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Abstract 

Pain is known to have sensory and affective components. The sensory pain component is encoded by neurons in the 
primary somatosensory cortex (S1), whereas the emotional or affective pain experience is in large part processed by 
neural activities in the anterior cingulate cortex (ACC). The timing of how a mechanical or thermal noxious stimulus 
triggers activation of peripheral pain fibers is well-known. However, the temporal processing of nociceptive inputs in 
the cortex remains little studied. Here, we took two approaches to examine how nociceptive inputs are processed by 
the S1 and ACC. We simultaneously recorded local field potentials in both regions, during the application of a brain-
computer interface (BCI). First, we compared event related potentials in the S1 and ACC. Next, we used an algorithmic 
pain decoder enabled by machine-learning to detect the onset of pain which was used during the implementation 
of the BCI to automatically treat pain. We found that whereas mechanical pain triggered neural activity changes first 
in the S1, the S1 and ACC processed thermal pain with a reasonably similar time course. These results indicate that 
the temporal processing of nociceptive information in different regions of the cortex is likely important for the overall 
pain experience.

Introduction
Pain is a highly salient signal, and acute pain in many 
ways protects us from injury and harm. Unlike other sen-
sory modalities, however, there is no single target in the 

brain for pain representation [1–5]. In contrast, neuro-
imaging studies in human subjects have demonstrated a 
highly complex, distributed network of pain-processing 
regions [6–10]. Despite the overall complexity of this net-
work, several cortical regions within this network appear 
to play key roles. The primary somatosensory cortex (S1), 
for example, is known to encode the sensory-discrimi-
native aspect of pain, including the location and quality 
of pain, whereas the anterior cingulate cortex (ACC) has 
been shown to play an important role in the affective or 
aversive response to pain [1–3, 11–14].

MRI and PET studies in humans have provided reason-
ably detailed anatomic view of various brain structures 
and enabled functional connectivity studies to under-
stand how sensory information flows from one area of 
the brain to the next. However, these study modalities do 
not permit investigation of highly temporally-regulated 
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events. In contrast, invasive neurophysiological record-
ings can be used to detect events that occur on the order 
of milliseconds. Prior work using invasive recordings in 
animal models has shown how neurons in various brain 
regions process nociceptive inputs [13, 15–23]. However, 
in most of these studies, a single region of the brain was 
targeted. As a result, we do not yet know in detail the 
temporal order of pain processing among different corti-
cal regions. Such temporal order, however, is critical for 
understanding how the nociceptive information is either 
directly or indirectly transferred from one cortical region 
to the next. This information flow can dictate the integra-
tion of the sensory and affective pain experiences, which 
in turn gives rise to the overall pain experience.

Local field potentials (LFPs) combine synaptic and 
network activities within a recorded brain region. They 
represent aggregate subthreshold activity which indicate 
input information in a local brain region [24]. Since LFPs 
measure the collective behavior of ensembles of neu-
rons, frequency-specific LFPs are thought to process dis-
tinct network information. For example, theta oscillation 
(4–8 Hz) in the hippocampus is known to be involved in 
the formation of memory in rodents [25, 26]. Among dif-
ferent cortical rhythms, gamma oscillation (30–100 Hz) is 
particularly known to be important for sensory process-
ing in the cortex [24], and gamma band activities in the 
cortex have been shown to play a role in pain perception 
[27–34]. We have recently developed a closed-loop brain-
computer interface (BCI) that links pain-related LFP sig-
nals from the S1 and ACC with neurostimulation of the 
prefrontal cortex to deliver temporally precise detection 
and treatment of pain [35, 36]. The ability of this BCI in 
treating pain indicates the success of pain detection using 
a machine learning algorithm that is based on analysis of 
the higher frequency LFP signals, including gamma band 
oscillations [35, 36].

In this study, we have used this BCI system to record 
neural activity from the S1 and ACC in response to 
mechanical and thermal noxious inputs in freely moving 
rats. We have analyzed event-related potentials (ERPs) 
which are native neurophysiological responses to stimu-
lus inputs, and we have also analyzed pain decoder func-
tion in the S1 and ACC. We found that the pain decoder 
detected pain first in the S1, followed by detection in the 
ACC, in response to a mechanical pain stimulus. In con-
trast, both regions detected slowly ramping thermal pain 
at approximately the same time. These results suggest 
that nociceptive information arrives at relevant cortical 
areas at different times, and that the modality of periph-
eral stimulus may also influence cortical nociceptive 
processing. This temporally sensitive processing of noci-
ceptive information in different regions of the cortex is 
likely important for the overall pain experience.

Materials and methods
Experimental protocol and data acquisition
All experimental studies were conducted in accord-
ance with the New York University School of Medicine 
(NYUSOM) Institutional Animal Care and Use Commit-
tee (IACUC) regulations to ensure minimal animal use 
and discomfort, license reference number: IA16-01388. 
Male Sprague–Dawley rats were purchased from Taconic 
Farms and kept in a rearing room facility in the NYU 
Langone Science Building, controlled for humidity, tem-
perature, and a 12-h (6:30 a.m. to 6:30 p.m.) light–dark 
cycle. Food and water were available ad libitum. Animals 
arrived at the facility weighing 250 to 300 g and had an 
average of 10 days to acclimate to the new environment 
before the experiment began.

Silicon probe implantation surgery
Two 32-channel silicon probes (Buzsaki32-H32, Neu-
roNexus Technologies, or ASSY-116 E-1, Cambridge 
NeuroTech) were used for neural recordings. One probe 
was used for the ACC recordings and the other for S1 
recordings. During the surgery, rats were anesthetized 
with isoflurane (1.5 to 2%). The silicon probes were 
implanted in the S1 (AP − 1.5  mm, ML ± 3.0  mm, DV 
− 1.1  mm with angle 0°) and the ACC (AP + 2.7  mm, 
ML ± 1.6  mm, DV − 2.0  mm with angle 20°). After the 
electrodes were implanted, we used silicone artificial 
dura gel (Cambridge NeuroTech) to protect the dura. The 
drives of the silicon probe were fixed to the skull screws 
with dental cement. After surgery, the rats were given 
several days of recovery time before neural recordings.

Event‑related potential (ERP) analysis
Event-related potentials (ERPs) are also called "evoked 
potentials" when they occur shortly after a stimulus. The 
cortical ERP reflects the coordinated behavior of a large 
number of neurons related to external or internal events. 
Traditional ERP analyses are based on trial averaging, but 
the ERP statistics we report here are based on a single-
trial analysis. Since ERP is associated with low-frequency 
activity, we further used band-pass filtering (4–100  Hz) 
to the multi-channel LFP trace to remove high-frequency 
noise. In order to better compare with the subsequent 
Z-score peak latency, we chose the channels used to cal-
culate  the Z-score and calculated the average trace of 
selected channel LFP data for extracting ERP latency. 
To calculate the ERP latency, in mechanical stimulus 
(PP) tasks, we identified 1  s data from each trial, with 
0.5 s before PP as baseline and 0.5 s after PP as cortical 
nociceptive response. In thermal stimulus (Hargreaves) 
tasks, we identified 0.5  s before thermal stimulus onset 
as baseline and between the thermal stimulus onset and 
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paw withdrawal as cortical nociceptive response. Next, 
the mean and standard deviation of baseline was calcu-
lated. The ERP latency was defined as the time interval 
between the stimulus onset and peak response. Further-
more, if there was more than 1 peak identified and these 
peaks were  above mean + 3*std, we replotted the trace 
and manually selected the first peak for ERP latency.

Unsupervised machine learning analysis for detecting 
the onset of pain signals
For the LFP features, we used band-pass filtering to 
extract the band-limited signal and detect the low gamma 
(30–50  Hz), high gamma (50–100  Hz) and ultra-high 
frequency ranges (300–500  Hz). The frequency range 
> 300 Hz is also known as spiking-band power or multi-
unit activity. The features are averaged by bin size to gen-
erate a 3D time series for a single selected LFP channel. 
Criteria for channel selection are based on artifacts, sig-
nal-to-noise ratio (SNR), or spike activity.

We use an unsupervised machine learning method to 
detect the pain onset. We developed this decoding method 
based on a state-space model (SSM), a type of linear dynami-
cal system. The SSM has two components: the state equa-
tion and the measurement equation. In the state equation, 
we assume that the ACC or S1 spectral-temporal features 
(amplitudes at 30–50  Hz, 50–100  Hz and 300–500  Hz) at 
the k-th time index (bin size: 100 ms), are represented by the 
vector yk , driven by a univariate latent Markov process zk:

where ǫk specifies a temporal Gaussian prior (with zero 
mean and variance σ2) on the latent process, and 0 <|a|< 1 
denotes the first-order autoregressive coefficient.

In the measurement equation, we assumed that the 
measurement yk was drawn from a linear Gaussian system

where d is a constant; c is the modulation coefficient; and 
v is an uncorrelated Gaussian noise with zero mean and a 
covariance matrix Σ. The latent variable zk was seen as a 
common input driving the pain response in yk.

We set all unknown model parameters to Θ and develop 
an iterative expectation maximization (EM) algorithm to 
estimate the latent states {zk} (E-step) and the unknown 
parameters Θ = {a, c, d, σ2, Σ} (M-step). During the com-
putation we use a Kalman filter to estimate the predicted 
latent state. The Kalman filter equation is as follows:

zk = azk−1 + ǫk

yk = czk + d + v

zk|k−1 = azk−1|k−1

Qk|k−1 = a2Qk−1|k−1 + σ 2

where the subscripts k|k-1 and k|k are the estimated val-
ues of the prediction and filtering operations. ẑk|k and 
Qk|k denote the posterior mean and variance of the latent 
state, respectively; Gk denotes the Kalman gain. In sum-
mary, recursive updates between the prediction and filter 
equations yield sequential Bayesian estimates of latent 
state ẑk|k . We further compute the Z-score of the state: 
Zscore =

z−mean(zbaseline)
SD(zbaseline)

 . The significance criterion for 
the change in Z-score was determined by the critical 
threshold. We used a 95% confidence interval when the 
lower bound Z-score is greater than 3.38 
(Z-score − CI > 3.38) or the upper bound Z-score is less 
than − 3.38 (Z-score + CI <  − 3.38), where the confidence 
interval (CI) for each time point was from the state pos-
terior variance Qk|k.

State Z‑score peak latency analysis
Similar to ERP latency, in mechanical stimulus (PP) 
tasks, we identified 0.5 s after PP as cortical nociceptive 
response. In thermal stimulus (Hargreaves) tasks, we 
identified between the thermal stimulus onset and paw 
withdrawal as cortical nociceptive response. The Z-score 
peak latency was defined as the interval between the 
stimulus onset and absolute Z-score peak value time in 
response.

Statistical analysis
Neural and behavioral data were analyzed offline by 
custom MATLAB (version 2018, MathWorks) scripts 
and GraphPad Prism version 8 software (GraphPad). 
All results are reported as mean ± SEM. Comparisons 
between the means of the two groups were evaluated 
by  the two-tailed paired t-test. Differences were consid-
ered statistically significant when p < 0.05. Exact p-values 
and sample sizes are shown in figure legend.

Results
Using a multi‑region BCI to detect pain signal
Our prior studies have shown that features of LFP in the 
low-gamma (30–50  Hz), high-gamma (50–100  Hz), and 
ultra-high-frequency (300–500  Hz) bands are highly 
specific to pain processing [16, 34, 37]. Thus, we have 
used amplitudes from these frequencies to design a pain 

ŷk|k−1 = cẑk|k−1 + d

Gk = Qk|k−1c
T (Qk|k−1cc

T + �)
−1

ẑk|k = ẑk|k−1 + Gk(yk − ŷk|k−1)

Qk|k = Qk|k−1(1− Gkc)
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decoder that is based on a modified state space model 
(SSM). We used frequency data from LFPs recorded in 
the hind limb S1 region and the rostral ACC. We then 
designed a BCI to link this decoder with stimulation of 
the prelimbic cortex, a brain region that is known to pro-
duce descending pain regulation [38–43] (Fig.  1A). We 
applied this BCI to detect and treat pain during noxious 
stimulation of the contralateral hind paw of rats with 
either a mechanical (pinprick, PP) or thermal stimulus 
(infrared emitter from a Hargreaves’ table). Frequency-
dependent LFP power features from the S1 and ACC 
were computed and sent into an SSM-based online 
decoder (Fig.  1B). In the presence of a noxious stimu-
lus, the SSM determined the relative change in observed 
neural activity (Z-score) from baseline and used Z-score 
values as a proxy for the acute pain signal (Fig.  1C). In 
prior studies, we have tested the accuracy of pain detec-
tion and found it to be as high as 90% [35, 36]. The accu-
racy of this automated pain detector was further tested 
in combination with therapeutic optogenetic or electrical 
stimulation of the prelimbic cortex in the design of a pain 
BCI, and it was found that this BCI, driven by the pain 
decoder, inhibited pain behavior with high efficacy [35, 
36].

Stimulus‑evoked ERPs and algorithmically driven pain 
detection identified changes in the S1 prior to ACC 
in response to mechanical noxious inputs
We first analyzed ERPs and pain decoder data in rats 
that underwent mechanical noxious stimulations. We 
identified pain-evoked ERPs from the raw LFP traces 
in the ACC and S1 (Fig. 2A). Here we set the time from 

the onset of the PP stimulus to the peak of the ERP as 
ERP peak latency. We then compared ERP peak latency 
in the S1 with ERP latency in the ACC during each trial. 
We found that the ERP peak latency of the ACC was con-
sistently longer than the latency of S1 (Fig. 2B). Next, we 
analyzed the timing of pain detection using the auto-
mated decoder of ACC and S1. Similar to the ERP peak 
latency, we set the time from the onset of the PP stim-
ulus to the peak of the Z-score curve as Z-score peak 
latency (Fig. 2C). Again, we found that the pain decoder, 
which is based on amplitudes from a combination of 
low-gamma (30–50  Hz), high-gamma (50–100  Hz) and 
ultra-high-frequency oscillations, demonstrated a simi-
lar trend, where the Z-score peak latency in the ACC 
was longer than the latency in the S1 (Fig. 2D). Together, 
these results from ERP and Z-scored pain decoder data 
strongly suggest that mechanical nociceptive information 
arrived at the S1 before the ACC.

Z‑score detection show similar timing in the response in S1 
and ACC to slowly ramping thermal nociceptive inputs
We next analyzed the timing of cortical processing of 
thermal nociceptive inputs. We used a Hargreaves’ table 
to produce thermal pain. In contrast to mechanical pain, 
which produced nocifensive withdrawals within several 
hundred milliseconds, thermal pain induced by the infra-
red emitter produced pain with a more gradual onset 
(nocifensive withdrawal occurred at approximately 4  s), 
likely due to the relatively slow ramping up of tempera-
ture at the paw tissue. Likewise, due to the slow ramp-
ing up of temperature, there were no obvious ERPs as in 
the case of acute mechanical pain. We then analyzed the 

Fig. 1  Design of a multi-region LFP-based neural interface for pain. A We recorded local field potentials (LFPs) form the rostral area of the anterior 
cingulate cortex (ACC) and primary somatosensory cortex (S1) using silicon probe arrays in rats. B Raw LFP signals were processed to compute 
three band-limited LFP power features {YACC

k
} and {YS1

k
} form ACC and S1 channels (low gamma (30–50 Hz), high gamma (50–100 Hz), and 

ultra-high frequency (300–500 Hz)), and sent to an automated decoder based on a state space model (SSM), which independently inferred the 
latent variables {zACC

k
} and {zS1

k
} . C In the presence of noxious stimulus, the SSM determined the relative change in Z-score from baseline and used 

this change as a proxy for acute pain signals
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decoder function by setting the time from thermal stimu-
lus onset to Z-score peak, which is the maximum abso-
lute value of the Z-score value between stimulus onset 
and paw withdrawal, as Z-score peak latency (Fig.  3A). 
Interestingly, unlike the case with mechanical pain, here 
we found no significant difference in the pain detection 
latency between the ACC and S1 in the presence of slow-
onset thermal pain (Fig. 3B).

Discussion
In this study, we have measured simultaneous LFP sig-
nals from the S1 and ACC of freely moving rats. We 
found that ERPs triggered by mechanical noxious inputs 
occurred in the S1 prior to their occurrence in the ACC. 
We constructed a pain decoder based on changes in 

amplitudes of gamma and ultra-high frequency signals 
from LFPs, and found that similarly this pain decoder 
detected pain first in the S1 and then in the ACC. In con-
trast, our automated pain decoder did not clearly dem-
onstrate temporal sequence of thermal pain signals in 
the cortex. These results indicate that mechanical pain 
signals are likely processed by the sensory cortex prior to 
processing by prefrontal systems, and that the modality 
of peripheral pain stimulus may influence the timing of 
cortical processing.

Whereas spikes are used to provide specific informa-
tion regarding individual neuronal function, they are 
difficult to record stably over long periods of time. In 
contrast, LFPs measure ensemble neuronal activity, and 
they have been shown to be stable over long periods 

Fig. 2  Pain-evoked event-related potentials (ERPs) and Z-score analysis of the pain decoder showed temporal sequence in cortical response to a 
mechanical stimulus. A Illustration of raw LFP trace of ACC and S1. ERPs are marked by black triangles. Onset of a noxious mechanical stimulus (pin 
prick, PP) is marked by the black vertical line. The red curve indicates LFP signals in the ACC and the blue curve indicates LFP signals in the S1. The 
arrow marks the time of the ERP peak latency. B Comparison of the ERP peak latency between the ACC and S1 (n = 96 trials from 5 rats). On average, 
the ERP peak latency in the ACC was longer than that of the S1 (n = 96; ****p < 0.0001, paired t test). C Illustration of Z-score curve of the SSM-based 
pain decoder in the ACC and S1 (see Methods for details). Z-score peak is marked by the black triangle. The onset of PP is marked by the black 
vertical line. The red curve indicates the Z-score curve in the ACC and the blue curve indicates Z-score curve in the S1. The arrow marks the time 
of the Z-score peak latency. D Comparison of Z-score peak latency between the ACC and S1 (n = 96 trials from 5 rats). The latency in the ACC was 
longer than the latency in the S1 (n = 96; **p = 0.0014, paired t test)
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of time, on the scale of weeks and months. Frequency-
specific LFPs are thought to process distinct network 
information. In particular, high-gamma (60–100  Hz) 
has been shown to correlate with spike synchrony and 
could be utilized as a substitute for assessing output of 
neuronal activity. Moreover, neural oscillations in broad-
band power spectrum have been shown to be involved in 
a number of pain states [33, 44–46]. Thus, in our study, 
we have chosen to use higher frequency range data in the 
design of a pain decoder and use this decoder to analyze 
the timing of cortical responses to nociceptive inputs. 
We have had success in decoding and treating pain when 
using this decoder in a therapeutic BCI design from prior 
studies [35, 36].

The cortex does not have a single region that specifi-
cally processes pain. Instead, different cortical areas pro-
cess different aspects of pain. Two prominent regions for 
pain processing are the ACC and S1. Whereas the ACC 
is known for processing the affective component of pain 
[1–4, 13, 15, 16, 18, 19, 47–49] (neural activity in this 
region has been used to decode the intensity and timing 
of pain [13, 15–17]), S1 provides critical sensory informa-
tion for pain in a somatotopic manner. The S1 is known 
to receive nociceptive inputs from the lateral thalamus, 
whereas the ACC receives inputs from the medial thala-
mus [20, 50, 51]. Our results for mechanical pain indicate 
that the S1 at least in some instances may receive nocic-
eptive signals prior to the ACC. These results in turn sug-
gest the possibility that nociceptive information from the 
S1 can then be further transmitted to the ACC. Indeed, 

two previous studies have shown the possibility of this 
information transfer [17, 52]. In one of these studies, 
ACC neurons that receive nociceptive inputs from the 
S1 are shown to play a larger role in aversion processing 
than other ACC neurons, and that S1-ACC projection 
is involved in the maladaptive plasticity in the ACC that 
is responsible for enhanced aversion in the chronic pain 
state [17].

There are a number of potential interpretations for why 
the S1 did not demonstrate an earlier timing for thermal 
nociceptive processing than the ACC in our study. First, 
it could be due to the nature of peripheral and spinal 
neural transmission. Sharp, well-localized pain such as 
that occurring from mechanical nociceptive stimulus is 
known to be conducted by A-delta fibers which are mye-
linated and fast-conducting. In contrast, diffuse pain pro-
duced by a thermal stimulus from our infrared emitter is 
likely mediated by c fibers which are unmyelinated and 
slower-conducting. It is quite possible that A-delta and 
c fiber have not only different rates of conduction, but 
also different projections centrally to the thalamus and 
subsequently to the cortex [53, 54]. Furthermore, there 
is a possibility that pin pricks can also produce a touch 
sensation in addition to pain, and thus may also trig-
ger A-beta fiber conduction which conducts faster than 
A-delta and c fibers. This is less likely, however, as prior 
studies have shown that non-noxious von Frey filaments 
did not trigger similar ERP or automated pain detection 
as pin pricks [35, 36]. At the molecular level, mechani-
cal and thermal stimuli are known to activate different 

Fig. 3  Pain-evoked ERPs and pain decoder did not show clear temporal sequence in cortical processing of a thermal pain stimulus. A Illustration of 
Z-score curve of the ACC and S1. The onset of the thermal stimulus is marked by the black vertical line, whereas the paw withdrawal time is marked 
by the brown vertical line. We set the maximum absolute value of the Z-score curve between the thermal stimulus onset and paw withdrawal as 
the Z-score peak value, which is marked by the black triangle. The red curve indicates the Z-score curve in the ACC, and the blue curve indicates 
the Z-score curve in the S1. The arrow marks the time of the Z-score peak. B There is no significant difference in the Z-score peak latency between 
the ACC and S1 (n = 48 trials from 5 rats; p = 0.1551, paired t test)
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classes of nociceptive receptors at nerve endings, which 
may further contribute to different ascending nocicep-
tive input speeds [55–57]. In addition to peripheral and 
spinal mechanisms, there are also more central poten-
tial explanations for why the S1 did not demonstrate an 
earlier timing for nociceptive processing than the ACC. 
It is possible that due to the slow ramping speed of ther-
mal pain, there are subthreshold activities in both the 
S1 and ACC. These subthreshold activities may have 
occurred during the ramping up period leading to the 
threshold event that immediately preceded pain detec-
tion. These subthreshold activities may have primed the 
cortical system to more quickly respond to cross-thresh-
old nociceptive inputs from the thalamic nuclei, erasing 
the potential timing difference in nociceptive processing 
between the S1 and the ACC that is seen with the quicker 
onset mechanical nociceptive stimuli. Such cortical 
information priming is known to occur in various types 
of sensory processing [58–60].

LFPs share many similarities with electroencephalo-
gram (EEG) signals, and thus studies of LFPs in animals 
have a potential for translation to human EEG studies 
[24]. In particular, there are findings of increased gamma 
oscillations in response to noxious stimuli [29, 30]. 
Recent technical development further enables a single 
EEG electrode to record temporal-spectral pattern over 
single-trial stimulations and provide information about 
neuronal responses to noxious stimuli [28]. Thus, future 
studies to adapt similar analysis to EEG signals may pro-
vide understanding of cortical nociceptive processing in 
humans.

In summary, we have shown that LFP signals can be 
used to detect the onset of pain processing by cortical 
regions. These inquiries allow us to understand not only 
the timing of nociceptive information processing but the 
possibility of nociceptive information flow in the cerebral 
cortex. Extensions of this kind of analysis can be applied 
to other cortical as well as subcortical areas to further 
study how pain is processed in the brain.
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