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ABSTRACT

This paper analyzes some of the challenges in performing
automatic annotation and ranking of music audio, and pro-
poses a few improvements. First, we motivate the use of
principal component analysis on the mel-scaled spectrum.
Secondly, we present an analysis of the impact of the selec-
tion of pooling functions for summarization of the features
over time. We show that combining several pooling func-
tions improves the performance of the system. Finally, we
introduce the idea of multiscale learning. By incorporating
these ideas in our model, we obtained state-of-the-art per-
formance on the Magnatagatune dataset.

1. INTRODUCTION

In this paper, we consider the tasks of automatic annotation
and ranking of music audio. Automatic annotation consists
of assigning relevant word descriptors, or tags, to a given
music audio clip. Ranking, on the other hand, consists of
finding an audio clip that best corresponds to a given tag,
or set of tags. These descriptors are able to represent a wide
range of semantic concepts such as genre, mood, instrumen-
tation, etc. Thus, a set of tags provides a high-level descrip-
tion of an audio clip. This information is useful for tasks like
music recommendation, playlist generation and measuring
music similarity.

In order to solve automatic annotation and ranking, we
need to build a system that can extract relevant features from
music audio and infer abstract concepts from these features.
Many content-based music recommendation systems follow
the same recipe with minor variations (see [5] for a review).
First, some features are extracted from the audio. Then,
these features are summarized over time. Finally, a classifi-
cation model is trained over the summarized features to ob-
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tain tag affinities. We describe several previous approaches
that follow these steps and have been applied to the Mag-
natune dataset [13] in Section 3.1. We then present an ap-
proach that deviates somewhat from the standard recipe by
integrating learning steps before and after the temporal sum-
marization.

This paper has three main contributions. First, we de-
scribe a simple adaptive preprocessing procedure of the mu-
sic audio that incorporates only little prior knowledge on
the nature of music audio. We show that the features ob-
tained through this adaptive preprocessing give competitive
results when using a relatively simple classifier. Secondly,
we study the impact of the selection and mixing of pool-
ing functions for summarization of the features over time.
We introduce the idea of using min-pooling in conjunction
with other functions. We show that combining several pool-
ing functions improves the performance of the system. Fi-
nally, we incorporate the idea of multiscale learning. In or-
der to do this, we integrate feature learning, time summa-
rization and classification in one deep learning step. Using
this method, we obtain state-of-the-art performance on the
Magnatagatune dataset.

The paper is divided as follows. First, we motivate our
experiments in Section 2. Then, we expose our experimen-
tal setup in Section 3. We present and discuss our results in
Section 4. Finally, we conclude in Section 5.

2. MOTIVATION
2.1 Choosing the right features

Choosing the right features is crucial for music classifica-
tion. Many automatic annotation systems use features such
as MFCC:s [8,12] because they have shown their worth in the
speech recognition domain. However, music audio is very
different from speech audio in many ways. So, MFCCs,
which have been engineered for speech analysis might not
be the optimal feature to use for music audio analysis.
Alternatives have been proposed to replace MFCCs. Re-
cent work have shown that better classification performance
can be achieved by using mel-scaled energy bands of the



spectrum [4]. Octave-based spectral contrast features [11]
have been shown to also outperform MFCCs for genre clas-
sification. Thus, finding optimal features for audio classifi-
cation is still an open problem.

In section 3.3, we present a relatively simple audio pre-
processing based on spectral energy bands and principal com-
ponent analysis (PCA).

2.2 Summarization of the features over time

Another important aspect of any automatic tagging system
working on music audio is the question of the summariza-
tion of features over time, potentially allowing one to map a
variable-length sequence into a fixed-size vector of features
that can be fed to a classifier. The objective of summariza-
tion is to transform a joint feature representation into a more
useful one that preserves important information while dis-
carding noise, redundancy or irrelevant information. Sum-
marizing features either in space (e.g. in visual recognition),
or in time (e.g. in audio analysis) yields representations that
are compact, invariant to shifts in space or time and robust
to clutter.

One of the most straightforward ways to summarize fea-
tures is feature pooling. Pooling consists in extracting sim-
ple statistics such as the mean or maximum of the features
over an excerpt of a given time length. The choice of the
pooling function has a great impact on the performance of
the system. In [7], feature pooling in the domain of visual
recognition is analyzed. The authors come to the conclu-
sion that, depending on the data and features, neither max-
pooling or mean-pooling might be optimal, but something
in between might be. This underlines the importance of a
thorough analysis of pooling functions for the specific task
of music audio classification.

The choice of the temporal scale at which the pooling is
applied also has a great impact on a system’s performance.
If we choose a time-scale that is too long, we discard too
much information in the process, and the performance of
the system suffers. If we choose a time-scale that is too
small, the representation becomes less compact and looses
the temporal shift invariance. It is possible to use onset
detection to determine an optimized aggregation window
length [20]. However, this method relies on onset detection
methods which are not always reliable in all types of music.

2.3 Feature Learning and Deep Learning

It has been argued that features extracted by task-specific
signal processing might be replaced by features learned over
simpler low-level features, i.e., for object recognition [2,
15]. For instance, features learned with a Deep Belief Net-
work over spectral amplitudes has been shown to outper-
form MFCCs for genre recognition and automatic annota-
tion [10, 16].

Feature learning consists in exploiting the structure of the
data distribution to construct a new representation of the in-
put. This representation can be considered as a set of la-
tent variables within a probabilistic model of the input. The
transformation can be learned via unsupervised or super-
vised learning. Feature learning allows one to build systems
relying less on prior knowledge and more on data, which
grants more flexibility to adapt to a given task.

Deep learning algorithms attempt to discover multiple
levels of features or multiple levels of representation. Sev-
eral theoretical results and arguments [1] suggest that shal-
low architectures (with 1 or 2 levels, as in SVMs with a
fixed kernel, for example) may be less efficient at represent-
ing functions that can otherwise be represented compactly
by a deep architecture. The advantage of a deep architecture
is that concepts or features at one level can be represented
by combining features at lower levels, and these low-level
features can be re-used in exponentially many ways as one
considers deep architectures.

Convolutional Neural Networks (CNN) [15] were the first
deep models to be applied successfully to real-world prob-
lems such as character recognition. CNNs present a hier-
archical structure. Inserting a feature pooling layer between
convolutional layers allows different layers of the network to
work at different time scales and introduces more and more
translation invariance (as well as robustness to other kinds
of local distortions) as one moves up the hierarchy of the
architecture. Hierarchical network structures such as CNNs
seem ideal for representing music audio, since music also
tends to present this hierarchical structure in time and dif-
ferent features of the music may be more salient at different
time scales. Thus, in Section 3.5.2, we propose a hierachical
model strongly inspired by CNNss.

3. EXPERIMENTAL SETUP
3.1 Magnatagatune Dataset

The Magnatagatune dataset consists of 29-second clips with
annotations that were collected using an online game called
TagATune. This dataset was used in the MIREX 2009 con-
test on audio tag classification [14]. In our experiments, we
used the same set of tags and the same train/test split as in
the contest. The training, valid and test set were composed
of 14660, 1629 and 6499 clips respectively. The clips were
annotated with a set of 160 tags, each clip being associated
with between 1 and 30 tags.

We describe here the systems used by the four best con-
testants: Marsyas [19], Mandel [17], Manzagol [18] and
Zhi [9]. All submissions use MFCCs as features, except
for Mandel, which instead uses a cepstral transform that is
closely related to MFCCs. Mandel also computes a set of
temporal features. In addition, Marsyas includes a set of
spectral features: spectral centroid, rolloff and flux. Zhi



uses Gaussian Mixture Models to obtain a song-level rep-
resentation and uses a semantic multiclass labeling model.
Manzagol summarizes the features with vector quantization

(VQ) and applies an algorithm called PAMIR (passive-aggressive

model for image retrieval). Mandel trains balanced SVMs
for each tag. Finally, Marsyas uses running means and stan-
dard deviations of the features as input to a two-stage SVM
classifier.

3.2 Performance evaluation

To evaluate the performance of our model, we compute the
Area Under the ROC Curve (AUC). The ROC curve of a
classifier is defined by the ratio of true positives over the
positive outputs in function of the ratio of false positives
over the negative outputs. The AUC gives the probability
that, given one random positive and one random negative
example, the classifier will rank the positive one higher than
the negative one. Since the AUC is defined for a binary
classification, and our task requires multi-label classifica-
tion, there are two ways we can compute the AUC. By com-
puting the average of the AUC for each tag (AUC-tag), we
obtain a global measure of how good a classifier is at rank-
ing clips given a tag (e.g. Which clip is more 'Reggae’?).
Alternatively, we can compute the average of the AUC for
each clip (AUC-clip) to obtain a measure of how good clas-
sifier is at ranking tags for a given clip (e.g. Is this clip more
’sad’ or “metal’ ?).

Another measure which is closely related to the AUC is
the precision at £ where k is an integer. Given an ordered list
of tags for a clip, it is defined by the ratio of true positives
in the top k positions.

3.3 Audio Preprocessing

Our audio preprocessing involves three steps: discrete Fourier
transform (DFT), mel-compression and principal component
analysis whitening (PCA).

Firstly, to transform the audio in the spectral domain, we
compute DFTs over windows of 1024 samples on audio at
22.1 KHz (i.e. roughly 46ms) with a frame step of 512 sam-
ples. Then, we run the spectral amplitudes through a set
of 128 mel-scaled triangular filters to obtain a set of spec-
tral energy bands. We compute the principal components
of a random sub-sample of the training set and throw away
only the components with very low variance (low eigenval-
ues), yielding 120 components in total. In order to obtain
features with unitary variance, we multiply each component
by the inverse square root of its eigenvalue, a transforma-
tion known as PCA whitening. We will refer to the pre-
processed audio features as Principal Mel-Spectrum Com-
ponents (PMSC).

3.4 Pooling functions

In our experiments, we used a set of pooling functions and
some of their combinations. The functions we used are:
mean, variance (var), maximum (max), minimum (min), and
3rd and 4th centered moments. The ith centered moment is
defined by: - > | (x—z)". By this definition, the variance
corresponds to the second centered moment.

3.5 Models

We used two different models in our experiments. The first
one, described in Section 3.5.1, is a rather conventional sys-
tem that applies feature extraction, pooling and classifica-
tion in three separate steps. The second one, described in
Section 3.5.2, applies learning both before and after the tem-
poral pooling. The models are illustrated in Figure 1.

3.5.1 Pooled Features Classifier (PFC)

The first model we evaluate applies a given set of pooling
functions to the PMSC features, and sends the pooled fea-
tures to a classifier. Each pooling window is considered as a
training example for the classifier, and we average the pre-
dictions of the classifier over all the windows of a given clip
to obtain the final classification. The classifier is a single
hidden layer neural network, also known as multi-layer per-
ceptron (MLP). We used a hidden layer of 1000 units, sig-
moid activation, L2 weight decay and cross-entropy cost.
We chose to use the MLP as a classifier for three main rea-
sons. First, the hidden layer of the MLP should allow the
model to learn dependencies between tags. Second, the MLP
training time scales well (sub-linearly) with the size of the
training set. Third, neural networks such as the MLP allows
great flexibility in the structure of the network. This will al-
low us to extend the model to a multiscale structure, as we
will see in section 3.5.2. We will refer to this model as the
Pooled Features Classifier (PFC) model.

3.5.2 Multi-Time-Scale Learning model (MTSL)

The second model is structurally similar to the first one, ex-
cept for the fact that we add a hidden layer between the in-
put features and the pooling function. Thus the pooling is
now applied on the activation of this new hidden layer. In
this manner, the model is able to learn a representation of
the features to be pooled. The weights connecting the input
to the first layer are shared across all frames. We keep the
same MLP structure as in the PFC model on top of the pool-
ing. As for the PFC model, learning is purely supervised.
During training, the error is back-propagated from the MLP,
through the pooling functions, down to the first hidden layer.
Thus, it is required to choose pooling functions for which a
gradient can be defined, which is the case for all the func-
tions described in section 3.4.
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Figure 1. Comparison of the PFC and the MTSL model. Upward
arrows represent the flow of feed-forward information. Downward
arrows illustrate the flow of the error back-propagation. U, V' and
W are weight matrices to be learned.

In this model, while the first layer is learning on frames
at a time scale of about 46ms, the second layer works at the
scale of the pooling window. Since this model learns on
different time scales, we will refer to it as the Multi-Time-
Scale Learning (MTSL) model.

4. RESULTS AND DISCUSSION

We ran a few experiments to understand how much each
piece of the puzzle contributes to the performance of the
system. First, we evaluated how much the PCA step in
the preprocessing improves the input representation. Then,
we tested the performance of the system vs. the length of
the pooling window. Afterwards, we compared different
pooling functions and combined them for maximum per-
formance. Finally, by adding a hidden layer to our model
before the pooling, we trained a multiscale learning model.

In most experiments, we present the AUC-tag as our per-
formance measure. Since it was the most stable valid mea-
sure during training, we chose it as our early-stopping cri-
terion. However, the AUC-clip and precision at k tend to
follow the same trend as the AUC-tag (i.e. good ranking
models also give good annotations).

4.1 PCA

We measure the effect of the PCA on the mel-spectrum.
We applied the PFC model on the features with and with-
out PCA as well as MFCCs for comparison. Results are
shown in Table 1. We can see that the mel-spectrum fea-
tures perform better than MFCCs, and that adding the PCA
step further improves performance, as well as greatly reduc-
ing training time.

It has been shown in [4] that using the full covariance
matrix of spectral energy bands improves classification per-
formance. The PCA whitening uncorrelates the spectral fea-

Table 1. Mean performance (higher is better) and mean train-
ing time of different features on the PFC model. In parantheses is
indicated the dimensionality of the input
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Figure 2. Performance w.r.t. length of pooling window.

tures, and thus encapsulate most information in the diagonal
of the covariance matrix. In consequence, relevant informa-
tion flows better through the pooling functions, which gives
better pooled features and allows faster and more efficient
training.

4.2 Finding the optimal pooling window

In order to find the best pooling time scale for our task, we
trained a set of PFC models using different pooling win-
dows. The results on the validation set is shown in Figure 2.
We see that the performance reaches a plateau when the
pooling window is around 2.3 seconds. The models illus-
trated in the figure used a combination of mean, variance
and maximum pooling, but the same tendency was obtained
with other pooling functions and combinations.

4.3 Pooling functions

We compared the performance of different pooling func-
tions and some of their combinations on the PFC model. For
each type of pooling we trained 10 models with the same
distribution of hyper-parameters. The results are illustrated
in Figure 3. The label a1l moments refer to the com-
bination of mean, variance and 3rd and 4th centered mo-
ments. We see that the max and min functions perform well
by themselves. The third and fourth centered moments give
poor results. Even when combined with other pooling func-
tions, they hinder performance. Combining mean, variance,
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Figure 4. Performance of different combinations of pooling func-
tions for the MTSL model

maximum and minimum gave the best performance.

4.4 Multiscale learning

We trained sets of MTSL models with different pooling func-
tions combinations. For this experiment, we fixed the pool-
ing window at about 2.3 seconds, following the results from
Section 4.2. The results for different sets of pooling func-
tions is given in Figure 4. We see that, once again, com-
bining pooling functions gives better classification perfor-
mance. In particular, all the models that combined mean
and max pooling tend to perform better than others. Also,
variance pooling seems to perform worse than other pool-
ing functions. It helps when combined with the mean, but it
does not give any significant improvement when combined
with max and min pooling.

One might think that models combining pooling func-
tions would require more time to train. However, there was
no significant difference in training time for the different

pooling combinations, except for var and mean_var that
required more time. This can be explained by the fact that,
even though the number of pooled features is greater, the
combination of pooling functions allows the error informa-
tion to flow better to the first layer, thus facilitating learning.

We used between 100 and 200 units in the first layer for
the experiments presented in Figure 4. Using more units
further improves performance, but requires more computing
time. The best MTSL models used around 350 units.

4.5 Comparative test performance

We compare the results of our models to those of the MIREX
2009 contest !. In Table 2, we report the test performance
of models that performed best on the validation dataset. We
see that, even without multiscale learning, PMSC features
with the PFC model outperform the best results from the
competition. Applying multiscale learning gives an addi-
tional boost to the performance.

5. CONCLUSION

In this paper we have proposed a few improvements for au-
tomatic annotation and ranking systems:

e We introduced the PMSC features and demonstrated
their performance.

e We demonstrated how combining pooling functions
helps learning.

e We proposed the MTSL model, adding multiscale struc-
ture in a deep architecture, and it obtains state-of-the-
art performance.

We have demonstrated step-by-step the positive impact
of each of these elements. These conclusions were demon-
strated on the task of automatic music annotation and rank-
ing, but may be transferable to other MIR task.

The MTSL model we proposed presents a relatively sim-
ple hierarchical structure. There are many ways that we
could still improve it further. For instance, using a deeper
model with more time scales and smaller pooling windows
might allow to learn a better representation of the music
audio. Also, applying unsupervised training would proba-
bly improve the performance, especially for deeper models.
Furthermore, the use of larger convolutional filters instead
of our frame-by-frame hidden-layer could allow a richer rep-
resentation of time dynamics. Another possible improve-
ment would be to also use the time derivatives of the latent
features as features to be pooled.

It would also be interesting to apply our model to a larger
dataset such as the Million Song Dataset [6] to test how well
it scales to much larger music databases.

! http://www.music-ir.org/mirex/wiki/2009: Audio_
Tag_Classification_Tagatune_Results



Measure ‘ Manzagol ‘ Zhi ‘ Mandel ‘ Marsyas H Mel-spec+PFC ‘ PMSC+PFC ‘ PSMC+MTSL ‘
Average AUC-Tag 0.750 0.673 | 0.821 0.831 0.820 0.845 0.861
Average AUC-Clip 0.810 0.748 | 0.886 0.933 0.930 0.938 0.943

Precision at 3 0.255 0.224 | 0.323 0.440 0.430 0.449 0.467
Precision at 6 0.194 0.192 | 0.245 0.314 0.305 0.320 0.327
Precision at 9 0.159 0.168 | 0.197 0.244 0.240 0.249 0.255
Precision at 12 0.136 0.146 | 0.167 0.201 0.198 0.205 0.211
Precision at 15 0.119 0.127 | 0.145 0.172 0.170 0.175 0.181

Table 2. Performance of different models for the TagATune audio classification task. On the left are the results from the MIREX 2009
contest. On the right are our results.
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