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Abstract

Forecasting of multivariate time series data, for instance the prediction of electricity con-

sumption, solar power production, and polyphonic piano pieces, has numerous valuable

applications. However, complex and non-linear interdependencies between time steps and

series complicate this task. To obtain accurate prediction, it is crucial to model long-term

dependency in time series data, which can be achieved by recurrent neural networks (RNNs)

with an attention mechanism. The typical attention mechanism reviews the information at

each previous time step and selects relevant information to help generate the outputs; however,

it fails to capture temporal patterns across multiple time steps. In this paper, we propose using

a set of filters to extract time-invariant temporal patterns, similar to transforming time series

data into its “frequency domain”. Then we propose a novel attention mechanism to select

relevant time series, and use its frequency domain information for multivariate forecasting.

We apply the proposed model on several real-world tasks and achieve state-of-the-art perfor-

mance in almost all of cases. Our source code is available at https://github.com/gantheory/

TPA-LSTM.
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Fig. 1 Historical prices of crude oil, gasoline, and lumber. Units are omitted and scales are normalized for

simplicity

1 Introduction

In everyday life, time series data are everywhere. We observe evolving variables generated

from sensors over discrete time steps and organize them into time series data. For exam-

ple, household electricity consumption, road occupancy rate, currency exchange rate, solar

power production, and even music notes can all be seen as time series data. In most cases,

the collected data are often multivariate time series (MTS) data, such as the electricity con-

sumption of multiple clients, which are tracked by the local power company. There can exist

complex dynamic interdependencies between different series that are significant but difficult

to capture and analyze.

Analysts often seek to forecast the future based on historical data. The better the interde-

pendencies among different series are modeled, the more accurate the forecasting can be. For

instance, as shown in Fig. 1,1 the price of crude oil heavily influences the price of gasoline,

but has a smaller influence on the price of lumber. Thus, given the realization that gasoline

is produced from crude oil and lumber is not, we can use the price of crude oil to predict the

price of gasoline.

In machine learning, we want the model to automatically learn such interdependencies

from data. Machine learning has been applied to time series analysis for both classification and

forecasting (Zhang et al. 1998; Zhang 2003; Lai et al. 2018; Qin et al. 2017). In classification,

the machine learns to assign a label to a time series, for instance evaluating a patient’s

diagnostic categories by reading values from medical sensors. In forecasting, the machine

predicts future time series based on past observed data. For example, precipitation in the next

days, weeks, or months can be forecast according to historical measurements. The further

ahead we attempt to forecast, the harder it is.

When it comes to MTS forecasting using deep learning, recurrent neural networks

(RNNs) (Rumelhart et al. 1986; J.Werbos 1990; Elman 1990) are often used. However, one

disadvantage in using RNNs in time series analysis is their weakness on managing long-term

dependencies, for instance yearly patterns in a daily recorded sequence (Cho et al. 2014).

The attention mechanism (Luong et al. 2015; Bahdanau et al. 2015), originally utilized in

encoder–decoder (Sutskever et al. 2014) networks, somewhat alleviates this problem, and

thus boosts the effectiveness of RNN (Lai et al. 2018).

In this paper, we propose the temporal pattern attention, a new attention mechanism for

MTS forecasting, where we use the term “temporal pattern” to refer to any time-invariant

pattern across multiple time steps. The typical attention mechanism identifies the time steps

relevant to the prediction, and extracts the information from these time steps, which poses

1 Source: https://www.eia.gov and https://www.investing.com.
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obvious limitations for MTS prediction. Consider the example in Fig. 1. To predict the

value of gasoline, the machine must learn to focus on “crude oil” and ignore “lumber”. In

our temporal pattern attention, instead of selecting the relevant time steps as in the typical

attention mechanism, the machine learns to select the relevant time series.

In addition, time series data often entails noticeable periodic temporal patterns, which are

critical for prediction. However, the periodic patterns spanning multiple time steps are difficult

for the typical attention mechanism to identify, as it usually focuses only on a few time steps.

In temporal pattern attention, we introduce a convolutional neural network (CNN) (LeCun

and Bengio 1995; Krizhevsky et al. 2012) to extract temporal pattern information from each

individual variable.

The main contributions of this paper are summarized as follows:

– We introduce a new attention concept in which we select the relevant variables as opposed

to the relevant time steps. The method is simple and general to apply on RNN.

– We use toy examples to verify that our attention mechanism enables the model to extract

temporal patterns and focus on different time steps for different time series.

– Attested by experimental results on real-world data ranging from periodic and partially

linear to non-periodic and non-linear tasks, we show that the proposed attention mecha-

nism achieves state-of-the-art results across multiple datasets.

– The learned CNN filters in our attention mechanism demonstrate interesting and inter-

pretable behavior.

The remainder of this paper is organized as follows. In Sect. 2 we review related work

and in Sect. 3 we describe background knowledge. Then, in Sect. 4 we describe the proposed

attention mechanism. Next, we present and analyze our attention mechanism on toy examples

in Sect. 5, and on MTS and polyphonic music dataset in Sect. 6. Finally, we conclude in Sect. 7.

2 Related work

The most well-known model for linear univariate time series forecasting is the autore-

gressive integrated moving average (ARIMA) (Box et al. 2015), which encompasses other

autoregressive time series models, including autoregression (AR), moving average (MA),

and autoregressive moving average (ARMA). Additionally, linear support vector regression

(SVR) (Cao and Tay 2003; Kim 2003) treats the forecasting problem as a typical regres-

sion problem with time-varying parameters. However, these models are mostly limited to

linear univariate time series and do not scale well to MTS. To forecast MTS data, vector

autoregression (VAR), a generalization of AR-based models, was proposed. VAR is prob-

ably the most well-known model in MTS forecasting. Nevertheless, neither AR-based nor

VAR-based models capture non-linearity. For that reason, substantial effort has been put into

non-linear models for time series forecasting based on kernel methods (Chen et al. 2008),

ensembles (Bouchachia and Bouchachia 2008), Gaussian processes (Frigola and Rasmussen

2014) or regime switching (Tong and Lim 2009). Still, these approaches apply predetermined

non-linearities and may fail to recognize different forms of non-linearity for different MTS.

Recently, deep neural networks have received a great amount of attention due to their ability

to capture non-linear interdependencies. Long short-term memory (LSTM) (Hochreiter and

Schmidhuber 1997), a variant of recurrent neural network, has shown promising results in

several NLP tasks and has also been employed for MTS forecasting. Work in this area began

with using naive RNN (Connor et al. 1991), improved with hybrid models that combined

ARIMA and multilayer perceptrons (Zhang et al. 1998; Zhang 2003; Jain and Kumar 2007),
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Fig. 2 Proposed attention mechanism. ht represents the hidden state of the RNN at time step t . There are k

1-D CNN filters with length w, shown as different colors of rectangles. Then, each filter convolves over m

features of hidden states and produces a matrix HC with m rows and k columns. Next, the scoring function

calculates a weight for each row of HC by comparing with the current hidden state ht . Last but not least, the

weights are normalized and the rows of HC is weighted summed by their corresponding weights to generate

Vt . Finally, we concatenate Vt , ht and perform matrix multiplication to generate h′
t , which is used to create

the final forecast value (Color figure online)

and then most recently progressed to dynamic Boltzmann machines with RNN (Dasgupta and

Osogami 2017). Although these models can be applied to MTS, they mainly target univariate

or bivariate time series.

To the best of our knowledge, the long- and short-term time-series network (LSTNet) (Lai

et al. 2018) is the first model designed specifically for MTS forecasting with up to hun-

dreds of time series. LSTNet uses CNNs to capture short-term patterns, and LSTM or GRU

for memorizing relatively long-term patterns. In practice, however, LSTM and GRU can-

not memorize very long-term interdependencies due to training instability and the gradient

vanishing problem. To address this, LSTNet adds either a recurrent-skip layer or a typical

attention mechanism. Also part of the overall model is traditional autoregression, which helps

to mitigate the scale insensitivity of neural networks. Nonetheless, LSTNet has three major

shortcomings when compared to our proposed attention mechanism: (1) the skip length of the

recurrent-skip layer must be manually tuned in order to match the period of the data, whereas

our proposed approach learns the periodic patterns by itself; (2) the LSTNet-Skip model is

specifically designed for MTS data with periodic patterns, whereas our proposed model, as

shown in our experiments, is simple and adaptable to various datasets, even non-periodic

ones; and (3) the attention layer in LSTNet-Attn model selects a relevant hidden state as

in typical attention mechanism, whereas our proposed attention mechanism selects relevant

time series which is a more suitable mechanism for MTS data.

3 Preliminaries

In this section, we briefly describe two essential modules related to our proposed model: the

RNN module, and the typical attention mechanism.

3.1 Recurrent neural networks

Given a sequence of information {x1, x2, . . . , xt }, where xi ∈ R
n , an RNN generally defines

a recurrent function, F , and calculates ht ∈ R
m for each time step, t , as

ht = F(ht−1, xt ) (1)
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where the implementation of function F depends on what kind of RNN cell is used.

Long short-term memory (LSTM) (Hochreiter and Schmidhuber 1997) cells are widely

used, which have a slightly different recurrent function:

ht , ct = F(ht−1, ct−1, xt ), (2)

which is defined by the following equations:

it = sigmoid(Wxi
xt + Whi

ht−1) (3)

ft = sigmoid(Wx f
xt + Wh f

ht−1) (4)

ot = sigmoid(Wxo xt + Who ht−1) (5)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wxg xt + Whg ht−1) (6)

ht = ot ⊙ tanh(ct ) (7)

where it , ft , ot , and ct ∈ R
m , Wxi

, Wx f
, Wxo and Wxg ∈ R

m×n , Whi
, Wh f

, Who and

Whg ∈ R
m×m , and ⊙ denotes element-wise multiplication.

3.2 Typical attentionmechanism

In the typical attention mechanism (Luong et al. 2015; Bahdanau et al. 2015) in an RNN,

given the previous states H = {h1, h2, . . . , ht−1}, a context vector vt is extracted from the

previous states. vt is a weighted sum of each column hi in H , which represents the information

relevant to the current time step. vt is further integrated with the present state ht to yield the

prediction.

Assume a scoring function f : R
m × R

m �→ R which computes the relevance between

its input vectors. Formally, we have the following formula to calculate the context vector vt :

αi =
exp( f (hi , ht ))

∑t−1
j=1 exp( f (h j , ht ))

(8)

vt =

t−1
∑

i=1

αi hi . (9)

4 Temporal pattern attention

While previous work focuses mainly on changing the network architecture of the attention-

based models via different settings to improve performance on various tasks, we believe there

is a critical defect in applying typical attention mechanisms on RNN for MTS forecasting.

The typical attention mechanism selects information relevant to the current time step, and

the context vector vt is the weighted sum of the column vectors of previous RNN hidden

states, H = {h1, h2, . . . , ht−1}. This design lends itself to tasks in which each time step

contains a single piece of information, for example, an NLP task in which each time step

corresponds to a single word. If there are multiple variables in each time step, it fails to ignore

variables which are noisy in terms of forecasting utility. Moreover, since the typical attention

mechanism averages the information across multiple time steps, it fails to detect temporal

patterns useful for forecasting.

The overview of the proposed model is shown in Fig. 2. In the proposed approach, given

previous RNN hidden states H ∈ R
m×(t−1), the proposed attention mechanism basically
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attends to its row vectors. The attention weights on rows select those variables that are

helpful for forecasting. Since the context vector vt is now the weighted sum of the row vectors

containing the information across multiple time steps, it captures temporal information.

4.1 Problem formulation

In MTS forecasting, given an MTS, X = {x1, x2, . . . , xt−1}, where xi ∈ R
n represents

the observed value at time i , the task is to predict the value of xt−1+∆, where ∆ is a fixed

horizon with respect to different tasks. We denote the corresponding prediction as yt−1+∆,

and the ground-truth value as ŷt−1+∆ = xt−1+∆. Moreover, for every task, we use only

{xt−w, xt−w+1, . . . , xt−1} to predict xt−1+∆, where w is the window size. This is a common

practice (Lai et al. 2018; Qin et al. 2017), because the assumption is that there is no useful

information before the window and the input is thus fixed.

4.2 Temporal pattern detection using CNN

CNN’s success lies in no small part to its ability to capture various important signal patterns;

as such we use a CNN to enhance the learning ability of the model by applying CNN filters

on the row vectors of H . Specifically, we have k filters Ci ∈ R
1×T , where T is the maximum

length we are paying attention to. If unspecified, we assume T = w. Convolutional operations

yield HC ∈ R
n×k where HC

i, j represents the convolutional value of the i th row vector and

the j th filter. Formally, this operation is given by

HC
i, j =

w
∑

l=1

Hi,(t−w−1+l) × C j,T −w+l . (10)

4.3 Proposed attentionmechanism

We calculate vt as a weighted sum of row vectors of HC . Defined below is the scoring

function f : R
k × R

m �→ R to evaluate relevance:

f (HC
i , ht ) = (HC

i )⊤Waht , (11)

where HC
i is the i th row of HC , and Wa ∈ R

k×m . The attention weight αi is obtained as

αi = sigmoid( f (HC
i , ht )). (12)

Note that we use the sigmoid activation function instead of softmax, as we expect more than

one variable to be useful for forecasting.

Completing the process, the row vectors of HC are weighted by αi to obtain the context

vector vt ∈ R
k ,

vt =

n
∑

i=1

αi HC
i . (13)

Then we integrate vt and ht to yield the final prediction

h′
t = Whht + Wvvt , (14)
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Fig. 3 Visualization of the first type of toy examples without interdependencies (left) and the second type

of toy examples with interdependencies (right) for D = 6, which means that there are 6 time series in each

example

yt−1+∆ = Wh′h′
t , (15)

where ht , h′
t ∈ R

m , Wh ∈ R
m×m , Wv ∈ R

m×k , and Wh′ ∈ R
n×m and yt−1+∆ ∈ R

n .

5 Analysis of proposed attention on toy examples

In order to elaborate the failure of traditional attention mechanisms and the influence of

interdependencies, we study the performance of different attention mechanisms on two types

of artificially constructed toy examples.

In the first type of toy examples, the t th time step of the i th time series is defined as

sin( 2π i t
64

), that is, each time series is a sine wave with different periods. Notice that any two

time series are mutually independent in the first type, so there are no interdependency.

The second type of toy examples adds interdependencies to the first type by mixing time

series, and thus the t th time step of the i th time series is formulated as:

sin

(

2π i t

64

)

+
1

D − 1

D
∑

j=1, j �=i

sin

(

2π j t

64

)

, (16)

where D is the number of time series. Both types of toy examples are visualized in Fig. 3 for

D = 6.

All models in the following analyses are trained with window size w = 64, horizon

∆ = 1, and similar amount of parameters. In this setup, each of our toy examples consists of

64 samples. Each time series in the first sample comprises values of Eq. 16 from t = 0 to 63,

and we can shift one time step to get the second sample with values from t = 1 to 64. For the
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Fig. 4 Mean absolute loss and the range of standard deviation in log10 of the first type of toy examples without

interdependencies (left) and the second type of toy examples with interdependencies (right), both in ten runs.

The baseline indicates the loss if all predicted values are zero

last sample, we use values from t = 63 to 126 as the input series correspondingly. Note that

values from t = 64 to 127 are equal to those from t = 0 to 63. We trained the models for 200

epochs on two types of toy examples for D = {1, 6, 11, . . . , 56} and record mean absolute

loss in training. There is no validation and testing data because the intent of this section is to

demonstrate the greater capability of our attention over typical attention to fit MTS data not

the generalizability of our attention. The results are shown in Fig. 4.

5.1 Failure of traditional attentionmechanisms

Intuitively, for the first toy example, the model can accurately predict the next value by

memorizing the value that appears exactly one period before. However, we know that different

time series have different periods, which means to have a good prediction, the model should

be able to look back different numbers of time steps for different series. From this point, it

is clear that the failure of traditional attention mechanisms comes from extracting only one

previous time step while discounting the information in other time steps. On the other hand,

our attention mechanism attends on the features extracted from row vectors of RNN hidden

states by CNN filters, which enables the model to select relevant information across multiple

time steps.

The aforementioned explanation is verified by the left plot in Fig. 4, where we observe

that the performance of the LSTM with Luong attention is poor when D ≫ 1, compared to

the others. Notice that all models have similar amount of parameters, which implies that the

LSTM without attention has a larger hidden size when compared to the LSTM with Luong

attention. Consequently, the LSTM without attention outperforms the LSTM with Luong

attention when D ≫ 1, because the larger hidden size helps the model to make prediction

while the Luong attention is nearly useless. On the contrary, our attention is useful, so the
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LSTM with our attention is better than the LSTM without attention on average, even though

its hidden size is smaller. Also, removing the CNN from our attention, which results in the

same model as the “Sigmoid - W/o CNN” cell in Table 4, does not affect the performance,

which implies that our feature-wise attention is indispensable.

5.2 Influence of interdependencies

When there are interdependencies in MTS data, it is desirable to leverage the interdepen-

dencies to further improve forecasting accuracy. The right plot in Fig. 4 shows that both the

LSTM with Luong attention and the LSTM without attention do not benefit from the added

interdependencies, since the loss values remain the same. On the other hand, the loss of the

LSTM with the proposed attention is lower when there are interdependencies, which suggests

that our attention successfully utilized the interdependencies to facilitate MTS forecasting.

Again, removing the CNN from our attention does not affect the performance in this case.

6 Experiments and analysis

In this section, we first describe the datasets upon which we conducted our experiments. Next,

we present our experimental results and a visualization of the prediction against LSTNet.

Then, we discuss the ablation study. Finally, we analyze in what sense the CNN filters

resemble the bases in DFT.

6.1 Datasets

To evaluate the effectiveness and generalization ability of the proposed attention mechanism,

we used two dissimilar types of datasets: typical MTS datasets and polyphonic music datasets.

The typical MTS datasets are published by Lai et al. (2018); there are four datasets:

– Solar Energy2: the solar power production data from photovoltaic plants in Alabama

State in 2006.

– Traffic3: two years (2015–2016) of data provided by the California Department of Trans-

portation that describes the road occupancy rate (between 0 and 1) on San Francisco Bay

area freeways.

– Electricity4: a record of the electricity consumption of 321 clients in kWh.

– Exchange Rate: the exchange rates of eight foreign countries (Australia, British, Canada,

China, Japan, New Zealand, Singapore, and Switzerland) from 1990 to 2016.

These datasets are real-world data that contains both linear and non-linear interdependencies.

Moreover, the Solar Energy, Traffic, and Electricity datasets exhibit strong periodic patterns

indicating daily or weekly human activities. According to the authors of LSTNet, each time

series in all datasets have been split into training (60%), validation (20%), and testing set

(20%) in chronological order.

In contrast, the polyphonic music datasets introduced below are much more complicated,

in the sense that no apparent linearity or repetitive patterns exist:

2 http://www.nrel.gov/grid/solar-power-data.html.

3 http://pems.dot.ca.gov.

4 https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014.
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Table 1 Statistics of all datasets,

where L is the length of the time

series, D is the number of time

series, S is the sampling spacing,

and B is size of the dataset in

bytes

Dataset L D S B

Solar Energy 52,560 137 10 min 172 M

Traffic 17,544 862 1 h 130 M

Electricity 26,304 321 1 h 91 M

Exchange Rate 7,588 8 1 day 534 K

MuseData 216–102,552 128 1 beat 4.9 M

LPD-5-Cleansed 1072–1,917,952 128 1 beat 1.7 G

MuseData and LPD-5-Cleansed both have various-length time series

since the length of music pieces varies

– MuseData Boulanger-Lewandowski et al. (2012): a collection of musical pieces from

various classical music composers in MIDI format.

– LPD-5-Cleansed Dong et al. (2018); Raffel (2016): 21, 425 multi-track piano-rolls that

contain drums, piano, guitar, bass, and strings.

To train models on these datasets, we consider each played note as 1 and 0 otherwise (i.e., a

musical rest), and set one beat as one time step as shown in Table 1. Given the played notes

of 4 bars consisting of 16 beats, the task is to predict whether each pitch at the next time step

is played or not. For training, validation, and testing sets, we follow the original MuseData

separation, which is divided into 524 training pieces, 135 validation pieces, and 124 testing

pieces. LPD-5-Cleansed, however, was not split in previous work (Dong et al. 2018; Raffel

2016); thus we randomly split it into training (80%), validation (10%), and testing (10%)

sets. The size of LPD-5-Cleansed dataset is much larger than others, so we decided to use a

smaller validation and testing set.

The main difference between typical MTS datasets and polyphonic music datasets is that

scalars in typical MTS datasets are continuous but scalars in polyphonic music datasets are

discrete (either 0 or 1). The statistics of both the typical MTS datasets and polyphonic music

datasets are summarized in Table 1.

6.2 Methods for comparison

We compared the proposed model with the following methods on the typical MTS datasets:

– AR: standard autoregression model.

– LRidge: VAR model with L2-regularization: the most popular model for MTS forecast-

ing.

– LSVR: VAR model with SVR objective function (Vapnik 1997).

– GP: Gaussian process model (Frigola-Alcade 2015; Roberts et al. 2011).

– SETAR: Self-exciting threshold autoregression model, a classical univariate non-linear

model (Tong and Lim 2009).

– LSTNet-Skip: LSTNet with recurrent-skip layer.

– LSTNet-Attn: LSTNet with attention layer.

AR, LRidge, LSVR, GP and SETAR are traditional baseline methods, whereas LSTNet-Skip

and LSTNet-Attn are state-of-the-art methods based on deep neural networks.

However, as both traditional baseline methods and LSTNet are ill-suited to polyphonic

music datasets due to their non-linearity and the lack of periodicity, we use LSTM and LSTM
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with Luong attention as the baseline models to evaluate the proposed model on polyphonic

music datasets:

– LSTM: RNN cells as introduced in Sect. 3.

– LSTM with Luong attention: LSTM with an attention mechanism scoring function of

which f (hi , ht ) = (hi )
⊤W ht , where W ∈ R

m×m (Luong et al. 2015).

6.3 Model setup and parameter settings

For all experiments, we used LSTM units in our RNN models, and fixed the number of CNN

filters at 32. Also, inspired by LSTNet, we included an autoregression component in our

model when training and testing on typical MTS datasets.

For typical MTS datasets, we conducted a grid search over tunable parameters as done

with LSTNet. Specifically, on Solar Energy, Traffic, and Electricity, the range for window

size w was {24, 48, 96, 120, 144, 168}, the range for the number of hidden units m was

{25, 45, 70}, and the range for the step of the exponential learning rate decay with a rate of

0.995 was {200, 300, 500, 1000}. On Exchange Rate, these three parameters were {30, 60},

{6, 12}, and {120, 200}, respectively. Two types of data normalization were also viewed as

part of the grid search: one normalized each time series by the maximum value in itself, and

the other normalized every time series by the maximum value over the whole dataset. Lastly,

we used the absolute loss function and Adam with a 10−3 learning rate on Solar Energy,

Traffic, and Electricity, and a 3 · 10−3 learning rate on Exchange Rate. For AR, LRidge,

LSVR and GP, we followed the parameter settings as reported in the LSTNet paper (Lai et al.

2018). For SETAR, we searched the embedding dimension over {24,48,96,120,144,168} for

Solar Energy, Traffic, and Electricity, and fixed the embedding dimension to 30 for Exchange

Rate. The two different setups between our method and LSTNet are (1)we have two data

normalization methods to choose from, whereas LSTNet only used the first type of data

normalization; and (2) the grid search over the window size w is different.

For models used for the polyphonic music datasets, including the baselines and proposed

models in the following subsections, we used 3 layers for all RNNs, as done in Chuan and

Herremans (2018), and fixed the trainable parameters to around 5 · 106 by adjusting the

number of LSTM units to fairly compare different models. In addition, we used the Adam

optimizer with a 10−5 learning rate and a cross entropy loss function.

6.4 Evaluationmetrics

On typical MTS datasets, since we compared the proposed model with LSTNet, we followed

the same evaluation metrics: RAE, RSE and CORR. The first metric is the relative absolute

error (RAE), which is defined as

RAE =

∑t1
t=t0

∑n
i=1 |(yt,i − ŷt,i )|

∑t1
t=t0

∑n
i=1 |ŷt,i − ŷt0:t1,1:n |

. (17)

The next metric is the root relative squared error (RSE):

RSE =

√

∑t1
t=t0

∑n
i=1(yt,i − ŷt,i )

2

√

∑t1
t=t0

∑n
i=1(ŷt,i − ŷt0:t1,1:n)2

, (18)
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Fig. 5 Prediction results for proposed model and LSTNet-Skip on Traffic testing set with 3-hour horizon.

Proposed model clearly yields better forecasts around the flat line after the peak and in the valley

Fig. 6 Validation loss under different training epochs on MuseData (left), and LPD-5-Cleansed (right)

and finally the third metric is the empirical correlation coefficient (CORR):

CORR =
1

n

n
∑

i=1

∑t1
t=t0

(yt,i − yt0:t1,i )(ŷt,i − ŷt0:t1,i )
√

∑t1
t=t0

(yt,i − yt0:t1,i )
2
∑t1

t=t0
(ŷt,i − ŷt0:t1,i )

2

, (19)

where y, ŷ is defined in Sect. 4.1, ŷt ,∀t ∈ [t0, t1] is the ground-truth value of the testing

data, and y denotes the mean of set y. RAE and RSE both disregards data scale and is

a normalized version of the mean absolute error (MAE) and the root mean square error

(RMSE), respectively. For RAE and RSE, the lower the better, whereas for CORR, the

higher the better.

To decide which model is better on polyphonic music datasets, we use validation loss

(negative log-likelihood), precision, recall, and F1 score as measurements which are widely

used in work on polyphonic music generation (Boulanger-Lewandowski et al. 2012; Chuan

and Herremans 2018).

6.5 Results on typical MTS datasets

On typical MTS datasets, we chose the best model on the validation set using RAE/RSE/CORR

as the metric for the testing set. The numerical results are tabulated in Table 2, where the

metric of the first two tables are RAE, followed by two tables of RSE metric, and ended

by another two tables using CORR metric. Both tables show that the proposed model out-

performs almost all other methods on all datasets, horizons, and metrics. Also, our models

are able to deal with a wide range of dataset size, from the smallest 534 KB Exchange Rate

dataset to the largest 172 MB Solar Energy dataset. In these results, the proposed model

consistently demonstrates its superiority for MTS forecasting.

In the comparison to LSTNet-Skip and LSTNet-Attn, the previous state-of-the-art meth-

ods, the proposed model exhibits superior performance, especially on Traffic and Electricity,
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Table 3 Precision, recall, and F1

score of different models on

polyphonic music datasets

Metric MuseData

Precision Recall F1

W/o attention 0.84009 0.67657 0.74952

W/ Luong attention 0.75197 0.52839 0.62066

W/ proposed attention 0.85581 0.68889 0.76333

LPD-5-Cleansed

W/o attention 0.83794 0.73041 0.78049

W/ Luong attention 0.83548 0.72380 0.77564

W/ proposed attention 0.83979 0.74517 0.78966

Bold values indicate best performance

which contain the largest amount of time series. Moreover, on Exchange Rate, where no

repetitive pattern exists, the proposed model is still the best overall; the performance of

LSTNet-Skip and LSTNet-Attn fall behind traditional methods, including AR, LRidge,

LSVR, GP, and SETAR. In Fig. 5 we also visualize and compare the prediction of the

proposed model and LSTNet-Skip.

In summary, the proposed model achieves state-of-the-art performance on both periodic

and non-periodic MTS datasets.

6.6 Results on polyphonic music datasets

In this subsection, to further verify the efficacy and generalization ability of the proposed

model to discrete data, we describe experiments conducted on polyphonic music datasets;

the results are shown in Fig. 6 and Table 3. We compared three RNN models: LSTM, LSTM

with Luong attention, and LSTM with the proposed attention mechanism. Figure 6 shows

the validation loss across training epochs, and in Table 3, we use the models with the lowest

validation loss to calculate precision, recall, and F1 score on the testing set.

From the results, we first verify our claim that the typical attention mechanism does not

work on such tasks, as under similar hyperparameters and trainable weights, LSTM and the

proposed model outperform such attention mechanisms. In addition, the proposed model also

learns more effectively compared to LSTM throughout the learning process and yields better

performance in terms of precision, recall, and F1 score.

6.7 Analysis of CNN filters

DFT is a variant of the Fourier transform (FT) which handles equally-spaced samples of a

signal in time. In the field of time series analysis, there is a wide body of work that utilizes

FT or DFT to reveal important characteristics in time series (Huang et al. 1998; Bloomfield

1976). In our case, since the MTS data is also equally-spaced and discrete, we could apply

DFT to analyze it. However, in MTS data, there is more than one time series, so we naturally

average the magnitude of the frequency components of every time series, and arrive at a single

frequency domain representation. We denote this the average discrete Fourier transform

(avg-DFT). The single frequency-domain representation reveals the prevailing frequency

components of the MTS data. For instance, it is reasonable to assume a notable 24-hour

oscillation in Fig. 5, which is verified by the avg-DFT of the Traffic dataset shown in Fig. 7.

123



Machine Learning (2019) 108:1421–1441 1437

Fig. 7 Magnitude comparison of (1) DFT of CNN filters trained on Traffic with a 3-hour horizon, and (2)

every window of the Traffic dataset. To make the figure more intuitive, the unit of the horizontal axis is the

period

Fig. 8 Two different CNN filters trained on Traffic with a 3-hour horizon, which detect different periods of

temporal patterns

Since we expect our CNN filters to learn temporal MTS patterns, the prevailing frequency

components in the average CNN filters should be similar to that of the training MTS data.

Hence, we also apply avg-DFT on the k = 32 CNN filters that are trained on Traffic with

a 3-hour horizon; in Fig. 7 we plot the result alongside with the avg-DFT of every window

of Traffic dataset. Impressively, the two curves reach peaks at the same periods most of the

time, which implies that the learned CNN filters resemble bases in DFT. At the 24, 12, 8, and

6-hour periods, not only is the magnitude of the Traffic dataset at its peak, but the magnitude

of CNN filters also tops out. Moreover, in Fig. 8, we show that different CNN filters behave

differently. Some specialize at capturing long-term (24-hour) temporal patterns, while others

are good at recognizing short-term (8-hour) temporal patterns. As a whole, we suggest that

the proposed CNN filters play the role of bases in DFT. As demonstrated in the work by

Rippel et al. (2015), such a “frequency domain” serves as a powerful representation for CNN

to use in training and modeling. Thus, LSTM relies on the frequency-domain information

extracted by the proposed attention mechanism to accurately forecast the future.

123



1438 Machine Learning (2019) 108:1421–1441

T
a
b
le
4

A
b

la
ti

o
n

st
u

d
y

D
at

as
et

S
o

la
r

E
n

er
g

y
(h

o
ri

zo
n

=
2

4
)

T
ra

ffi
c

(h
o

ri
zo

n
=

2
4

)

P
o
si

ti
o
n

F
il

te
r

W
/o

C
N

N
P

o
si

ti
o
n

F
il

te
r

W
/o

C
N

N

S
o

ft
m

ax
0

.4
3

9
7

±
0

.0
0

8
9

0
.4

4
1

4
±

0
.0

0
9

3
0

.4
5

0
2

±
0

.0
0

9
9

0
.4

6
9

6
±

0
.0

0
6

2
0

.4
8

3
2

±
0

.0
1

0
9

0
.4

8
1

0
±

0
.0

0
8

3

S
ig

m
o
id

0
.4

3
8

9
±

0
.0

0
8

4
0

.4
5

9
8

±
0

.0
0

1
1

0
.4

6
3

9
±

0
.0

1
0

1
0

.4
7

6
5

±
0

.0
0

6
8

0
.4

7
8

5
±

0
.0

0
6

9
0

.4
8

0
3

±
0

.0
1

0
4

C
o

n
ca

t
0

.4
4

3
1

±
0

.0
1

0
0

0
.4

4
5

4
±

0
.0

0
9

3
0

.4
8

5
1

±
0

.0
0

4
9

0
.4

8
1

2
±

0
.0

0
8

2
0

.4
7

8
3

±
0

.0
0

7
7

0
.4

7
7

9
±

0
.0

0
7

3

D
at

as
et

E
le

ct
ri

ci
ty

(h
o
ri

zo
n

=
2
4
)

M
u
se

D
at

a

S
o
ft

m
ax

0
.0

9
9

7
±

0
.0

0
1

2
0

.1
0

0
7

±
0

.0
0

1
3

0
.1

0
1

0
±

0
.0

0
1

1
0

.0
4

9
2

3
±

0
.0

0
3

7
0

.0
4

9
2

9
±

0
.0

0
3

1
0

.0
4

9
5

1
±

0
.0

0
4

1

S
ig

m
o

id
0

.1
0

0
6

±
0

.0
0

1
5

0
.1

0
2

2
±

0
.0

0
0

9
0

.1
0

1
3

±
0

.0
0

1
1

0
.0

4
8

8
2

±
0

.0
0

3
1

0
.0

4
9

5
8

±
0

.0
0

2
8

0
.0

4
9

7
9

±
0

.0
0

2
7

C
o

n
ca

t
0

.1
0

2
1

±
0

.0
0

1
7

0
.1

0
6

5
±

0
.0

0
2

9
0

.1
0

1
2

±
0

.0
0

0
8

0
.0

5
1

6
3

±
0

.0
0

4
0

0
.0

5
1

7
9

±
0

.0
0

3
6

0
.0

5
1

1
2

±
0

.0
0

2
7

E
v
al

u
at

io
n

m
et

ri
c

fo
r

S
o
la

r
E

n
er

g
y,

T
ra

ffi
c,

an
d

E
le

ct
ri

ci
ty

is
R

S
E

,
an

d
n

eg
at

iv
e

lo
g
-l

ik
el

ih
o
o
d

fo
r

M
u
se

D
at

a.
W

e
re

p
o
rt

th
e

m
ea

n
an

d
st

an
d
ar

d
d
ev

ia
ti

o
n

in
te

n
ru

n
s.

O
n

ea
ch

co
rp

u
s,

b
o
ld

te
x

t
re

p
re

se
n
ts

th
e

b
es

t
an

d
u
n
d
er

li
n
ed

te
x
t

re
p
re

se
n
ts

se
co

n
d

b
es

t

123



Machine Learning (2019) 108:1421–1441 1439

6.8 Ablation study

In order to verify that the above improvement comes from each added component rather

than a specific set of hyperparameters, we conducted an ablation study on the Solar Energy,

Traffic, Electricity, and MuseData datasets. There were two main settings: one controlling

how we attend to hidden states, H , of RNN and the other controlling how we integrate the

scoring function f into the proposed model, or even disable the function. First, in the pro-

posed method, we let the model attend to values of various filters on each position (HC
i ); we

can also consider attending to values of the same filters at various positions ((HC )⊤i ) or row

vectors of H (H⊤
i ). These three different approaches correspond to the column headers in

Table 4: “Position”, “Filter”, and “Without CNN”. Second, whereas in the typical attention

mechanism, softmax is usually used on the output value of scoring function f to extract the

most relevant information, we use sigmoid as our activation function. Therefore, we compare

these two different functions. Another possible structure for forecasting is to concatenate all

previous hidden states and let the model automatically learn which values are important. Tak-

ing these two groups of settings into consideration, we trained models with all combinations

of possible structures on these four datasets.

The MuseData results show that the model with sigmoid activation and attention on HC
i

(position) is clearly the best, which suggests that the proposed model is reasonably effective

for forecasting. No matter which proposed component is removed from the model, perfor-

mance drops. For example, using softmax instead of sigmoid raises the negative log-likelihood

from 0.04882 to 0.04923; we obtain a even worse model with a negative log-likelihood of

0.4979 if we do not use CNN filters. In addition, we note no significant improvement between

the proposed model and that model using softmax on the first three datasets in Table 4: Solar

Energy, Traffic, and Electricity. This is not surprising, given our motivation for using sig-

moid, as explained in Sect. 4.3. Originally, we expected CNN filters to find basic patterns

and expected the sigmoid function to help the model to combine these patterns into one that

helps. However, due to the strongly periodic nature of these three datasets, it is possible that

using a small number of basic patterns is sufficient for good prediction. Overall, however,

the proposed model is more general and yields stable and competitive results across different

datasets.

7 Conclusions

In this paper, we focus on MTS forecasting and propose a novel temporal pattern attention

mechanism which removes the limitation of typical attention mechanisms on such tasks.

We allow the attention dimension to be feature-wise in order for the model learn interde-

pendencies among multiple variables not only within the same time step but also across all

previous times and series. Our experiments on both toy examples and real-world datasets

strongly support this idea and show that the proposed model achieves state-of-the-art results.

In addition, the visualization of filters also verifies our motivation in a more understandable

way to human beings.
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