of the optimal quantized sequence is
the mean vector of all the elements xi assigned to vj . In

other worlds, we have

vi =
1

|{ai = j}|

∑

ai=j

xi (2)

where | · | is the set cardinality and {ai = j} is the set of
elements in a whose value is j.
Assignment step: when V is fixed, the assignment a

can be updated to minimize the above distance to these
quantized vectors in V subject to the temporal-order pre-
serving constraint. We are inspired to develop a dynamic
programming approach by dynamic time warping (DTW)
to solve this subproblem. Specifically, the minimal distance
Dl+1,k+1 given by the best assignment from S1:l+1 to V1,k+1

can be induced by the following iterative equation

Dl+1,k+1 = min{Dl+1,k, Dl,k, Dl,k+1}+ ‖xl+1,vk+1‖
2
, (3)

where ‖xl+1,vk+1‖ is the distance between the current video
frame xl+1 and the current quantized frame vk+1. Then by
starting with D1,k = mink ‖x1−vk‖

2 and Dl,1 = minl ‖xl−
v1‖

2, the best assignment can be found iteratively accord-
ing to the above equation. The resulting assignment has
the same characteristics of DTW [8]. It always measures
the closest frame when choosing the next warping step, and
the generated assignment path is guaranteed to be non-
decreasing in the temporal order.

The assignment a of video frames and the update of V

proceed iteratively until convergence. The above process can
produce an optimal dynamic quantization of video frames.

Algorithm 1 Iterated Dynamic Quantizing Algorithm

1: Input length of quantized sequence m, feature se-
quence X = (x1,x2, ...,xn),

2: Output a = {a1, a2, · · · , an}, V = {v1, · · · ,vm}
3: procedure IDQA(X,m)
4: Initialize assignment a by the even partition.
5: repeat

6: V = Aggregation(X,V )
7: a = DynamicAssignment(X,V )
8: until Convergence
9: return a, V

10: end procedure

The pseudo code of the proposed Iterated Quantizing Al-
gorithm is presented in Algorithm 1. In the initialization, S
is evenly split into m partitions, each of which is assigned
to an element vj of V . An Aggregation subprocedure is ex-
ploited to update the quantized sequence V according to
the frame assignment results. Then, a DynamicAssignment
subprocedure is used to warp the original feature X to the
quantized sequence V . We propose a modified DTW algo-
rithm for the warping process. The assignment a can be
determined from the warping path. The above two steps
iterate until V converges or the maximum iteration times
is reached. The output is the converged quantization se-
quence V and the final frame assignment to it. The above
iteration algorithm modifies the initial quantization result
step by step by the warping and aggregation and eventually
generates a result that not only considers the similarity of
human postures but also preserves frame order.

The Aggregation subprocedure summarizes the original
feature of the partition into a quantized vector. This vector
must provide a highly discriminative representation of the



partition. Several aggregation methods can be applied such
as mean, sum, max and min. Different aggregation methods
have different advantages. As an example, the mean method
(Eq(2)) is robust to noise and is theoretically optimal under
Euclidean distance. However, some salient human postures
may be mitigated by the averaging especially when the ac-
tion sequence contains many neutral postures. The salient
postures normally have higher discriminative capability than
the neutral postures for the action recognition. Considering
these factors, we also test the max-pooling as the aggrega-
tion method in our proposed algorithm. It also provides a
form of temporal translation invariance by taking the maxi-
mum values of the corresponding elements from the feature
of the partition.

The DynamicAssignment subprocedure contains two
parts. The first part computes the matrix Dm,n storing
the minimal distance between any pair of subsequences of
X and V starting from the beginning. This part can be
solved using Eq(3). The second part computes the warping
path based on the obtained optimal D. Considering that the
original feature sequence (X) is warped to a much shorter
quantized sequence (V ), the step size of the warping path
is restricted to (1, 0) and (1, 1), which is different from the
classic DTW method that also allows (0, 1). In other words,
the iteration Eq(3) changes to a more restricted form of
Dl+1,k+1 = min{Dl,k+1, Dl,k} + ‖xl+1,vk+1‖

2. This is to
prevent the warping path from going too fast on the direc-
tion of the quantized sequence that the last few quantized
vectors take most of the frames. It also avoids the scenario
that one frame is assigned to multiple quantized vectors at
the same time.

3.2 Hierarchical Representation
Inspired by the Spatial Pyramid [5] and the Temporal

Pyramid [14], we further extend the Dynamic Temporal
Quantization by incorporating the hierarchical structure.
Figure 2 illustrates the hierarchical architecture of the pro-
posed dynamic quantization. The original sequence is re-
cursively partitioned by the Iterated Dynamic Quantizing
Algorithm and forms a pyramid structure. The ith level
has 2i − 1 partitions. As a result of the dynamic quan-
tization, the length of each partition varies. A quantized
vector is then aggregated from each partition and eventu-
ally the final feature vector is generated by concatenating
the quantization vector of all layers. Figure 2 shows a pyra-
mid structure with 4 levels. The proposed technique may
benefit from a structure with higher levels. Nevertheless, a
large number of quantizations may over-segment the action
sequence and compromise the generalization capability. We
study the relationship between the height of the pyramid
and the performance in the experiments.

The proposed dynamic quantization approach has several
benefits. First, by exploiting the dynamic temporal quan-
tizing of the sequence, it can address the challenge of execu-
tion rate variation by achieving a dynamic temporal quan-
tization. Second, feature vectors with highly discriminative
capability can be extracted by the aggregation procedure
of the quantization. Third, the hierarchical description in
terms of the multi-layer pyramid achieves a comprehensive
representation of the temporal dynamics of the action by
capturing both the global and local temporal patterns of
the action.

Figure 2: Illustration of the Dynamic Temporal

Quantization and its hierarchical representation.

4. MULTIMODAL FEATURE FUSION
Multimodal sensors such as Kinect can provide data from

different modalities including depth image, RGB image and
skeleton map. In this approach, we extract features from
all three data modalities and adopt supervised learning for
the classification. The final recognition result is computed
by the fusion of the classification results of each individual
feature.

4.1 View-invariant Features
To leverage the discriminative capability from different

data modalities, we use the following features in the pro-
posed approach.

1. Position: 3D coordinates of the 20 joints of the skele-
ton.

2. Angle: normalized pairwise-angle feature.

3. Offset: offset of the 3D joint positions between the
current and the previous frame [21].

4. Velocity: histogram of the velocity components of the
point cloud.

The position feature is computed from the skeleton map
by concatenating the x, y and z coordinates of all joints.
It holds the raw information of the skeleton map and no
special feature extraction is needed. In the angle feature,
body segments are first computed by connecting each pair
of adjacent joints. The normalized cosine value of each pair
of the body segments are then computed and concatenated
as the angle feature.

To better leverage the multimodal data, we propose the
velocity feature of the point cloud. Generally speaking, the
velocity feature describes the distribution of the movement
of the point cloud at the neighborhood of each joint in the 3D
space. Specifically, the 3D point cloud can be constructed
from the depth image. In order to track the movement of
the point cloud, optical flow is first performed on the RGB
image to compute the displacement of pixels between two



consecutive frames. By leveraging the pixel-to-pixel corre-
spondence between the depth image and RGB image, the
displacement of each pixel of the point cloud can be ob-
tained and is used to compute the 3D velocity. To maintain
the spatial information, the point cloud is split into clusters
according to the joints. A square window with the joint at
the center is applied to sample the region in the neighbor-
hood of each joint. The velocity of each 3D point is further
decomposed into x, y and z components which are further
quantized into three bins indicating the positive, zero and
negative values, respectively. Finally, a 9-bin histogram is
generated for each joint and a 180D velocity feature is pro-
duced by concatenating all the 20 joints. Different from the
above features levering only the joint information, the ve-
locity feature is extracted from the cloud point which gives
more details about the micro dynamics of the human ac-
tions.

Among the above four features, the angle feature are view-
independent by nature. To handle the viewpoint variation
for the other features, the 3D point cloud are transformed
from the world coordinate system to a human-centric co-
ordinate system by placing the “hip-center” at the origin
and aligning the “spine” with the y-axis. The PCA (Princi-
ple Component Analysis) is adopt to the above features for
the dimension reduction and noise reduction purposes. The
above four features cover all three modalities of the sensing
data from the device and provide a rich representation of
the human actions.

4.2 Frame Assignment Sharing
In the previous section, the Dynamic Temporal Quantiz-

ing algorithm is computed based on the original feature of
the action sequence. All of the above four features can be
used to compute their own temporal quantization of the
video frames. Should the frame assignment of the quan-
tization be computed by one feature and shared by all other
features or should it be done independently? Intuitively,
the Independent quantization strategy may produce the best
classification result with respect to individual feature that
has been used. Nevertheless, it may encounter the overfit-
ting problem and compromise the generalization capability
when multimodal features are fused. Therefore, we com-
pute the frame assignment of the quantization based on the
feature with the highest discriminative capability. This as-
signment is applied to all the other three features to compute
their own quantization results. We performed experimental
study to justify the benefit of the sharing strategy and will
discuss the result in the experiment section.

4.3 Classification and Fusion
We employ the supervised learning to learn the temporal

dynamics of different actions from the quantized sequence
discussed in the last section. A multi-class model is learned
from the training sample with the known labels for each
feature. The trained model is then used to predict the type
of the unknown actions. The final recognition result is the
fusion of the predictions of all individual features.

To be more specific, the SVM (Support Vector Machine)
[1] is employed as the classifier in our method. A multi-
class SVM is trained for each feature independently. In the
predicting phase, each SVM estimates the label of the action
by giving a probability that the current action belongs to
each action type. The label is determined according to the

maximum probability. The final classification result is then
fused from the estimation of the multi-class SVM of each
feature.

5. EXPERIMENTS
We evaluate the performance of the proposed method on

three public datasets: UTKinect-Action [17], MSR-Action3D
[6] and MSR-ActionPairs [10]. We choose these datasets be-
cause they provide data from at least two modalities and
satisfy our multimodal feature fusion framework. In our ex-
periment, the levels of hierarchical quantitating structure is
set to 4 and 24−1 = 15 partitions are generated to represent
the entire action sequence. The PCA dimension reduction is
set to preserve 99.5% of the energy of the raw feature. The
window size for the velocity feature is set to 51× 51. These
parameters are determined according to the performances in
the experiments. We use the LibSVM [1] with the RBF ker-
nel as the classifier in our experiments. The fusion process
computes the mean probability of the prediction from each
individual classifier and decides the final label of the action
by the highest mean probability.

5.1 MSR-Action3D Dataset
The MSR-Action3D dataset [6] contains 20 action classes

and 10 subjects. Each subject performs each action two or
three times. The 20 action types are chosen in the context
of gaming. They cover a variety of movements related to
arms, legs, torso, etc. The noise of the joint locations in
the skeleton as well as the high intra-class variations and
the inter-class similarities make the dataset very challeng-
ing. As an example, the action “Draw x” is easily confused
with the action “Draw tick”. We followed exactly the same
experiment settings of [14], that all 20 action classes are
tested in one group. Half of the subjects are used for train-
ing and the rest are for testing. We note there is another
experiment setting used in the literature which splits the 20
action types into three subsets and only performs the eval-
uation within each subset [6]. The experiment setting we
followed is more challenging than the subset one because all
actions are evaluated together and the chance of confusion
is much higher.

To evaluate how the height of the quantization pyramid
can affect the recognition accuracy, we perform experiments
on different levels of pyramid on the position feature and test
their performances. Results are summarized in Table 1. In
this experiment, zero to five levels of pyramid are evaluated.
Zero means no hierarchical structure is employed, the entire
sequence is quantized into 8 partitions by the proposed It-
erated Dynamic Quantizing Algorithm. It can be regarded
as the leaf-nodes of the 4-level pyramid. Two observations
can be found from the results. First, as the increase of the
number of levels, the recognition accuracy is also increasing.
However the performance begins to drop when the levels
reach five. This can be explained that the higher levels of
the pyramid, the deeper hierarchical structure can be cap-
tured to describe the temporal dynamics. That’s why the
classification rate keeps increasing. Nevertheless, when the
sequence is over quantized with too many partitions, the
method becomes less generalized and the turning point oc-
curs. Second, the accuracy of the 4-level pyramid (81.61%)
is higher than that of using only the leaf-nodes (0-level,
73.56%). This has demonstrated that the hierarchical struc-
ture has contributed to the dynamic quantization of the se-



Levels 5 4 3 2 1 0
Accuracy(%) 77.39 81.61 71.26 67.82 66.28 73.56

Table 1: Experiment on different levels of quantiza-

tion pyramid on the MSR-Action3D dataset.

Feature
Accuracy

Proposed Deterministic
quantization

w/o assign-
ment sharing

position 81.61% 76.24% 81.23%
angle 73.95% 71.65% 72.41%
offset 73.95% 68.20% 64.75%

velocity 80.84% 72.80% 80.08%
fused result 90.42% 83.15% 88.51%

Table 2: Experiments on the effects of the dynamic

temporal quantization and the frame assignment

sharing strategy on the MSR-Action3D dataset.

quence. The inclusion of the upper layers has enhanced the
generalization capability of the modeling method.

To also evaluate the effects of the Iterated Dynamic Quan-
tizing Algorithm, we compare it against a deterministic quan-
tizing method that always evenly splits the sequence. This
is the same method used in the Fourier Temporal Pyramid
[14]. Experiments results are summarized in Table 2. The
second column and the third column show, the proposed
algorithm with the dynamic quantization has a higher ac-
curacy than the deterministic quantization method on all
individual features as well as the fused result. Such perfor-
mance increase demonstrates the advantage of the dynamic
temporal quantization over the deterministic quantization
method.

We also evaluate the performance of the frame assignment
sharing strategy and compare it against the independent
strategy. In the proposed method, the frame assignment
of the quantization is computed with the position feature.
The fourth column of Table 2 shows the performances of the
strategy without the frame assignment sharing. We can see
that the performance of the independent strategy is lower
than the proposed method with the sharing. Other features
which are less discriminative than the position feature ben-
efit from the assignment computed based on the position
feature. This has demonstrated the advantage of the frame
assignment sharing strategy.

Last but not least, the fused result is significantly higher
than the recognition rates of all individual features in all
three columns in Table 2. One possible explanation is the
multimodal features have complimentary discriminative ca-
pability which can be leveraged by the fusion and therefore
yield superior performance over individual features alone.
As an example, the position feature, in terms of joint co-
ordinates, is good at describing the human pose from the
global point of view. Meanwhile, the velocity feature based
on the 3D point cloud is good at capturing the micro move-
ments of the body parts. Therefore these two features from
different modalities are complimentary to each other and
can generate enhanced performance when fused.

We list state-of-the-art approaches in recent years in Table
3 for comparison. As can be seen, the proposed method

Method Accuracy

Actionlet Ensemble [14] 88.2%
HON4D [10] 88.89%
DCSF [15] 89.3%

Lie Group [13] 89.48%
Super Normal Vector [18] 93.09%

Proposed approach 90.42%

Table 3: Comparison with state-of-the-art results.
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Figure 3: Confusion Matrix on the MSR-Action3D

dataset.

achieves a higher recognition rate than most of state-of-the-
art results. The only method achieves a higher accuracy
than ours is the super normal vector method [18].

Figure 3 shows the confusion matrix on the MSRAction-
3D dataset. Most of the confusions between similar actions
have been correctly addressed. The remaining confusions are
between actions containing very similar primitive postures
such as “Side kick” and “Forward kick” and “Draw x” and
“Draw circle”.

5.2 UTKinect-Action Dataset
The UTKinect-Action dataset [17] consists of 199 action

sequences in total. These sequences have 10 action types
performed by 10 subjects. All subjects perform each ac-
tion two times. Different from the previous dataset, sub-
jects perform actions at varied locations in the scene. The
huge viewpoint variation and intra-class variance make the
dataset very challenging. We follow the same cross-subject
test setting as in [13]. Half of the subjects are used for
training and the rest are for testing.

We follow the same strategy in the MSR-Action3D dataset
that the frame assignment of the quantization is computed
based on the position feature and is applied to all other
features. The performances of individual features and the
fused result are summarized in Table 4. Similar results can



Feature
Accuracy

Proposed Deterministic
quantization

w/o assign-
ment sharing

position 94.95% 88.89% 94.95%
angle 91.92% 87.88% 94.95%
offset 80.81% 74.75% 74.75%

velocity 79.80% 81.82% 78.79%
fused result 100% 96.97% 97.98%

Table 4: Experiments on the effects of the dynamic

temporal quantization and the frame assignment

sharing on the UTKinect-Action dataset.

Method Accuracy

Histogram of 3D joints [17] 90.92%
Combined features with random forest [21] 91.9%
Lie Group [13] 97.08%
Proposed approach 100%

Table 5: Comparison with state-of-the-art results on

the UTKinect-Action dataset.

be found that the proposed dynamic quantization algorithm
achieved higher performance than the deterministic quanti-
zation on most of the features as well as the fused result.
This has again demonstrated the advantage of the dynamic
temporal quantizing algorithm. To our surprise, the fused
result achieved the 100% accuracy. All samples in the test-
ing set are correctly classified, which strongly demonstrates
the performance of the proposed methods.

Table 5 shows the comparison of the classification accu-
racy between the proposed algorithm and state-of-the-art
methods. Although the Lie Group [13] method achieves
very good performance on this dataset (97.08%), the pro-
posed algorithm still outperformed state-of-the-art results
by achieving the 100% accuracy.

5.3 MSR-ActionPairs Dataset
The MSR-ActionPairs dataset [10] is composed of 12 ac-

tions performed by 10 subjects. Each subject performs all
actions three times. Therefore, the dataset contains 360
action sequences in total. Different from the other two
datasets, this dataset contains 6 pairs of actions. Each pair
of actions has exactly the same primitive postures but the re-
versed temporal orders. As an example, “Pick up” and “Put
down”, “Put on a hat” and “Take off a hat”. This dataset is
collected to investigate the effects of temporal order on the
recognition of the actions. The huge within-pair similarity
makes the dataset very challenging. Therefore, histogram-
based temporal modeling methods relying on the bag-of-
words or visual codes may perform poorly on this dataset if
the dynamic patterns are not properly interpreted. We fol-
low the same test setting of [10] that the first 5 subjects are
used for testing and the last 5 subjects are used for training.
Experimental results are summarized in Table 6.

Similar to the results from the other two dataset, the po-
sition feature and the velocity feature show higher discrimi-
native capability than the other features in all three columns
of Table 6. The fused results all achieve higher performance
than any individual feature alone by leveraging the fusion

Feature
Accuracy

Proposed Deterministic
quantization

w/o assign-
ment sharing

position 86.28% 86.85% 86.28%
angle 82.86% 82.86% 82.86%
offset 81.71% 81.14% 70.86%

velocity 89.71% 88.57% 90.28%
fused result 93.71% 91.43% 93.14%

Table 6: Experiments on the effects of the dynamic

temporal quantization and the frame assignment

sharing strategy on the MSR-ActionPairs dataset.

Method Accuracy

Skeleton + LOP + Pyramid [14] 82.22%
HON4D [10] 93.33%

HON4D + Ddisc [10] 96.67%
Super Normal Vector [18] 98.89%

Proposed approach 93.71%

Table 7: Comparison with state-of-the-art results on

the MSR-ActionPairs dataset.

of multimodal data. One interesting result is, the strategy
without the assignment sharing has equal or higher accuracy
than the proposed method on all feature except the offset
feature. However, fused result is still lower than that of the
proposed method enabled with the sharing strategy. Such
results justify our hypothesis that the dynamic quantization
may get overfitted on some individual features and the over-
all generalization is compromised when multimodal results
are fused.

We further compare the performance of the proposed method
with state-of-the-art approaches and report the results in Ta-
ble 7. It can be seen that the proposed method achieves a
comparable accuracy to the methods listed. The only meth-
ods having a higher classification rate than ours are the his-
togram of 4D normals with discriminative projection [10]
and the super normal vector [18]. These two methods rely
on sophisticated features such as 4D surface normals and
polynormals which are inapplicable to more general prob-
lems. Nevertheless, the proposed method provides a generic
solution to the optimal temporal quantization problem and
is independent from any features which makes the direct
comparison unfair.

Figure 4 shows the confusion matrix of the dataset. Al-
though the actions within each pair are highly confusing,
the proposed method still achieves very good performance
by discriminating the actions in each pair. It can be seen
that the within-pair confusion only occurs between “Pick up
box” and “Put down box”. Most of the actions with similar
postures and temporal variations are correctly distinguished
by the proposed method. Such performance has demon-
strated the advantages of the proposed Dynamic Temporal
Quantization method.

6. CONCLUSIONS
In this paper, we address the challenge of temporal model-

ing for human action recognition in multimodal streams. We
study the problem of optimal temporal quantization of the
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Figure 4: Confusion Matrix on the MSR-

ActionPairs dataset.

video sequences and provide a solution of dynamic temporal
quantizing. We further present a fusion method under this
quantization framework to leverage the complementary dis-
criminative capability of multimodal features. Experimental
results on three public action datasets show the proposed
approach has achieved state-of-the-art performance.

7. REFERENCES
[1] C.-C. Chang and C.-J. Lin. LIBSVM: A library for

support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2, 2011.

[2] P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie.
Behavior recognition via sparse spatio-temporal
features. In Visual Surveillance and Performance
Evaluation of Tracking and Surveillance, 2005. 2nd
Joint IEEE International Workshop on, pages 65–72.

[3] L. Han, X. Wu, W. Liang, G. Hou, and Y. Jia.
Discriminative human action recognition in the
learned hierarchical manifold space. Image and Vision
Computing, 28(5):836–849, 2010.

[4] I. Laptev. On space-time interest points. International
Journal of Computer Vision, 64(2-3):107–123, 2005.

[5] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing
natural scene categories. In Computer Vision and
Pattern Recognition, IEEE Computer Society
Conference on, volume 2, pages 2169–2178, 2006.

[6] W. Li, Z. Zhang, and Z. Liu. Action recognition based
on a bag of 3d points. In Computer Vision and
Pattern Recognition Workshops, 2010 IEEE Computer
Society Conference on, pages 9–14.

[7] F. Lv and R. Nevatia. Recognition and segmentation
of 3-d human action using hmm and multi-class
adaboost. In Computer Vision–ECCV 2006, pages
359–372.
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