
Temporal Precedence Checking for Switched Models
and Its Application to a Parallel Landing Protocol

Parasara Sridhar Duggirala1, Le Wang1, Sayan Mitra1,
Mahesh Viswanathan1, and César Muñoz2
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Abstract. This paper presents an algorithm for checking temporal precedence
properties of nonlinear switched systems. This class of properties subsume
bounded safety and capture requirements about visiting a sequence of predicates
within given time intervals. The algorithm handles nonlinear predicates that arise
from dynamics-based predictions used in alerting protocols for state-of-the-art
transportation systems. It is sound and complete for nonlinear switch systems that
robustly satisfy the given property. The algorithm is implemented in the Compare
Execute Check Engine (C2E2) using validated simulations. As a case study, a
simplified model of an alerting system for closely spaced parallel runways is con-
sidered. The proposed approach is applied to this model to check safety properties
of the alerting logic for different operating conditions such as initial velocities,
bank angles, aircraft longitudinal separation, and runway separation.

1 Introduction

Dynamic analysis presents a scalable alternative to static analysis for models with non-
linear dynamics. The basic procedure for dynamic safety verification has three building
blocks: (a) a simulation engine, (b) a generalization or bloating procedure, and (c) a sat-
isfiability checker. The simulation engine generates a validated simulation of the model
with some rigorous error bounds for a given initial configuration. The generalization
procedure uses additional model information to overapproximate bounded-time reach
set for a set of initial configurations from the validated simulations. This additional
model information could be, for example, statically computed Lipschitz constants [13],
contraction metrics [9] or more general designer-provided annotations [6]. Finally, the
approximation is checked by a satisfiability procedure for inferring safety after itera-
tively refining its precision. With these three pieces it is possible to design sound and
relatively complete algorithms for bounded time safety verification that also scale to
moderately high-dimensional models [6].

This paper proposes a new algorithm that extends the reach of the above procedure in
two significant ways. First, the new algorithm verifies temporal precedence properties
which generalize bounded safety. A model A satisfies temporal precedenceP1 ≺b P2 if
along every trajectory of A, for any time at which the predicate P2 holds, there exists an
instant of time, at least b time units sooner, where the predicate P1 must hold. The key
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subroutine in the new verification algorithm uses a simulation-based reach set approxi-
mation procedure for estimating the time intervals over which the predicates P1 and P2

may or must hold. These estimates are constructed so that the algorithm is sound. The
algorithm is guaranteed to terminate whenever A satisfies the given property robustly
(relatively complete). That is, not only does every trajectory ξ satisfy P1 ≺b P2, but
any small time-shifts and value perturbations of ξ also satisfy P1 ≺b P2. Such relative
completeness guarantees usually have the most precision that one can hope for in any
formal analysis of models involving physical quantities.

Secondly, a new approach to checking satisfiability of nonlinear guarantee predi-
cates[10] is proposed. If P1 and P2 in the above type of temporal precedence property
are in propositional logic or uses linear arithmetic (or restricted fragments of nonlinear
arithmetic), then existing solvers can efficiently check whether a set of states satisfy
them. On the other hand, if they are written as ∃t > 0, fp(x, t) > 0, where fp is a
nonlinear real-valued function, then the options are limited. Quantifier elimination is an
expensive option (doubly exponential complexity [1]), but even that is feasible only if
fp has a closed form definition of a special form (such as polynomial functions). If fp
is implicitly defined as the solution of a set of ordinary differential equations (ODEs)
with no analytical solution then quantifier elimination is impossible. This paper pro-
vides a sound and relatively complete procedure for checking bounded time guarantee
predicates using simulation-based overapproximations of fp(x, t).

These two algorithms are used in the analysis of an interesting and difficult verifi-
cation problem arising from a parallel landing protocol. The Simplified Aircraft-based
Paired Approach (SAPA) [7] is an advanced operational concept that enables dependent
approaches in closely spaced parallel runways. In the presence of blundering aircraft,
the SAPA procedure relies on an alerting algorithm called Adjacent Landing Alerting
System (ALAS) [12]. ALAS uses linear and nonlinear projections of the landing aircraft
trajectories with various velocity vectors and bank angles to detect possible conflicts.
Given the nonlinear characteristics of the ALAS logic, finding operating conditions
under which the SAPA/ALAS protocol satisfies the safety property is a challenging
problem.

This paper presents a simplified model, written as a switched system, of the SAPA/
ALAS protocol. The safety properties that are considered on this model state that an
alert is issued at least b seconds before an unsafe scenario is encountered. These prop-
erties are specified as temporal precedence properties of the form Alert ≺b Unsafe .
The proposed verification algorithm is applied to this model to formally check these
kinds of properties for various aircraft and runway configurations.

2 System Models and Properties

For a vector v in R
n, |v| stands for �2-norm. Given intervals I ,I ′ over R, the relation

I < I ′ holds iff ∀u ∈ I, ∀u′ ∈ I ′, u < u′. For a real number b, I − b = {u− b |u ∈ I}.
Subtraction operation over intervals is defined as, I − I ′ = {u − u′ | v ∈ I, v′ ∈ I ′}.
I × I ′ = {u × u′ | u ∈ I, u′ ∈ I ′}. For δ ∈ R≥0 and x ∈ R

n, Bδ(x) ⊆ R
n is the

closed ball with radius δ centered at x. For a set S ⊆ R
n, Bδ(S) = ∪x∈SBδ(v). For

any function V : Rn × R
n → R≥0, given a δ > 0, BV

δ (x) = {y | V (x, y) ≤ δ}. For a
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set S ⊆ R
n, BV

δ (S) = ∪x∈SB
V
δ (x). For a bounded set A, dia(A) = supx,y∈A |x− y|

denotes the diameter of A.
A real-valued function α : R≥0 
→ R≥0 is called a class K function if α(0) = 0

and α is strictly increasing. It is a class K∞ function if additionally α(x) → ∞ as
x → ∞. For a function h : R≥0 → R

n and a positive real δ > 0, the δ-left shift of
h is the function hδ : R≥0 → R

n defined as hδ(t) = h(t + δ) for any t ∈ R≥0. A
δ-perturbation of h is any function g : R≥0 → R

n such that for all t, |g(t)− h(t)| < δ.
A càdlàg function is a function which is continuous from the right and has a limit from
the left for every element in its domain.

2.1 The Switched System Model

This paper uses the switch system formalism [8] for modeling continuous systems. The
evolution of an n dimensional switched system is specified by a collection of ordinary
differential equations (ODEs) also called as modes or locations indexed by a set I
and a switching signal that specifies which ODE is active at a given point in time.
Fixing a switching signal and an initial state, the system is deterministic. Its behavior is
the continuous, piece-wise differentiable function of time obtained by pasting together
the solutions of the relevant ODEs. The symbol I represents the set of modes and n
represents the dimension of the system with R

n as state space.

Definition 1. Given the set of modes I and the dimension n, a switched system A is
specified by the tuple 〈Θ,F , Σ〉, with

(i) Θ ⊆ R
n, a compact set of initial states,

(ii) F = {fi : Rn → R
n}i∈I , an indexed collection of continuous, locally Lipschitz

functions, and
(iii) Σ, a set of switching signals, where each σ ∈ Σ is a càdlàg function σ : R≥0 →

I.

The semantics of A is defined in terms of its solutions or trajectories. For a given
initial state x0 ∈ Θ and a switching signal σ ∈ Σ, the solution or the trajectory of the
switched system is a function ξx0,σ : R≥0 → R

n, such that: ξx0,σ(0) = x0, and for any
t > 0 it satisfies the differential equation:

ξ̇x0,σ(t) = fσ(t)(ξx0,σ(t)). (1)

When clear from context, the subscripts x0 and σ are dropped from ξ. Under the stated
locally Lipschitz assumption of the fi’s and the càdlàg assumption on σ, it is well-
known that Equation (1) has a unique solution [8] and that indeed the trajectory ξ is a
well-defined function.

Example. A simple switched system model of a thermostat has two modes I =
{on, off } and a single continuous dimension with initial value, say x = 62. The con-
tinuous dynamics is defined by the linear ODEs ẋ = −kx for off and ẋ = h − kx
for on , where k and h are parameters of the thermostat. Thus, fon(x) = −kx and
foff (x) = h − kx. For a particular switching signal σ, the solution ξx0,σ is shown in
Figure 1.
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Fig. 1. A switching signal and trajectory of thermostat model

A bounded time switch-
ing signal can be represented
as a sequence σ = m0,
m1, . . . ,mk where each
mi is a pair in I × R+,
with the two components
denoted by mi.mode and
mi.time. The sequence
define σ(t) = mi.mode

for all t ∈ [
∑i−1

j=0 mj .time,
∑i

j=0 mj .time). A set of
switching signals Σ is repre-
sented as a switching interval
sequence S = q0, q1, . . . qk,
where each qj is a pair with qj .mode ∈ I and qj .range is an open interval in R≥0.
Given a switching interval sequence S, the set sig(S) denotes the set of switching sig-
nals σ = m0,m1, . . . ,mk, such that mj .mode = qj .mode and mj .time ∈ qj .range.
By abuse of notation, a set of switching signals Σ and its finite representation S with
sig(S) = Σ are used interchangeably. The expression width(S) denotes the size of the
largest interval qi.range. The refinement operation of Σ, denoted as refine(S), gives a
finite set of switching interval sequences S such that

⋃
S′∈S sig(S′) = sig(S) and for

each S′ ∈ S, width(S′) ≤ width(S)/2.

2.2 Temporal Precedence with Guarantee Predicates

A predicate for the switched system A is a computable function P : Rn → {�,⊥}
that maps each state in R

n to either � (true) or ⊥ (false). The predicate is said to be
satisfied by a state x ∈ R

n if P (x) = �. A guarantee predicate [10] P (x) is a predicate
of the form ∃t > 0, fp(x, t) > 0, where fp : Rn × R → R is called a lookahead func-
tion. A guarantee predicate holds at a state x if there exists some future time t at which
fp(x, t) > 0 holds. Using a quantifier elimination procedure, a guarantee predicate can
be reduced to an ordinary predicate without the existential quantifier. However, this is
an expensive operation, and more importantly, it is only feasible for restricted classes
of real-valued lookahead functions with explicit closed form definitions. Section 3.1
presents a technique to handle guarantee predicates with lookahead functions as solu-
tions to nonlinear ODE. As seen in Section 4, such lookahead functions are particularly
useful in designing alerting logics such as ALAS.

Temporal precedence properties are a class of properties specified by a pair of pred-
icates that must hold for any behavior of the system with some minimum time gap
between them. More precisely, a temporal precedence property φ is written as φ =
P1 ≺b P2, where P1 and P2 are (possibly guarantee) predicates and b is a positive real
number. The property φ = P1 ≺b P2 is satisfied by a particular trajectory ξ of A iff

∀t2 > 0, if P2(ξ(t2)) then ∃t1, 0 < t1 < t2 − b, P1(ξ(t1)). (2)

In other words, along ξ, predicate P1 should be should be satisfied at least b time units
before any instance of P2 is satisfied. A switched system A satisfies φ, if every trajectory
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ofA satisfies φ. The propertyφ is said to be robustly satisfied by a system if ∃τ > 0, δ >
0 such that all τ ′ < τ left shifts and all δ-perturbations of all trajectories ξ satisfy the
property. With a collection of precedence properties, it is possible to state requirements
about ordering of some predicates before others.

An execution ξ is said to robustly violate a precedence property P1 ≺b P2 if there is
a time instant t2 such that P2(ξ(t2)) holds, and for some δ > 0, all δ-perturbations ξ′

of ξ and t1 ∈ (0, t2 − b), P1 does not hold in ξ′ at time t1. A system is said to robustly
violates φ = P1 ≺b P2 if some execution ξ (from an initial state) robustly violates φ.

3 Simulation-Based Verification of Temporal Precedence

This section presents an algorithm for verifying temporal precedence properties of
switched systems and establish its correctness. Similar to the simulation-based safety
verification algorithm presented in an earlier work [6], this algorithm has three key
features: (a) it uses validated simulations for the dynamics in F , (b) it requires model
annotations called discrepancy functions for the dynamics in in F . Finally, (c) it re-
quires a procedure for checking satisfiability of nonlinear guarantee predicates arising
from solutions of differential equations.

For a given initial state x0 and an ODE ẋ = f(x, t) which admits a solution ξ, a fixed
time-step numerical integrator produces a sequence of sample points e.g., x1, x2, . . . ,
xl ∈ R

n that approximate the trajectory ξx0 at a sequence of time points, say ξx0(h),
ξx0(2h), . . . , ξx0(l× h). However, these simulations do not provide any rigorous guar-
antees about the errors incurred during numerical approximations. Rigorous error
bounds on these simulations, which can be made arbitrarily small, are required for
performing formal analysis. One such notion of a simulation for an ODE is defined
as follows.

Definition 2. Consider an ODE ẋ = f(x, t). Given an initial state, x0, a time bound
T > 0, error bound ε > 0, and a time step τ > 0, an (x0, T, ε, τ)-simulation trace is
a finite sequence (R1, [t0, t1]), (R2, [t1, t2]), . . . , (Rl, [tl−1, tl]) where each Rj ⊆ R

n,
and tj ∈ R≥0 such that ∀j, 1 ≤ j ≤ l

(1) tj−1 < tj , tj − tj−1 ≤ τ, t0 = 0, and tl = T ,
(2) ∀t ∈ [tj−1, tj ], ξx0(t) ∈ Rj , and
(3) dia(Rj) ≤ ε.

Numerical ODE solvers such as CAPD1 and VNODE-LP 2 can be used to generate
such simulations for arbitrary values of τ and ε using Taylor Models and interval arith-
metic. Model annotations called discrepancy functions used for computing reach-set
from simulations are defined as follows.

Definition 3. A smooth function V : R2n → R≥0 is called a discrepancy function for
an ODE ẋ = f(x, t), if and only if there are functions α, α ∈ K∞ and a uniformly

1 http://capd.ii.uj.edu.pl/index.php
2 http://www.cas.mcmaster.ca/˜nedialk/vnodelp

http://capd.ii.uj.edu.pl/index.php
http://www.cas.mcmaster.ca/~nedialk/vnodelp
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continuous function β : R2n ×R → R≥0 with β(x1, x2, t) → 0 as |x1 − x2| → 0 such
that for any pair of states x1, x2 ∈ R

n:

α(|x1 − x2|) ≤ V (x1, x2) ≤ α(|x1 − x2|) and (3)

∀ t > 0. V (ξx1(t), ξx2(t)) ≤ β(x1, x2, t), (4)

where ξ denotes the solution of the differential equation. A tuple (α, α, β) satisfying the
above conditions is called a witness to the discrepancy function.

The discrepancy function provides an upper bound on the distance between two trajec-
tories starting from different initial states x1 and x2. This upper bound, together with a
simulation, is used to compute an overapproximation of the set of all reachable states of
the system from a neighborhood of the simulation. For linear and affine dynamics such
discrepancy functions can be computed by solving semidefinite programs [6]. In [6],
classes of nonlinear ODEs were identified for which Lipschitz constants, contraction
metrics, and incremental Lyapunov functions can be computed. These classes are all
special instances of Definition 3. For the switched systems A with a set of differential
equations F = {fi}i∈I , a discrepancy function for each fi (namely, Vi and its witness
(αi, αi, βi)) is required. Using discrepancy function and validated simulations as build-
ing blocks, a bounded overapproximation of the reachable set for initial set Θ, set of
switching signals S, and time step τ can be defined as follows.

Definition 4. Given an initial set of states Θ, switching interval sequence S, dynamics
F , time step τ > 0, and error bound ε > 0, a (Θ,S, ε, τ)-ReachTube is a sequence
ψ = (O1, [t0, t1]), (O2, [t1, t2]), . . . , (Ol, [tl−1, tl]) where Oj is a set of pairs (R, h)
such that R ⊆ R

n, and h ∈ I, such that, ∀j, 1 ≤ j ≤ l

(1) tj−1 < tj , tj − tj−1 ≤ τ, t0 = 0,
(2) ∀x0 ∈ Θ, ∀σ ∈ sig(S), ∀t ∈ [tj−1, tj ], ∃(R, h) ∈ Oj , such that, ξx0,σ(t) ∈

R, σ(t) = h,
(3) ∀(R, h) ∈ Oj , dia(R) ≤ ε, and
(4) each mode in I occurs at most once in Oj .

Intuitively, for every given time interval [tj−1, tj ], the set Oj contains an (R, h) pair
such that R overapproximates the reachable set for the mode h in the given interval
duration. In a previous work on verification using simulations [6], an algorithm that
computes overapproximation of the reachable set via sampled executions and annota-
tions is presented. The procedure, called ComputeReachTube, takes as input the initial
set Θ, switching signals S, partitioning parameter δ, simulation error ε′, and time step
τ . It compute the sequence ψ and error ε such that ψ is a (Θ,S, ε, τ)-ReachTube. The
procedure is outlined below.

1. Assign to Q, the set of initial states Θ.
2. For each qi in the switching interval sequence S = q0, q1, . . . , qk.
3. Compute X = {x1, x2, . . . , xm}, a δ-partitioning of Q, such that Q ⊆ ∪Bδ(xi).
4. Generate a validated simulation (Definition 2) η for every state x ∈ X with er-

ror ε′, time step τ , for time horizon Tqi = sup{qi.range}. Then, compute the

ReachTube for Bδ(x0) by bloating η as B
Vqi.mode

ε (η), where ε = sup{βqi.mode(y,
x, t) | y ∈ Bδ(x), t ∈ [0, Tqi]}.
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5. Compute the union of each of the ReachTubes for Bδ(x0) as the ReachTube for
mode qi.mode.

6. Compute the initial set for the next mode by taking the projection of ReachTube
for qi.mode over the interval qi.range as Q. Repeat steps 3 - 6 for qi+1.

The order of overapproximation of the ReachTube computed using the procedure de-
scribed above is the maximum bloating performed using the annotation Vqi.mode and
βqi.mode for all the modes in S. This overapproximation and the error in simulation
gives the value of ε such that ψ is a (Θ,S, ε, τ)-ReachTube. The nondeterminism dur-
ing the switching times from one mode to another enables the reachable set to be in two
different modes at a given instance of time, which is reflected in Oj . Proposition 1 states
that arbitrarily precise ReachTubes can be computed by refining the initial parameters
for the ComputeReachTube procedure.

Proposition 1. Given an initial set Θ, switching signals S, partitioning parameter δ,
simulation error ε′ and time step τ , let 〈ψ, ε〉 = ComputeReachTube(Θ,S, δ, ε′, τ). As
dia(Θ) → 0, width(S) → 0, δ → 0, ε′ → 0, and τ → 0, then ε → 0.

3.1 Temporal Precedence Verification Algorithm

CheckRefine (see Figure 2) performs the following steps iteratively: (1) Create an ini-
tial partition of the set of start states Θ. (2) Compute the ReachTubes for each these
partitions as given in Definition 4. (3) Check the temporal precedence property for the
ReachTube. (4) Refine the partitioning if the above check is inconclusive, and repeat
steps (2)-(4).

A key step in the procedure is to verify whether a given ReachTube satisfies a
temporal precedence property. In this step, collection of intervals mustInt , notInt , and
mayInt are computed for a given ReachTube and a predicate. They are defined as
follows.

Definition 5. Given a ReachTube ψ = (O1, [t0, t1]), . . . , (Ol, [tl−1, tl]) and a predi-
cate P , for all j > 0,

[tj−1, tj ] ∈ mustInt(P, ψ) iff ∀(R, h) ∈ Oj , R ⊆ P.

[tj−1, tj ] ∈ notInt(P, ψ) iff ∀(R, h) ∈ Oj , R ⊆ P c.

[tj−1, tj ] ∈ mayInt(P, ψ) otherwise.

Definition 5 classifies an interval [tj−1, tj ] as an element of mustInt(P, ψ) only if
the overapproximation of the reachable set for that interval is contained in P . Similar is
the case with notInt(P, ψ). However if the overapproximation of the reachable set can-
not conclude either of the cases, then the interval is classified as mayInt(P, ψ). There
are two possible reasons for this: first, the order of overapproximation is too coarse to
prove containment in either P or P c; second, the execution moves from the states satis-
fyingP to states not satisfyingP during that interval. Thus, better estimates ofmustInt ,
notInt and mayInt can be obtained by improving the accuracy of ReachTube ψ.

To compute mustInt , mayInt , and notInt as defined in Definition 5, it is neces-
sary to check if R ⊆ P or R ⊆ P c. However, for guarantee predicates with lookahead
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functions that use the solutions of ODEs, it is unclear how to perform these checks. Sec-
tion 3.2 describes a simulation-based method to address this challenge. The algorithm
in Section 3.2 will, in fact, provide weaker guarantees. Assuming P is an open set, the
algorithm will answer correctly when R ⊆ P and when for some δ > 0, Bδ(R) ⊆ P c;
in other cases, the algorithm may not terminate. Such weaker guarantees will turn out
to be sufficient for the case study considered in this paper.

Definition 6. Given ReachTube ψ and temporal precedence property P1 ≺b P2, ψ is
said to satisfy the property iff for any interval I ′, I ′ ∈ mustInt(P2, ψ)∪mayInt(P2, ψ),
exists interval I , I ∈ mustInt(P1, ψ) such that I < I ′− b. Also, ψ is said to violate the
property if ∃I ′ ∈ mustInt(P2, ψ) such that, ∀I ∈ mustInt(P1, ψ) ∪ mayInt(P1, ψ),
I ′ − b < I .

From Definition 6 it is clear that if a ReachTube ψ satisfies a temporal precedence
property, then for all the trajectories corresponding to the ReachTube, the predicate P1

is satisfied at least b time units before P2. Also, if the ReachTube violates the property,
then it is clear that there exists at least one trajectory such that for an instance of time,
i.e., in I ′ ∈ mustInt(P2, ψ) at all the time instances at least b units before, the predicate
P1 is not satisfied. In all other cases, the ReachTube cannot infer whether the property
is satisfied or violated. As this inference depends on the accuracy of mustInt , notInt
and mayInt . More accurate ReachTubes produce better estimates of these intervals
and hence help in better inference of temporal precedence property.

Given a system A and property P1 ≺b P2, one can compute the ReachTube for
the system and apply Definition 6 to check whether the system satisfies the temporal
precedence property. This is however not guaranteed to be useful as the approximation
of ReachTube computed might be too coarse. The algorithm CheckRefine refines, at
each iteration, the inputs to compute more precise ReachTubes. Proposition 1 guaran-
tees that these ReachTubes can be made arbitrarily precise.

The algorithm (in Figure 2) first partitions the initial set into δ-neighborhoods (line 4)
and compute ReachTubes for every switching interval sequence in Ω (line 7). If all
these ReachTubes (that is all the executions from neighborhood) satisfy the property,
then the neighborhood is removed from Q. Similarly, the algorithm CheckRefine re-
turns that the property is violated only when ReachTube violates the property. If nei-
ther can be inferred, then the parameters to function ComputeReachTube are refined
in line 11 to increase their precision. Since this operation is iteratively performed to
obtain arbitrarily precise ReachTubes, Soundness and Relative completeness follow
from Definition 6 and Proposition 1.

Theorem 1 (Soundness). Algorithm CheckRefine is sound, i.e., if it returns that the
system satisfies the property, then the property is indeed satisfied. If it returns that the
property is violated, then the property is indeed violated by the system.

Theorem 2 (Relative Completeness). Assume that predicates P1 and P2 are open
sets, and there is a procedure that correctly determines if for a set R, R ⊆ Pi (for
i = 1, 2) or if there is δ > 0 such that Bδ(R) ⊆ P c

i (for i = 1, 2). If the system A
satisfies the property P1 ≺b P2 or if A robustly violates P1 ≺b P2 then the algorithm
in Figure 2 terminates with the right answer.
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1: Input: A = 〈Θ,F , Σ〉, {Vi, (αi, αi, βi)}i∈I , P1 ≺b P2, δ0, δ′0, ε′0, τ0.
2: Q ← Θ; Ω ← {Σ}; δ ← δ0; δ′ ← δ′0; ε′ ← ε′0; τ ← τ0
3: while Q �= ∅ do
4: X ← δ-partition(Q);
5: for all x0 ∈ X do
6: for all S ∈ Ω do
7: 〈ψ, ε〉 = ComputeReachTube(Bδ(x0), S, δ

′, ε′, τ )
8: if ψ satisfies P1 ≺b P2 then continue;
9: else if ψ falsifies P1 ≺b P2 return “Property P1 ≺b P2 is violated”

10: else
11: Ω ← Ω \ {S} ∪ refine(S); δ ← δ/2; δ′ ← δ′/2, ε′ ← ε′/2; τ ← τ/2;
12: goto Line 4
13: end if
14: end for
15: Q ← Q \ Bδ(x0)
16: end for
17: end while
18: return “Property P1 ≺b P2 is satisfied”.

Fig. 2. Algorithm CheckRefine: Partitioning and refinement algorithm for verification of temporal
precedence properties

3.2 Verification of Guarantee Predicates

As discussed in the Section 2.2, guarantee predicates are of the form P (x) = ∃t >
0, fp(x, t) > 0, where fp is called a lookahead function. Section 3.1 presents an al-
gorithm for time bounded verification of such predicates of the special form P (x) =
∃0 < t < Tl, wp(ξ

′
x(t)) > 0, where wp is a continuous function and ξ′ is solution of

ODE ẏ = g(y, t). The algorithm CheckGuarantee in Figure 3 checks whether R ⊆ P
or an open cover of R is contained in P c has been defined. This algorithm, similar
to CheckRefine, computes successively better approximations for the ReachTube and
checks whether the predicate P ′ ≡ wp(x) > 0 is satisfied by the reach tube. This
is done by calculating mustInt(P ′, ψ) and mayInt(P ′, ψ) as defined in Definition 5.
If the mustInt is non-empty, then it implies that the predicate P is satisfied by the
ReachTube and hence R ⊆ P . If both the mayInt and mustInt are empty sets, then,
clearly the predicate P is not satisfied in the bounded time Tl by any state in R, and
hence an open cover of R is contained in P c. Soundness and Relative Completeness of
CheckGuarantee follow from CheckRefine (proofs in full version3).

Theorem 3 (Soundness). AlgorithmCheckGuarantee is sound, i.e., if it returns “SAT’’
then the set R indeed satisfies the lookahead predicate. If it returns “UNSAT’’, then the
set R does not satisfy the lookahead predicate.

3 https://wiki.cites.illinois.edu/wiki/display/MitraResearch/
Verification+of+a+Parallel+Landing+Protocol

https://wiki.cites.illinois.edu/wiki/display/MitraResearch/Verification+of+a+Parallel+Landing+Protocol
https://wiki.cites.illinois.edu/wiki/display/MitraResearch/Verification+of+a+Parallel+Landing+Protocol
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Theorem 4 (Relative Completeness). Assuming that the lookahead predicate is an
open set, If the set R satisfies the lookahead predicate, or it robustly violates the looka-
head predicate i.e. ∃δ > 0, such that Bδ(R) ⊂ P c, then the algorithm in Figure 3
terminates with the right answer.

1: Input: R, ẏ = g(y, t), S′, Vg(x1, x2), (αg, αg, βg) wp, δ, τ , Tl

2: while R �= ∅ do
3: X ← δ-partition(R);
4: for all x0 ∈ X do
5: 〈ψ, ε〉 = ComputeReachTube(Bδ(x0), S

′, δ, δ, τ );
6: if mustInt(wp, ψ) �= ∅ then R ← R \ Bδ(x0)
7: else if mustInt(wp, ψ) ∪mayInt(wp, ψ) = ∅ then return “UNSAT”
8: end if
9: end for

10: δ ← δ/2; τ ← τ/2;
11: end while
12: return “SAT”.

Fig. 3. Algorithm CheckGuarantee: Decides whether a lookahead predicate is satisfied in a given
set R

4 Case Study: A Parallel Landing Protocol

The Simplified Aircraft-based Paired Approach (SAPA) is an advanced operational con-
cept proposed by the US Federal Aviation Administration (FAA) [7]. The SAPA con-
cept supports dependent, low-visibility parallel approach operations to runways with
lateral spacing closer than 2500 ft. A Monte-Carlo study conducted by NASA has con-
cluded that the basic SAPA concept is technically and operationally feasible [7]. SAPA
relies on an alerting mechanism to avoid aircraft blunders, i.e., airspace situations where
an aircraft threats to cross the path of another landing aircraft.

NASA’s Adjacent Landing Alerting System (ALAS) is an alerting algorithm for the
SAPA concept [12]. ALAS is a pair-wise algorithm, where the two aircraft are referred
to as ownship and intruder. When the ALAS algorithm is deployed in an aircraft fol-
lowing the SAPA procedure, the aircraft considers itself to be the ownship, while any
other aircraft is considered to be an intruder. The alerting logic of the ALAS algorithm
consists of several checks including conformance of the ownship to its nominal land-
ing trajectory, aircraft separation at current time, and projected aircraft separation for
different trajectories.

A formal static analysis of the ALAS algorithm is challenging due to the complex-
ity of the SAPA protocol and the large set of configurable parameters of the ALAS
algorithm that enable different alerting thresholds, aircraft performances, and runway
geometries. This paper considers the component of the ALAS alerting logic that checks
violations of predefined separation minima for linear and curved projected trajectories
of the current aircraft states. This component is one of the most challenging to analyze
since it involves nonlinear dynamics. Safety considerations regarding communication
errors, pilot and communication delays, surveillance uncertainty, and feasibility of res-
olution maneuvers are not modeled in this paper.
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Fig. 4. Possible blundering scenario
during parallel approach of aircraft. In-
truder (red) & ownship (blue).

For the analysis of the landing protocol, this
paper considers a blundering scenario where the
intruder aircraft turns towards the ownship dur-
ing the landing approach. The dynamics of the
aircraft are modeled as a switched system with
continuous variables sxi, syi, vxi, vyi and sxo,
syo, vxo, and vyo representing the position and
velocity of intruder and ownship respectively. The
switching system has two modes: approach and
turn. The mode approach represents the phase
when both aircraft are heading towards the run-
way with constant speed. The mode turn repre-
sents the blundering trajectory of intruder. In this
mode, the intruder banks at an angle φi to turn
away from the runway towards the ownship. The
switching signal determines the time of transition
from approach to turn. In this mode, the differen-
tial equation of the ownship remains the same as
that of approach , but the intruder’s turning mo-
tion with banking angle φi is
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, (5)

where cx and cy are constant functions of the initial states of the ownship and intruder,
and ωi is the angular speed of intruder. Given the bank angle φi, the angular speed is
given by wi =

G| tan(φi)|√
vxi

2+vyi
2

, where G is the gravitational constant. The upper bound on

the bank angle φi is denoted as φmax.
The system starts in the approach mode with the initial position of the intruder at

sxi = syi = 0 and the ownship at sxo = xsep and syo = ysep , where xsep denotes
the lateral separation between the runways and ysep denotes the initial longitudinal
separation between the aircraft. The initial velocities of both aircraft along the x-axis
are 0 and the initial velocities along the y-axis are parameters. The time of switching
from approach mode to turn mode is nondeterministically chosen from the interval
Tswitch = [2.3, 2.8]. These parameters and the initial values of the variables are con-
strained by the SAPA procedure [7].

4.1 Alerting Logic and Verification of Temporal Precedence Property

The alerting logic of ALAS considered in this paper issues an alert when the aircraft are
predicted to violate some distance thresholds called Front and Back [12]. To predict
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this violation, the aircraft projects the current state of the system with three different
dynamics: first, the intruder does not turn, i.e., banking angle 0◦, second, the intruder
turns with the specified bank angle φi and third, the intruder turns with the maximum
bank angle φmax. If any of these projections violates the distance thresholds, then an
alert is issued. The alert predicates for the each one of these projections are represented
by Alert0, Alertφi and Alertφmax , respectively. Thus, the alerting logic considered in
this paper is defined as Alert ≡ Alert0 ∨ Alertφi ∨ Alertφmax .

The alert predicates Alert0, Alertφi and Alertφmax are guarantee predicates. The
lookahead function for Alertπ is defined as follows: from a given state x, it computes
the projected trajectory of the aircraft when intruder turns at bank angle π. If these tra-
jectories intersect, then it computes the times of intersection. That is, it computes ti, to
such that sx′

i(ti) = sx′
o(to) and sy′i(ti) = sy′o(to), where sx′

i, sy
′
i, sx

′
o, sy

′
o represent

the positions of the intruder and ownship aircraft in the projected trajectory. If such ti
and to exist, the Alertπ is defined as:

Alertπ(x) ≡ iff ti > to ? (Δt2 × (vx2
o + vy2o) < Back2)

: (Δt2 × (vx2
o + vy2o) < Front2),

where Δt = ti− to. If such ti and to do not exist, then Alertπ(x) = ⊥. The expression
a ? b : c is a short hand for if(a) then b else c.

As the guarantee predicates cannot be handled by SMT solvers, Section 3.2 pro-
poses a simulation based algorithm for handling them. In this case study, the proposed
technique is used to resolve the nonlinearities of to and ti in the Alertπ predicate. As
given in procedure CheckGuarantee, the following steps are performed to resolve the
nonlinear guarantee predicate. First, bounded time ReachTubes ψ′ for the projected
dynamics are computed. Second, from ψ′, the intervals To and Ti are computed such
that ti ∈ Ti and to ∈ To. Finally, an overapproximation Alert ′π of Alertπ is computed
as: Alert ′π(x) = � iff

Ti > To ? (ΔT 2 × (vx2
o + vy2o) < Back2)

: (ΔT 2 × (vx2
o + vy2o) < Front2),

where ΔT = Ti−To. The numerical values of Ti and To computed simplify the Alert ′π
predicate and can be handled by SMT solvers.

A state of the system where the intruder aircraft is inside a safety area surrounding
the ownship is said to be unsafe. This paper considers a safety area of rectangular shape
that is SafeHoriz wide, starts a distance SafeBack behinds the ownship and finishes
a distance SafeFront in front of the ownship. The values SafeHoriz , SafeBack and
SafeFront are given constants. Formally, the predicate Unsafe is defined as Unsafe(x)
≡ (syi > syo?syi − syo < SafeFront : syo − syi < SafeBack ) and |sxi − sxo| <
SafeHoriz .

The correctness property considered in this paper is that an alert is raised at least 4
time units before the intruder violates the safety buffer. This can written as a temporal
precedence property Alert ≺4 Unsafe .
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4.2 Verification Scenarios and C2E2 Performance

The verification algorithms of Section 3 are implemented in the tool Compute Execute
Check Engine (C2E2). C2E2 accepts Stateflow (SF) charts as inputs, translates them to
C++ using CAPD for generating rigorous simulations. For checking SAT queries, it uses
Z3 [2] and GLPK4. The discrepancy functions for the aircraft dynamics were obtained
by computing incremental Lyapunov-like function using MATLAB [6]. The following
experiments were performed on Intel Quad Core machine 2.33 GHz with 4GM memory.
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Fig. 5. Figure depicting the set of reachable states of the system. Color coding is used to depict
whether the alert is issued by the alerting algorithm.

The temporal precedence property Alert ≺b Unsafe is checked for several config-
urations of the system, i.e., values of parameters and initial values of state variables.
For these experiments, the time bound for verification is set to 15 seconds and the time
bound for projection is set to 25 seconds.

Table 1. Running times. Columns 2-5: Verifi-
cation Result, Running time, # of refinements,
value of b for which A ≺b U is satisfied.

Scen. A ≺4 U time (m:s) Refs. A ≺t U

6 False 3:27 5 2.16

7 True 1:13 0 –

8 True 2:21 0 –

6.1 False 7:18 8 1.54

7.1 True 2:34 0 –

8.1 True 4:55 0 –

9 False 2:18 2 1.8

10 False 3:04 3 2.4

9.1 False 4:30 2 1.8

10.1 False 6:11 3 2.4

Scenario 1. The system configuration is
specified by the following parameters and
variables: xsep ∈ [0.22, 0.24] km, ysep ∈
[0.2, 04] km, φi = 30◦, φmax = 45◦,
vyo = 0.07 km/s and vyi = 0.08 km/s.
With this configuration, C2E2 proves that
the system satisfies the temporal prece-
dence property Alert ≺4 Unsafe and an
alert is generated 4.38 seconds before the
safety is violated. The set of reachable
states of the ownship and the intruder when
the safety property is violated is shown in
red and the safe states reached are shown in
blue and green respectively in Figure 5(a).

Scenario 2. Increasing the intruder ve-
locity to vyi = 0.11 km/s, and bank angle φi = 45◦ from the configuration of Sce-
nario 1 results in Scenario 2. In this case, the safe separation between the intruder and
the ownship is always maintained as the intruder completes the turn behind the ownship.
Also, the alarm is not raised and hence the property Alert ≺4 Unsafe is satisfied.

4 http://www.gnu.org/software/glpk

http://www.gnu.org/software/glpk
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Scenario 3. Changing the configuration by vyi = 0.11 km/s, xsep ∈ [1.02, 1.04] km,
and φi = 45◦ from Scenario 1 results in Scenario 3. C2E2 proves that the simplified
alerting logic considered in this paper issues a false-alert, i.e., an alert is issued even
when the safety of the system is maintained. Though the property Alert ≺4 Unsafe is
not violated, avoiding such circumstances improves the efficiency of the protocol and
C2E2 can help identify such configurations.

Scenario 4. Placing the intruder in front of ownship, i.e., ysep = −0.3 km and vyi =
0.115 km/s from configuration in Scenario 1 results in Scenario 4. C2E2 proves that the
simplified alerting logic considered in this paper misses an alert, i.e., does not issue an
alert before the safety separation is violated. Such scenarios should always be avoided
as they might lead to catastrophic situations. This demonstrates that C2E2 can aid in
identifying scenarios which should be avoided and help design the safe operational
conditions for the protocol.

Scenario 5. Reducing the xsep ∈ [0.15, 0.17] km and ysep ∈ [0.19, 0.21] km from
configuration in Scenario 1 gives Scenario 5. For this scenario, C2E2 did not termi-
nate in 30 mins. Since the verification algorithm presented in Section 3 is sound and
relatively complete only if the system robustly satisfies the property, it is conjectured
that Scenario 5 does not satisfy the property robustly. The partitioning and the simu-
lation parameters at the time-out were δ = 0.0005 and time step τ = 0.001. These
values are an order of magnitude smaller than the typical values for termination, e.g.,
δ = 0.005 and τ = 0.01, which supports the conjecture that Scenario 5 does not satisfy
the property robustly.

The running time of verification procedure and their outcomes for several other sce-
narios are presented in Table 1. Scenarios 6-8 introduce uncertainty in the initial ve-
locities of the aircraft with all other parameters remaining the same as in Scenario 1.
The velocity of the aircraft are changed to be vyo ∈ [0.07, 0.075] in Scenario 5,
vyi ∈ [0.107, 0.117] in Scenario 6, and vxi ∈ [0.0, 0.005] in Scenario 7 respectively.
Scenarios S.1 is similar to Scenario S (for S being 6,7,8), but with twice the uncer-
tainty in the velocity. Scenario 9 is obtained by changing the runway separation to
be xsep = 0.5 ± 0.01. Scenario 10 is obtained by reducing the xsep = 0.2 ± 0.01.
Scenario S.1 is similar to Scenario S (for S being 9,10) however with twice the time
horizon for verification and projection. These results suggest that the verification time
depends on time horizon approximately linearly.

5 Related Work and Conclusion

There are several MATLAB based tools for analyzing properties of switched systems
using simulations. Breach [4] uses sensitivity analysis [5] for analyzing STL properties
of systems using simulations. This analysis is sound and relatively complete for linear
systems, but does not provide formal guarantees for nonlinear systems. S-Taliro [11]
is a falsification engine that search for counterexamples using Monte-Carlo techniques
and hence provides only probabilistic guarantees. STRONG [3] uses robustness analy-
sis for coverage of all executions from a given initial set by constructing bisimulation
functions. Currently this tool computes bisimulation functions for only linear or affine
hybrid systems and does not handle nonlinear systems.
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This paper presents a dynamic analysis technique that verifies temporal precedence
properties and an approach to verify guarantee predicates that use solutions of ODEs
as lookahead functions. These techniques are proved to be sound and relative complete.
The verification approach is applied to a landing protocol that involves nonlinear dy-
namics. The case study demonstrated that the proposed technique can not only verify
safety properties of the alerting logic, but also could identify conditions for false and
missed alert which are crucial in designing the operational concept.
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carlo techniques for falsification of temporal properties of non-linear hybrid systems. In:
Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation
and Control (HSCC 2010), Stockholm, Sweden, pp. 211–220. ACM (2010)

12. Perry, R.B., Madden, M.M., Torres-Pomales, W., Butler, R.W.: The simplified aircraft-based
paired approach with the ALAS alerting algorithm. Technical Report NASA/TM-2013-
217804, NASA, Langley Research Center (2013)

13. Wood, G., Zhang, B.: Estimation of the Lipschitz constant of a function. Journal of Global
Optimization 8, 91–103 (1996)


	Temporal Precedence Checking for Switched Models and Its Application to a Parallel Landing Protocol
	1 Introduction
	2 System Models and Properties
	2.1 The Switched System Model
	2.2 Temporal Precedence with Guarantee Predicates

	3 Simulation-Based Verification of Temporal Precedence
	3.1 Temporal Precedence Verification Algorithm
	3.2 Verification of Guarantee Predicates

	4 Case Study: A Parallel Landing Protocol
	4.1 Alerting Logic and Verification of Temporal Precedence Property
	4.2 Verification Scenarios and C2E2 Performance

	5 Related Work and Conclusion
	References


