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Abstract

Learning long-term and multi-scale dependencies in sequen-
tial data is a challenging task for recurrent neural networks
(RNNs). In this paper, a novel RNN structure called temporal
pyramid RNN (TP-RNN) is proposed to achieve these two
goals. TP-RNN is a pyramid-like structure and generally has
multiple layers. In each layer of the network, there are sev-
eral sub-pyramids connected by a shortcut path to the output,
which can efficiently aggregate historical information from
hidden states and provide many gradient feedback short-paths.
This avoids back-propagating through many hidden states as
in usual RNNs. In particular, in the multi-layer structure of TP-
RNN, the input sequence of the higher layer is a large-scale
aggregated state sequence produced by the sub-pyramids in
the previous layer, instead of the usual sequence of hidden
states. In this way, TP-RNN can explicitly learn multi-scale
dependencies with multi-scale input sequences of different
layers, and shorten the input sequence and gradient feedback
paths of each layer. This avoids the vanishing gradient problem
in deep RNNs and allows the network to efficiently learn long-
term dependencies. We evaluate TP-RNN on several sequence
modeling tasks, including the masked addition problem, pixel-
by-pixel image classification, signal recognition and speaker
identification. Experimental results demonstrate that TP-RNN
consistently outperforms existing RNNs for learning long-term
and multi-scale dependencies in sequential data.

Introduction

Recurrent neural networks (RNNs) are well-known for mod-
eling sequential data by learning temporal dependencies via
recurrent connections. They have achieved good performance
in various sequence modeling applications, such as pixel-by-
pixel image classification (Cooijmans et al. 2017; Trinh et
al. 2018; Hu, Qi, and Wang 2019), speech recognition (Tao
and Liu 2018), language modeling (Soltani and Jiang 2016;
Chung, Ahn, and Bengio 2017) and so on.

RNNs are usually trained by the back-propagation through
time (BPTT) method (Werbos 1990). However, it is diffi-
cult to train vanilla RNNs to learn long-term dependencies
since the gradient tends to either vanish or explode when
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modeling long sequences. The gradient clipping method (Pas-
canu, Mikolov, and Bengio 2013) can avoid the exploding
gradient problem, while gated RNNs, such as long short-term
memory (LSTM) (Hochreiter and Schmidhuber 1997) and
gated recurrent units (GRU) (Cho et al. 2014), can allevi-
ate the vanishing gradient problem using linear units with a
self-connection weighted by gated units. Besides, additional
direct connections from previous time steps to the current
time step is another way to improve learning long-term de-
pendencies for RNNs (Soltani and Jiang 2016; Wang 2017;
Zilly et al. 2017; Campos et al. 2018). On the other hand, it is
a challenge for these single-layer RNNs to learn multi-scale
dependencies (Chung, Ahn, and Bengio 2017).

A common strategy to deal with multi-scale sequential
data is to design hierarchical information processing sys-
tems (Jaeger 2007). Hence, many hierarchical RNNs (Chung
et al. 2015; Chang et al. 2017; Chung, Ahn, and Bengio 2017)
have been proposed to learn multi-scale dependencies, where
various layers in the multi-layer structure specialize on dif-
ferent scales. But multi-layer structures always lead to deep
RNNs, which more easily suffer from the gradient vanishing
problem and are more difficultly trained to learn long-term
dependencies than single-layer RNNs (Li et al. 2018).

In this paper, a novel hierarchical RNN, called temporal
pyramid RNN (TP-RNN), is proposed to learn long-term and
multi-scale dependencies in sequential data. TP-RNN is a
pyramid-like structure and generally has multiple layers. In
each layer of the network, there are several sub-pyramids
ordered by the time step. The bottom of each sub-pyramid
consists of several consecutive hidden states, which are hierar-
chically aggregated into high-level states that represent larger
timescales. Further, the top state nodes of all sub-pyramids
in the same layer are iteratively aggregated in time step order
through skip connections to form a shortcut path to the output
of the layer. The sub-pyramids connected by the shortcut path
can efficiently aggregate historical information from hidden
states and provide many gradient feedback short-paths.

In particular, in the multi-layer structure of TP-RNN, the
input sequence of the higher layer is a large-scale aggregated
state sequence produced by the sub-pyramids in the previous
layer, but not the usual sequence of hidden states. TP-RNN
can therefore explicitly learn multi-scale dependencies with
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multi-scale input sequences of different layers, and shorten
the input sequence and gradient feedback paths of each layer.
This greatly alleviates the vanishing gradient problem in deep
RNNs and allows the network to efficiently learn long-term
dependencies.

Our main contributions can be summarized as follows:

• We propose a multi-layer RNN structure called TP-RNN
consisting of several sub-pyramids connected by a short-
cut path to the output in each layer. They can efficiently
aggregate historical information from hidden states and
provide many gradient feedback short-paths.

• When constructing the multi-layer RNN structure, we use
a large-scale aggregated state sequence produced by the
sub-pyramids in the previous layer as the input sequence of
the higher layer. Hence, TP-RNN can explicitly learn multi-
and long-scale dependencies as well as greatly alleviate
the vanishing gradient problem.

• We evaluate TP-RNN on several sequence modeling tasks
including the masked addition problem, pixel-by-pixel
image classification, signal recognition and speaker iden-
tification. Our experimental results demonstrate that the
TP-RNN consistently performs better than existing RNNs
for learning long-term and multi-scale dependencies in
sequential data.

Related work

RNNs for learning long-term dependencies In recent
years, various methods have been proposed to improve
learning long-term dependencies for RNNs, including gat-
ing mechanism (Zhou et al. 2016; Bradbury et al. 2017;
Jing et al. 2018; Chandar et al. 2019) and special initial-
ization (Le, Jaitly, and Hinton 2015; Arjovsky, Shah, and
Bengio 2016; Zhang et al. 2016; Cooijmans et al. 2017;
Vorontsov et al. 2017). Addition direct connections from
previous time steps to the current time step is also an impor-
tant method, which allows the gradient to flow back to earlier
time steps more efficiently. The first attempt at this is the
NARX RNN (Lin et al. 1996), which introduced linear time
delayed connections to an RNN structure to make gradient
descent learning more effective. Similarly, HORNN (Soltani
and Jiang 2016) aggregates multiple preceding hidden states
through addition linearly weighted direct connections for
better long-term memory. Recently, methods similar to
HORNN within the long short-term memory (LSTM) struc-
ture have been used for sentiment recognition (Wang 2017;
Tao and Liu 2018) and question classification (Xia et al.
2018). Finally, SAB (Ke et al. 2018) adds sparse temporal
direct connections to preceding hidden states and aggregates
them through an attention mechanism. However, these single-
layer RNNs often have difficulties modeling inherent multi-
scale structures and learning multi-scale dependencies in
sequential data (Chung, Ahn, and Bengio 2017).

Hierarchical multi-scale RNNs In order to learn multi-
scale dependencies in sequential data, many hierarchical
RNNs have been proposed, where various layers in the multi-
layer structure specialize for different scales (Jaeger 2007).

The gated-feedback RNN (Chung et al. 2015) adaptively
gates the recurrent signals exchanged between layers, which
assigns various layers to different scales according to the
previous hidden states and current input. Similarly, Kim et
al. (Kim, Singh, and Lee 2016) proposed a temporal hier-
archy based on gated recurrent units that improves learning
multi-scale dependencies in large texts. Recently, the Dilated
RNN (Chang et al. 2017) employs skip connections through
different numbers of time steps in various layers to learn
multi-scale dependencies. Chung et al. (Chung, Ahn, and
Bengio 2017) proposed a hierarchical multi-scale RNN to
model latent multi-scale structures in language sequences
by a multi-scale updating mechanism. However, these hier-
archical RNNs have multiple layers and lead to deep struc-
tures, which are subject to vanishing gradients and have more
difficulty on learning long-term dependencies compared to
single-layer RNNs (Li et al. 2018).

Proposed method

In this section, we propose the temporal pyramid RNN (TP-
RNN) for learning long-term and multi-scale dependencies in
sequential data. The unfolded computational graph of a TP-
RNN is shown in Figure 1. It is a pyramid-like structure and
generally has multiple layers. In order to describe the multi-
layer structure of a TP-RNN clearly, we will start from the
first layer to show the generation process of sub-pyramids in a
single layer, and then introduce how to construct a multi-layer
structure. Finally, we discuss why this method is effective.

Sub-pyramids

We use X to denote an input sequence of dimension dx and
length T . As shown in Figure 1, the input sequence is cut into
N input subsequences of length L = T/N (T , N and L are
16, 4 and 4 respectively in Figure 1). N is a meta-parameter
of our method. The inputs are presented sequentially, driving
the generation of a sub-pyramid. Since a sub-pyramid is
generated level by level from bottom to top, we define the
bottom of a sub-pyramid as Level 0, the next as Level 1, and
so on until the top Level J (J = 2 in Figure 1).

We now introduce the generation process of a sub-pyramid
in detail. We use H as the initial hidden state sequence of
dimension dh and length T . The bottom of a sub-pyramid
is composed of a hidden state subsequence of length L. As
indicated by the blue arrows at the bottom of Figure 1 and
the red arrows inside a sub-pyramid, the hidden state hl

at the bottom of a sub-pyramid is driven by the input xl

of the current time step with the hidden state hl−1 of the
previous time step (consistent with conventional RNNs) or a

hierarchical aggregated state ĥ
j
i (unlike conventional RNNs).

If the hierarchical aggregation operation is performed every
g time steps (g is called aggregation granularity and g = 2
in Figure 1), the update equation of hidden state hl can be
expressed as follows:

hl =

{

f(Uxl +Whl−1 + b), if (l − 1) �≡ 0 (mod g)

f(Uxl +Wĥ
j
i + b), if (l − 1) ≡ 0 (mod g)

(1)
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Figure 1: Unfolded computational graph of a TP-RNN. The network is pyramid-like and multi-layer. This example has 3 layers.
In each layer, there are several (4, 2 and 1 for Layer 1, 2 and 3 respectively) sub-pyramids ordered by time step. The bottom of
each sub-pyramid consists of 4 consecutive hidden states (white nodes), which are hierarchically aggregated into high-level states
(yellow nodes) that represent larger timescales. Further, the top (yellow) state nodes of all sub-pyramids in the same layer are
iteratively aggregated from left to right through skip connections to form a shortcut path to the output of the layer (the rightmost
green node in each layer). In the multi-layer structure, the input sequence of the higher layer is a large-scale aggregated state
sequence produced by the sub-pyramids in the previous layer. The final output is obtained by aggregating outputs of all layers. In
each layer, all connections with the same color and type use the same weights. All of the aggregation operations use the same
function, with different weights depending on the type of aggregation.

where xl and hl are the l-th input (time step) of an input
subsequence and the l-th hidden state of a hidden state sub-
sequence respectively. f(·) denotes the activation function
(usually tanh(·)), and U ∈ R

dh×dx , W ∈ R
dh×dh and

b ∈ R
dh are trainable input weights, recurrent weights and

the bias respectively. ĥ
j
i is the i-th hierarchical aggregated

state at the j-th level of a sub-pyramid, where j is the number
of trailing-zeros of the G-ary number of the value (l − 1),
and i = (l − 1)/gj . Normally, j ∈ [1, J ] where J = logg L
is the number of levels of a sub-pyramid (not counting Level
0), and i ∈ [1, Lj ] where Lj = Lj−1/g (L0 = L) is the
number of hierarchical aggregated states at the j-th level of
the sub-pyramid. As indicated by the gray arrows inside a
sub-pyramid in Figure 1, hierarchical aggregated states are
generated level by level through a hierarchical aggregation
method, which can be formalized as:

ĥ
j
i =

{

θ(h(i−1)∗g+1,h(i−1)∗g+2, · · · ,hi∗g), if j = 1

θ(ĥj−1
(i−1)∗g+1

, ĥ
j−1
(i−1)∗g+2

, · · · , ĥ
j−1
i∗g ), if 2 ≤ j ≤ J

(2)
where θ(·) denotes an aggregation function. It aggregates g
state nodes (hidden states or hierarchical aggregated states)
into a new hierarchical aggregated state using self-attention
and sum-reduce operations. The definition of θ will be given
later.

Through Equation 1 and 2, all hidden states and hierarchi-

cal aggregated states of a sub-pyramid can be successively
generated in time step order until the hierarchical aggregated

state at the top ĥ
J
1 is generated (Level J is the top level of

the sub-pyramid). The top state node ĥ
J
1 is an information

aggregation of an input subsequence. As indicated by the
red arrow between two adjacent sub-pyramids in Figure 1,
it will drive the generation of the first hidden state at the
bottom of next sub-pyramid with the subsequent input. All
sub-pyramids in a layer can be generated from bottom to top
and left to right in the same way.

After all sub-pyramids in a layer have been generated, all
top state nodes are iteratively aggregated in time step order
through skip connections (gray dotted arrows above the sub-
pyramids in Figure 1) to form a shortcut path (through green
nodes in Figure 1) to the output of the layer (the rightmost
green node in each layer). This iterative aggregation process
can be formalized as:

on = θ(on−1, ĥn+1), n = 1, · · · , N − 1, (3)

where ĥn+1 is the top state node ĥ
J
1 of the (n + 1)-th sub-

pyramid, and on is the n-th iterative aggregated state of

the shortcut path (o0 = ĥ1). θ(·) is the same function as
in Equation 2, but uses different weights. oN−1 (N is the
number of sub-pyramids of a layer) is the output of the layer,
which is an aggregated feature vector of the input sequence
X.
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Figure 2: Detailed operations of the aggregation function θ(·). In this example, it is used to aggregate two hidden states into a
hierarchical aggregated state by weighting and summing them.

Multi-layer structure

The previous section has introduced how to construct a single-
layer TP-RNN, which corresponds to the bottom trapezoid
in Figure 1. Later we will use this to compare performance
with a multi-layer TP-RNN. A multi-layer TP-RNN can be
constructed by stacking multiple such RNNs to learn multi-
scale dependencies in sequential data. As indicated by the
blue arrows between two adjacent layers in Figure 1, the
stacking method is to use a hierarchical aggregated state
sequence produced by the sub-pyramids of the previous layer
as the input sequence of the higher layer.

Several hierarchical aggregated state sequences are pro-
duced after all sub-pyramids in a layer are generated. Among
them, the hierarchical aggregated state sequence at the j-th
level of all sub-pyramids can be formalized as:

Ĥ
j = [Ĥj

1, · · · , Ĥ
j
n, · · · , Ĥ

j
N ], (4)

where Ĥ
j
n = [ĥj

1, · · · , ĥ
j
i , · · · , ĥ

j
Lj
] is a subsequence of

hierarchical aggregated states at the j-th level of the n-th

sub-pyramid. The hierarchical aggregated state sequence Ĥ
j

is a high-level and large-scale representation of the input
sequence X. Note the difference between using this hierar-

chical aggregated state sequence Ĥ
j (e.g., j = 1 in Figure

1) as input to the next layer up and the standard approach of
the entire hidden state sequence H of the previous layer. In

general, Ĥj will be much shorter and more abstract than H.
In each layer, through Equation 1, 2 and 3, we can obtain

the outputs of all layers as follows:

O = [o1
N1−1, · · · ,o

k
Nk−1, · · · ,o

K
NK−1], (5)

where K and Nk are the number of layers and the number of
sub-pyramids in the k-th layer respectively, and o

k
Nk−1 is the

output of the k-th layer. The output set O contains features
on K scales of the input sequence X. Finally, the output of a
TP-RNN is obtained by the aggregation function θ(·) based
on the output set O as follows:

ô = θ(O) = θ(o1
N1−1, · · · ,o

k
Nk−1, · · · ,o

K
NK−1). (6)

The output ô is a multi-scale fusion feature of the input
sequence X. After, we can simply use a SoftMax classifier
to do classification tasks and train the network using BPTT.

Aggregation function

In this section, we formally define the aggregation function
θ(·) applied in Equation 2, 3 and 6. It is used to aggregate
multiple state nodes (hidden states, hierarchical or iterative

aggregated states) into a new state node by weighting and
summing them. Its detailed operations are shown in Figure 2.

Given M dh-dimensional state vectors (e.g., hl, ĥ
j
i or

o
k
Nk−1) to be aggregated, we can concatenate them into a

state matrix by column as follows:

E = [e1, · · · , em, · · · , eM ], (7)

where em ∈ R
dh is the m-th state vector and E ∈ R

dh×M

is the state matrix. Based on E, we use a one-hidden layer
perceptron Fmlp(·) to obtain attention weights as follows
(similar to the self-attention mechanism of SENet (Hu, Shen,
and Sun 2018) but with fine-grained effects, we will explain
later):

S = Fmlp(E;W1,W2) = f2(W2f1(W1E
T))T, (8)

where f1(·) and f2(·) are nonlinear activation functions
(ReLU(·) and Sigmoid(·) respectively), and W1 ∈ R

D×M

and W2 ∈ R
M×D are trainable weights, and S ∈ R

dh×M is
the self-attention weight matrix. Note that, W1 and W2 are
shared among time steps just like other parameters of a RNN,
but differ among the three aggregation functions in Equation
2, 3 and 6. We then obtain the weighted state matrix:

Ẽ = S⊙E, (9)

where ⊙ denotes the element-wise multiplication and Ẽ ∈
R

dh×M is the weighted state matrix. Finally, for each dimen-

sion of Ẽ, we sum up all the M elements row-wise and apply
an activation function f(·) (usually tanh(·)) to the sum to
obtain a new state vector as follows:

ê = θ(E) = (ê1, · · · , êd, · · · , êdh)T
,where ê

d = f(

M
∑

m=1

ẽ
d

m),

(10)
where ê ∈ R

dh is the aggregated state vector and êd is its
scalar element of the d-th dimension, and ẽdm is the scalar

element at the d-th row and the m-th column of Ẽ.
The main differences between our aggregation method

and the one used by SENet are Equations 8-9. In SENet,
global average pooling is used to gather global information
for each state vector, and the resultant single global feature is
distributed to all the elements (locations) of the state vector
(coarse-grained). Since each element of the state vector is
an individual feature, they should have different attention
weights. Therefore, we used the state matrix E instead of
the single global feature vector to obtain a weight matrix S,
which is then distributed to each element of the state matrix
(fine-grained). The number of parameters used in this way is
consistent with the number in SENet, while our results are
better (see Model Analysis).
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Figure 3: The test MSE curves on the masked addition problem for three sequence length, T = 200 (left), 500 (center) and 1000
(right). #K represents the approximate number of parameters.

Effectiveness discussion

First, compared with conventional RNNs, the sub-pyramids
with the shortcut path in each layer of a TP-RNN provide
many gradient feedback short-paths, and the length of the
longest gradient feedback path from inputs to the output
is shortened to the number of levels of the sub-pyramids
(J = logg L) plus the length of the shortcut path (N = T/L),
which is always much shorter than the input sequence length
as in conventional RNNs (i.e., J +N << T ).

Second, when constructing the multi-layer structure of a
TP-RNN, we don’t use the usual sequence of hidden states
as the input sequence of the higher layer. Instead, we use the
hierarchical aggregated state sequence of the previous layer,
since it is a high-level and large-scale representation of the
input sequence and its length (i.e., Lj ∗N = T/gj) is always
much shorter than that of the hidden state sequence (i.e.,
T/gj << T ). In this way, in the multi-layer structure of a
TP-RNN, the higher the layer, the shorter the input sequence
length and the longer the input sequence scale.

As a result, TP-RNN can learn multi-scale dependencies
with multi-scale input sequences of different layers, as well
as shorten the input sequence and gradient feedback paths
of each layer, which greatly alleviates the vanishing gradient
problem. We also discuss the advantages of TP-RNN over
existing hierarchical RNNs (Chung et al. 2015; Kim, Singh,
and Lee 2016; Chung, Ahn, and Bengio 2017; Chang et al.
2017) in the Supplementary material.

Meanwhile, TP-RNN is still a light model compared with
conventional RNNs, since the only additional parameters are
W1 and W2 in the aggregation function θ(·) and they are
also shared among time steps just like other parameters of a
RNN. Hence, the parameter size of a TP-RNN still mostly
depends on the hidden size and the number of layers.

Experiments

We evaluate TP-RNN on several sequence modeling tasks
including the masked addition problem, pixel-by-pixel image
classification, signal recognition and speaker identification.
Experimental results demonstrate that TP-RNN consistently
outperforms existing RNNs for learning long-term and multi-
scale dependencies in sequential data.

In our experiments, LSTM is used as the basic RNN unit
for TP-RNN. We mainly compare TP-RNN with three strong
baselines, LSTM, HM-LSTM (Chung, Ahn, and Bengio
2017) and Dilated LSTM (Chang et al. 2017). We name

single-layer and multi-layer networks with -S and -M tags, re-
spectively. Dilated LSTMs usually need to stack many layers
to achieve good results. The number of layers for LSTM-M,
HM-LSTM and TP-RNN-M are both set to 3, and the hidden
sizes for LSTMs, HM-LSTM and TP-RNNs are both set to
100. For Dilated LSTMs, the number of layers is set to 9
as in (Chang et al. 2017), while the hidden size is set to
59 for a comparable number of parameters with LSTM-M,
HM-LSTM and TP-RNN-M (this setting yields better results
than those in (Chang et al. 2017)). All models are trained
with the Adam optimizer and the learning rate and decay
rate are set to 1e-3 and 0.9, respectively. Notably, we did not
use any regularization techniques such as dropout or layer
normalization. More detailed discussion of hyper-parameters
for all tasks can be found in the Supplementary material1.

Masked addition problem

The masked addition problem (Hochreiter and Schmidhuber
1997) is a synthetic task designed to evaluate the performance
of RNNs for learning long-term dependencies. The input is
two sequences of length T . The first sequence is randomly
sampled from a uniform distribution in [0, 1], while the sec-
ond is all 0’s except for two 1’s in random locations. The
target is the sum of the two elements in the first sequence
indicated by the two 1’s in the second. A baseline is to always
predict the target to be a value of 1 regardless of the samples,
which gives an MSE around 0.1767. The goal is to train a
model achieving MSE well below 0.1767. The masked addi-
tion problem becomes harder as the length T increases. In
our experiments, three different sequence lengths, T = 200,
500 and 1000, are used to verify the models.

The results are shown in Figure 3. When the sequence
length is relatively short (i.e., T = 200 and 500), all of the
models converge to a very low MSE. Among them, TP-RNN-
M converges first. The performance of TP-RNN-S is faster
than HH-LSTM and very close to Dilated LSTM, but TP-
RNN-S has only about one-eighth and one-fifth of the number
of parameters. TP-RNNs converge much faster than LSTMs
with similar numbers of parameters. When the sequence
length increases to 1000, neither LSTMs nor HM-LSTM
and Dilated LSTM converge to a MSE lower than the base-
line, while TP-RNNs still quickly converge to a very low
MSE. TP-RNNs clearly overcome the vanishing gradient

1The Supplementary material is publicly available at
https://github.com/qianlima-lab/TPRNN
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problem to learn long-term dependencies.

Pixel-by-pixel image classification

We evaluate TP-RNN on two pixel-by-pixel image classifi-
cation data sets, MNIST and pMNIST (Le, Jaitly, and Hin-
ton 2015). The pixels of each image are fed into RNNs se-
quentially for classification. pMNIST is a harder version of
MNIST (Arjovsky, Shah, and Bengio 2016), since its pixel se-
quences are perturbed by a fixed random permutation, which
breaks local structure and creates more complex dependen-
cies on various time scales (Trinh et al. 2018). They have
become the most popular benchmarks for evaluating long-
term dependency learning.

TP-RNN-M exceeds the performance of several previous
state-of-the-art RNNs (Table 1). TP-RNN-S achieves compa-
rable performance using many fewer parameters than Dilated
LSTM and HM-LSTM. Its superior performance on pMNIST
over LSTMs is significant, since pMNIST is more difficult.
Moreover, multi-layer LSTM and TP-RNN performing better
than single-layer nets prove the benefit of learning multi-scale
dependencies in sequential data with multiple layers.

TP-RNNs again converge much faster than LSTMs and Di-
lated LSTMs on these tasks. In addition, we also evaluate TP-
RNN on a more challenging task called noisy MNIST (Chang
et al. 2017), which pads the pixel sequences with random
noise sampled from a uniform distribution in [0, 1] to the
length of T . We use three setups, T = 1000, 2000 and 3000,
and get a similar conclusion to the masked addition problem.
Details are in the Supplementary material.

Table 1: Classification accuracies (%) on MNIST and pM-
NIST data sets.

Model #Params MNIST pMNIST

iRNN (Le, Jaitly, and Hinton 2015) – 97.0 82.0
uRNN (Arjovsky, Shah, and Bengio 2016) – 95.1 94.0

Stanh-RNN (Zhang et al. 2016) – 98.1 94.0
BN-LSTM (Cooijmans et al. 2017) – 98.1 94.0

SAB (Ke et al. 2018) – – 94.2
ASLSTM (Hu, Qi, and Wang 2019) – 98.3 90.8

r-LSTM (Trinh et al. 2018) – 98.4 95.2
IndRNN (Li et al. 2018) – 99.0 96.0

LSTM-S 41.8K 98.0 91.3
LSTM-M 233K 98.6 92.3

HM-LSTM (Chung, Ahn, and Bengio 2017) 353K 98.6 94.6
Dilated LSTM (Chang et al. 2017) 239K 99.0 95.9

TP-RNN-S 42.4K 98.7 96.0
TP-RNN-M 234K 99.2 96.7

Signal recognition

To further evaluate TP-RNN for learning long-term and multi-
scale dependencies, we generate a synthetic signal data set
inspired by (Hu, Qi, and Wang 2019). It contains 9000 se-
quences of length 1000, which are divided into a training set,
a validation set and a test set according to the ratio of 7:1:2.
Each sequence contains n signals of the same type and these
signals may have different frequencies (i.e., timescales) f .
The number, frequencies and positions of signals are random
with n ∈ {3, 4, 5} and f ∈ {20, 40, 60, 80}, and the signals
do not overlap. The rest of the sequences are filled with noise

randomly sampled from a uniform distribution in [−1, 1]. A
example is shown in Figure 4.

Figure 4: An example of synthetic signal sequence of length
1000. It contains 4 sine signals whose frequencies are 80, 60,
20 and 60 from left to right respectively.

First, we do the task called Signal Type Identification (STI)
proposed by (Hu, Qi, and Wang 2019). It requires distinguish-
ing the type of signals of a sequence containing limited useful
information. There are three kinds of signal types including
sine wave, square wave and saw-tooth wave. Table 2 shows
the identification accuracies on STI. This task is relatively
easy and most of the models can achieve good performance
except LSTM-M, since it is hard to train the deep LSTM
structure for learning long-term dependencies.

In fact, the first task does not significantly require learning
multi-scale dependencies since it only concerns about the
type of signals while ignoring the frequencies. So we design
another task called Signal Frequency Counting (SFC) based
on the same data set. It requires counting the number of kinds
of signal frequencies of a sequence. For example, the signals
of the sequence in Figure 4 have three kinds of frequencies,
so the label is 3.

The counting accuracies of SFC are also shown in table
2. On this harder task, LSTMs perform very badly while
TP-RNNs, especially TP-RNN-M, still perform quite well.
TP-RNN-S again achieves better performance than Dilated
LSTM and HM-LSTM with many fewer parameters. The se-
quences are long (length 1000) with a small amount of signal
and a lot of noise, and the SFC task requires to deal with
different frequencies (i.e., timescales). Hence, this further
indicates the effectiveness of TP-RNN for learning long-term
and multi-scale dependencies in sequential data.

Table 2: Accuracies (%) of STI and SFC.

Model #Params STI SFC

LSTM-S 41.8K 92.8 50.2
LSTM-M 233K 43.7 55.1

HM-LSTM (Chung, Ahn, and Bengio 2017) 353K 99.6 86.1
Dilated LSTM (Chang et al. 2017) 239K 100 76.7

TP-RNN-S 42.4K 99.6 86.5
TP-RNN-M 234K 100 99.8

Speaker identification

We also evaluate TP-RNN on a speaker identification task
using the English multi-speaker corpus from CSTR voice
cloning toolkit (VCTK) (Yamagishi 2012). This data set con-
sists of 44 hours of audio from 109 different speakers. Each
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Table 3: The identification accuracies (%) on the VCTK data set. ”/” represents that the model failed to converge. Acc (#Hz)
represents the accuracy of raw audio waves with #Hz sampling rate.

MFCC Raw

Model #Params Acc #Params Acc (1000Hz) Acc (1500Hz)

LSTM-S 56.6K 92.3 51.8K / /
LSTM-M 247K 95.8 243K / /

HM-LSTM (Chung, Ahn, and Bengio 2017) 368K 93.8 364K / /
Dilated LSTM (Chang et al. 2017) 248K 96.0 246K 90.7 89.8

TP-RNN-S 56.9K 96.5 53K 88.9 91.0
TP-RNN-M 248K 97.9 245K 93.9 95.5

speaker reads out about 400 sentences. We follow the data
splitting protocol, 7:1:2, for each speaker to get the training,
validation and test sets. First, we compute 13-dimensional
log-mel frequency features (MFCC) with 25ms window and
10ms shift, resulting in sequences of length about 300. Be-
sides, we also directly employ the raw audio waves with
1000Hz sampling rate as input, resulting in very long se-
quences of length about 3600. Such a sequence length is very
challenging for training RNNs.

The results are shown in Table 3. TP-RNNs outperform
LSTMs with an accuracy gain over 4% when using MFCC
features. And TP-RNN-S still achieves a better result with
many fewer parameters than Dilated LSTM and HM-LSTM.
Furthermore, when using raw audio waves, LSTMs and HM-
LSTM fail to converge since the sequences are too long
and they suffer from the vanishing gradient problem during
training. TP-RNNs still converge to high accuracy and TP-
RNN-M is consistently better than Dilated LSTM. Finally, we
increased the sampling rate to 1500Hz to result in sequences
of length about 5400. This shows that TP-RNNs can benefit
from longer sequences to reach a higher accuracy close to that
of MFCC features, while the performance of Dilated LSTM
drops significantly. These results demonstrate the ability of
the TP-RNN for learning long-term dependencies.

Model Analysis

Impact of aggregation methods We compare three aggre-
gation methods (mean pooling, max pooling and SENet) and
test on MNIST and PMNIST. Here, “SENet” doesn’t mean
the SENet model, it means we use the same aggregation
method as SENet did. The results in table 4 show that our
method is consistently better than SENet because of fine-
grained effects and mean pooling is the worst, while the
performance of max pooling is close to SENet.

Table 4: The result of different aggregation methods on
MNIST and PMNIST

Task Model Mean Pool Max Pool SENet Ours

MNIST
TP-RNN-S 97.8 98.1 98.3 98.7
TP-RNN-M 98.8 99.0 99.1 99.2

PMNIST
TP-RNN-S 94.4 95.2 95.6 96.0
TP-RNN-M 95.8 96.2 96.0 96.7

Impact of model structures To investigate the effect of
each structure in our model, we conduct a set of ablation

experiments on MNIST and PMNIST. w/o IAC means we re-
move the iterative aggregation connections. w/o TDC means
we remove the top-down connections between sub-pyramids.
w/o OAC means we remove the output aggregation connec-
tions. For w/o OAC, we use the output of the last layer to
classify. Table 5 shows that when the IAC is removed, the
performance is significantly reduced because of the longer
feedback path, removing the TDC will make the information
flow discontinuous and also reduce the performance, and
removing the OAC also affect performance. This proves that
all structures are helpful to our model.

Table 5: The ablation test for model structures on MNIST
and PMNIST

Task Model w/o IAC w/o TDC w/o OAC Ours

MNIST TP-RNN-S / -M 97.8 / 98.6 98.4 / 99.0 – / 99.0 98.7 / 99.2
PMNIST TP-RNN-S / -M 95.1 / 96.0 95.5 / 96.1 – / 96.2 96.0 / 96.7

Conclusion

In this paper, we propose a novel hierarchical RNN named
temporal pyramid RNN (TP-RNN). Its structure allows it
to learn long-term and multi-scale dependencies in sequen-
tial data. The sub-pyramids connected by a shortcut path to
the output in each layer of a TP-RNN can efficiently aggre-
gate historical information from hidden states and provide
many gradient feedback short-paths. In the multi-layer ver-
sion of TP-RNN, the input sequence of the higher layer is a
large-scale aggregated state sequence produced by the sub-
pyramids in the previous layer. In this way, TP-RNN can learn
multi-scale dependencies with multi-scale input sequences
of different layers, as well as effectively learn long-term de-
pendencies by shortening the input sequence and gradient
feedback paths of each layer. TP-RNN achieves better perfor-
mance than existing RNNs for learning long-term and multi-
scale dependencies on several sequence modeling tasks. Our
future work will aim to adaptively construct the sub-pyramids
according to latent sequence properties.
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