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Abstract

Our objective in this work is fine-grained classification of

actions in untrimmed videos, where the actions may be tem-

porally extended or may span only a few frames of the video.

We cast this into a query-response mechanism, where each

query addresses a particular question, and has its own re-

sponse label set.

We make the following four contributions: (i) We pro-

pose a new model—a Temporal Query Network—which

enables the query-response functionality, and a structural

understanding of fine-grained actions. It attends to rel-

evant segments for each query with a temporal attention

mechanism, and can be trained using only the labels for

each query. (ii) We propose a new way—stochastic fea-

ture bank update—to train a network on videos of vari-

ous lengths with the dense sampling required to respond

to fine-grained queries. (iii) we compare the TQN to

other architectures and text supervision methods, and an-

alyze their pros and cons. Finally, (iv) we evaluate the

method extensively on the FineGym and Diving48 bench-

marks for fine-grained action classification and surpass the

state-of-the-art using only RGB features. Project page:

https://www.robots.ox.ac.uk/~vgg/research/tqn/.

1. Introduction

Imagine that you wish to answer particular questions about

a video. These questions could be quite general, e.g., “what

instrument is being played?”, quite specific, e.g., “do people

shake hands?”, or require a composite answer, e.g., “how

many somersaults, if any, are performed in this video, and

where?”. Answering these questions will in general re-

quire attending to the entire video (to ensure that nothing

is missed), and the response is query dependent. Further,

the response may depend on only a very few frames where

a subtle action occurs. With such video understanding ca-

pability, it is possible to effortlessly carry out regular video

metrology such as performance evaluation in sports train-

ing, or issuing reports on video logs.

Coarse action recognition

dribbling basketball braiding hair salsa dancing

Fine-grained action recognition

leap 
leg change side split

0.25 turn

 leap forward with leg change and 0.25 turn to side split 

playing trumpet

Figure 1. Coarse vs. fine-grained action recognition. Top: Ob-

ject and background cues from only a few frames can inform clas-

sic coarse-grained action recognition in datasets like Kinetics [27],

where visually distinct activities are to be distinguished. Bottom:

However, for finer-grain classification which depends on subtle

differences in pose, the specific sequence, duration and number of

certain sub-actions, as for the gymnastics sequence above, requires

reasoning about events at varying temporal scales and attention to

fine details. We develop a novel query-based video network and a

training framework for such fine-grained temporal reasoning.

The objective of this paper is a network and training frame-

work that will enable questions of various granularity to be

answered on a video. Specifically, we consider untrimmed

videos and train with weak supervision, meaning that at

training time we are not provided with the temporal local-

ization information for the response. To this end, we intro-

duce a new Transformer-based [56] video network architec-

ture, the Temporal Query Network (TQN), for fine-grained

action classification. The TQN ingests a video and a pre-

defined set of queries and outputs responses for each query,

where the response is query dependent.

The queries act as ‘experts’ that are able to pick out from

the video the temporal segments required for their response.

Since the temporal position of the response is unknown,

they must examine the entire duration of the video and be

able to ignore irrelevant content, in a similar manner to a

‘matched filter’ [54]. Furthermore, since the duration of re-

sponse segments may only be a few frames, excessive tem-

poral aggregation (for example, by average pooling the en-

tire untrimmed video) may lose the signal in the noise.
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As the TQN must attend densely to the video frames for an-

swering specific queries, and cannot sub-sample in time, we

also introduce a stochastically updated feature bank so that

the model can be trained beyond the constraints imposed

by finite GPU memory. For this we use a temporal feature

bank in which features from densely sampled contiguous

temporal segments are cached over the course of training,

and only a random subset of these features is computed on-

line and backpropagated through in each training iteration.

We demonstrate the TQN on two fine-grained action recog-

nition datasets with untrimmed video sequences: Fine-

Gym [46] and Diving48 [37]. Both of these datasets share

the following challenges: (i) object and backgrounds can-

not be used to inform classification, as is possible for

more coarse-grained action recognition datasets, e.g., Ki-

netics [27] and UCF-101 [49] (see Figure 1). (ii) subtle

differences in actions, relative spatial orientations and tem-

poral ordering of objects/actors need to be distinguished.

(iii) events have a short duration of approx. 0.3 seconds in

video clips which are typically 6-10 seconds long, and can

be as much as 30 seconds in length. (iv) Finally, the dura-

tion and position of events vary and is unknown in training.

This lack of alignment between text-description (labels) and

videos means that that supervision is weak.

Summary of contributions: (i) we introduce a new

model—a Temporal Query Network (TQN)–which enables

query-response functionality on untrimmed videos. It can

be trained using only the labels for each query. We show

how fine-grained video classification can be cast as a query-

response task. (ii) We propose a new way—stochastic fea-

ture bank update—to train a network on videos of various

lengths with the dense sampling required to respond to fine-

grained queries. (iii) We compare the TQN to other architec-

tures and text supervision methods, and analyze their pros

and cons. Finally, (iv) we evaluate the method extensively

on the FineGym [46] and Diving48 [37] benchmarks for

fine-grained action classification. We demonstrate the ben-

efits of the TQN and stochastic feature bank update over

baselines and with ablations, and the importance of ex-

tended and dense temporal context. The TQN with stochas-

tic feature bank update training surpass the state-of-the-art

on these two benchmarks using only RGB features.

2. Related Work

Action Recognition. Convolutional neural network have

been widely used in action recognition recently, includ-

ing both 2D networks like the two-stream [48], TSN [59],

TRN [74], TSM [40], TPN [69], and 3D networks like

LTC [55], I3D [5], S3D [66], SlowFast [13], X3D [12].

Progress in architectures has led to a steadily improved per-

formance on both coarse and fine-grained action datasets [9,

27, 32, 49]. Despite this success, challenges remain: fine-

grained action recognition without objects and background

biases [8, 37], long-term action understanding [62, 71], and

distinguishing actions with subtle differences [46].

Long-Term Video Understanding. Early work used

RNNs like LSTM [22] for context-modeling in long

videos [36, 38]. More recently, the Transformer [56] archi-

tecture has been widely adopted for vision tasks due to its

advantage in modeling long-term dependencies. The com-

bination of ConvNets and Transformer is applied not only

for images [4, 6, 10, 11, 75], but also on video tasks includ-

ing representation learning [14, 50, 51], and action classifi-

cation [17, 60, 62].

Video-Text Representation Learning. Videos are natu-

rally rich in modalities, and text extracted from associated

captions, audio, and transcripts is often used for video rep-

resentation learning. [3, 23] use text as weak supervision to

localize actions through alignment, but require text to have

the same order as actions. [1, 20] learn to localize and de-

tect action from sparse text labels, while [15] focuses on lo-

calizing actions in untrimmed videos by aligning free-form

sentences, whereas we learn to answer specific questions

with a pre-defined response set. Text is also used in self-

supervised text-video representation learning [43, 45, 51],

or for supervised tasks like video retrieval [7, 14, 41, 61].

Overcoming Memory Constraints in Frame Sampling.

A common way to extract features from a video is by sam-

pling a fixed number of frames, usually less than 64 [5,

40, 66]. However, such coarse sampling of frames is not

sufficient, especially for fine-grained actions in untrimmed

videos [19, 37, 46, 47]. One common solution is to use

pre-trained features[16, 34, 44, 52, 62], but this relies on

good initializations and ensuring a small domain gap. While

another solution focuses on extracting key frames from

untrimmed videos [18, 31].

Visual Question and Answering (VQA). Models for

VQA usually have queries which attend to relevant fea-

tures for predicting the answers [29, 35, 39, 73]. For ex-

ample, [24] use co-attention between vision and language,

and [70] adapts attribute-based attention in LSTM using a

pertained attribute detector. [28] proposes a progressive at-

tention memory to progressively prune out irrelevant tem-

poral parts. Our query decoder has a similar query-response

mechanism, however, our final goal is action recognition

not VQA. Instead of having specific questions for each

video, we are interested in a common set of queries shared

across the whole dataset.

3. Method

In this section we first, describe the Temporal Query Net-

work (TQN) decoder, which given only weak supervision

(no event location/duration), learns to respond to the queries
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Figure 2. Temporal Query Network. A set of permutation-

invariant query vectors qi are learnt for pre-defined queries. They

attend over densely extracted visual features in a Transformer [56]

decoder and generate response vectors ri, which are linearly clas-

sified (Ψi) into attributes a
j

i from corresponding attribute sets Ai.

by attending over the entire densely sampled untrimmed

video (Section 3.1). Second, we introduce a training frame-

work to overcome GPU memory constraints preventing use

of temporally-dense video input (Section 3.2). Finally, we

explain how the monolithic category labels that are nor-

mally provided with fine-grained video datasets, and typi-

cally composed of a varying number of sub-labels (or to-

kens drawn from a finite-set) corresponding to event types

and attributes, can be factored into a set of queries and cor-

responding attributes (Section 3.3).

3.1. Temporal Query Networks

A Temporal Query Network (TQN) identifies rapidly oc-

curring discriminative events (spanning only a few frames)

in untrimmed videos, and can be trained given only weak

supervision, i.e., no temporal location or duration infor-

mation for events. It achieves this by learning a set of

permutation-invariant query vectors corresponding to pre-

defined queries about events and their attributes, which are

transformed into response vectors using Transformer [56]

decoder layers attending to visual features extracted from a

3D ConvNet backbone. Figure 2 gives an overview of the

model. The visual backbone and the TQN decoder are de-

scribed below.

Query–Attributes. The query set is Q = {qi}
K
i=1,

where each query qi has a corresponding attribute set

Ai = {ai
1, ai

2, . . . , ai
ni−1,∅} consisting of the admissi-

ble values ai
j in response to qi; ∅ denotes the null value

(not present), and the total number of attributes ni = |Ai|
is query dependent.

For example, in diving videos a query could be the

number of turns with the attribute set being the pos-

sible counts {0.5, 1.0, 2.5}; or in gymnastics, the query

could be the event type with attributes {vault,

floor-exercise, balanced beam}.

Visual backbone. Given an untrimmed video, first visual

features for contiguous non-overlapping clips of 8 frames

are extracted using a 3D ConvNet: Φ = (Φ1, Φ2, . . . , Φt),

where t is the total number of clips, and Φi ∈ R
d is the

d-dimensional clip-level visual feature. Note, it is impor-

tant to extract features densely from the entire length of the

video because: (i) it avoids causing temporal aliasing and

also missing rapid events (which span only a few frames),

e.g., a somersault, and (ii) selecting a subset of clips from

the full video for classification [5, 12, 66] is sub-optimal as

the location of these events is unknown.

TQN Decoder. Given the clip-level features and the label

queries, the TQN decoder outputs a response for each query.

Concretely, for each label query qi, a vector qi ∈ R
dq is

learnt for which a response vector ri ∈ R
dq is generated by

attending over the visual features Φ. Each response vector

ri is then linearly classified independently into the corre-

sponding attribute set Ai.

In more detail, we use multiple layers of a parallel non-

autoregressive Transformer decoder, as also used in [4].

Each decoder layer first performs self-attention between the

queries, followed by multi-head attention between the up-

dated queries and the visual features. In each attention head,

the visual features Φ are used to linearly regress keys Γ · Φ

and values Λ · Φ, where Γ and Λ are the linear key and

value heads. The values are gathered using Softmaxed dot-

products between the keys and queries as the weights. Fi-

nally, a feed-forward network ingests the values from mul-

tiple heads and outputs the response vectors. The response

vectors from one decoder layer act as queries for the next

layer, except for the first layer where the learnt queries q

are input. Hence, each decoder layer refines the previously

generated response vectors. Mathematically, if ℓ(j) is the

jth decoder layer, j ∈ {1, 2, . . . , M}:

ℓ(j)(·, ·) : RN×dq × R
t×d 7→ R

N×dq ,

ℓ(j)(r(j−1), Φ) 7→ r(j), and

r(0) , q.

(1)

The response vectors from the final (M th) layer r
(M)
i ∈ R

dq

corresponding to the queries qi, i ∈ {1, 2, . . . , K} are clas-

sified into the corresponding attribute sets Ai using K in-

dependent linear classifiers Ψi : Rdq 7→ R
ni , where ni is

the query dependent total number of admissible attributes.

Please refer to Figure 2 for a visual representation of this

process, and the extended version [72] for details of the

Transformer decoder.

Training. The model parameters, i.e., from the visual

encoder and the TQN decoder are trained jointly end-to-end

with the attribute classifiers Ψi through backpropagation.

The training loss is a multi-task combination of individ-
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ual classifier losses, which are Softmax cross-entropy LCE

losses on the logits Ψi·r
(M)
i over the attribute sets Ai:

Ltotal =

K∑

i=1

L
(i)
CE(ai, Ψi · r

(M)
i ), (2)

where ai is the ground-truth attribute for the label query qi.

In essence, the TQN decoder learns to establish temporal

correspondence between the query vectors and the relevant

visual features to generate the response. Since the query

vectors are themselves learnt, they are optimized to become

‘experts’ which can localize the corresponding event in the

untrimmed temporal feature stream. Figures 4 and 5 illus-

trate this temporal correspondence.

Discussion: TQN and DETR. DETR [4] is a recently

proposed Transformer based object detection model, which

also similarly employs non-autoregressive parallel decod-

ing to output object detections at once. However, there are

three crucial differences: (i) the DETR object queries are

all equivalent – in that their outputs all specify the same ‘la-

bel space’ (object classes and their RoI), essentially queries

are learnt position encodings. In contrast the TQN queries

are distinct from each other and carry a semantic meaning

corresponding to event types and attributes; their output re-

sponse vectors each specify a different set of attributes, and

the number of attributes is query dependent. (ii) This leads

to the second difference: since the TQN responses are tied

to these queries, they can be trained with direct supervi-

sion for attribute labels, thereby avoiding train-time Hun-

garian Matching [33] between prediction and ground-truth

employed in DETR. (iii) Finally, no temporal localization

supervision is available to the TQN, while (spatial) locations

are provided for DETR training. Hence, although TQN is

tasked with (implicit) detection of events, it does so with

much weaker supervision.

3.2. Stochastically Updated Feature Bank

Dense temporal sampling of frames for the entire

untrimmed video input is key for detecting rapid discrim-

inative events with unknown temporal location. How-

ever, this is challenging in practice due to GPU mem-

ory constraints which prevent forwarding densely sampled

frames in each training iteration. We use a feature memory

bank [64, 65] to overcome these constraints.

The memory bank caches the clip-level 3D ConvNet vi-

sual features. Note for a given video, the clip features

Φ = (Φi, Φ2, . . . , Φt), where t is the total number of clips,

can be extracted independently of each other. The mem-

ory bank is initialized with clip features for all the training

videos extracted from a pre-trained 3D ConvNet (details in

Section 3.4). Then in each training iteration, a fixed number

nonline of randomly sampled consecutive clips are forwarded

Figure 3. Stochastically updated feature bank. Feature banks

cache visual encoder features Φ to circumvent GPU memory con-

straints which prevent forwarding densely sampled video frames

from the entire length of the video at each training iteration. Ran-

domly sampled contiguous video clips are forwarded online in

each iteration and cached immediately; the rest of the clip fea-

tures are retrieved from the feature bank. The features are then

input into the TQN for joint training of both the TQN and the visual

encoder. This joint training over dense temporal context is critical

for fine-grained performance (Section 5.2).

through the visual encoder, i.e., nonline clip features are com-

puted online. The remaining (t − nonline) clip features are

retrieved from the memory bank. The two sets of visual fea-

tures are then combined and input into the TQN decoder for

final prediction and backpropagation to update the model

parameters. Finally, the clip features in the memory bank

corresponding to the ones computed online are replaced

with the online features. During inference, all the features

are computed online without the memory bank. Figure 3

summarizes the function visually.

Advantages. Using a fixed number of clips online de-

couples the length of videos and the GPU memory budget.

As a result our memory bank enables the TQN decoder to

be trained (i) jointly with the visual encoder, (ii) with ex-

tended temporal context, both of which impart drastic im-

provements in performance (see Section 5.2). Further, it

promotes diversity in each mini-batch as multiple different

videos can be included instead of just a single long video.

Discussion: relations with prior memory bank meth-

ods. Feature memory banks have been used for com-

pact vector representations of single images [53, 64, 65],

whereas we store a varying number of temporal vectors for

each video. MoCo [21] and related self-supervised meth-

ods [58, 68] update the memory bank features slowly e.g.,

using a secondary network, to prevent representation col-

lapse, whereas given direct supervision for the queries, we

can update the features immediately from the single on-

line network. The above works apply memory banks for

image/feature retrieval from a large corpus for hard nega-
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Figure 4. TQN attention alignment. For a given query, the TQN

attends over the clip-level features to generate the responses. We

visualize the central frame from the clip with the highest atten-

tion score for six different query-attributes from the FineGym [46]

dataset. The same queries (but different attributes) are highlighted

with a common color. The TQN detects and aligns semantically

relevant events under variations in appearance and pose without

any temporal localization supervision. More visualizations in the

extended version [72].

tives in contrastive training, while we use the memory bank

for extending the temporal context for each video. Using

pre-computed features [34, 44, 52] or Long-term Feature

Banks [62] are prominent [2, 16, 63] strategies for extending

the temporal support of video models. However, all of these

works keep the features frozen, while we continuously up-

date the memory-bank during training. In Section 5.2, we

demonstrate these updates are critical for performance.

3.3. Factorizing Categories into Attribute Queries

In this section we illustrate how the pre-defined set of N

categories C = {c1, c2, . . . , cN } typically associated with

fine-grained video recognition datasets can be factored into

attribute queries. In such datasets, the categories differ in

subtle details e.g., the specific type, duration, or count of a

certain sequence of events. These can be rapidly occurring

(short duration) events with unknown temporal location and

duration (see Figure 1).

The textual descriptions of categories C are strings com-

posed of a varying number of sub-labels (or tokens drawn

from a finite-set) corresponding to event types and attributes

(sub-label categories). We leverage this string structure

to form queries {qi}
K
i=1 corresponding to sub-label cate-

Category ↓
query → q1: leap and jump type q2: num turns

attribute→ switch leap split jump 0.5 1.0 ∅

switch leap w/ 0.5 turn ✓ ✓

switch leap w/ 1 turn ✓ ✓

split jump w/ 1 turn ✓ ✓

split jump ✓ ✓

Table 1. Illustration of query-attribute factorization of fine-

grained action categories. Four categories are factored into two

queries q1, q2 with two and three attributes respectively.

gories, each with an associated attribute set Ai composed

of sub-labels, such that the categories C can be expressed

as a subset of the cartesian product of the attribute sets:

C ⊆ A1 × A2 × . . . × AK . An example label factorization

for four categories is given in Table 1, where four action

categories are expressed as a product of two attribute sets

containing two and three attributes respectively. Factoriza-

tion details for the evaluation datasets used in this paper are

given in Section 4 and the extended version [72].

This factorization unpacks the monolithic category labels

into their semantic constituents (the queries and attributes).

It improves data-efficiency, through sharing video data

across common sub-labels (instead of disjoint category-

specific data), and induces TQN-style query-based temporal

localization and classification video parsing models.

3.4. Implementation Details

We describe key model and training details below, with fur-

ther details in the extended version [72].

Model architecture. We use S3D [66] as visual back-

bone, operating on non-overlapping contiguous video clips

of 8 frames each of size 224 × 224 pixels with consistent

temporal stride s (s=1 in FineGym, s=2 in Diving48), to

output one feature vector per clip. The decoder consists of

four standard pre-normalization [67] Transformer decoder

layers [56], each with four attention heads, and 1024-dim

keys, (learnt-) queries, and values. Dropout rate is 0.1 in

the decoder and 0.5 for output features.

Training. The visual encoder is pre-trained on Kinetics-

400 [27]. Then, we proceed by a two stage curriculum.

First, the model is trained end-to-end on short videos con-

taining fewer than K frames (FineGym: K = 48, Div-

ing48: K = 128; as the latter contains approx. 3× longer

videos), such that they can fit on two Nvidia RTX 6000

GPUs with batch size 16. Second, the model is trained

on the whole training set using the stochastically updated

memory bank (Section 3.2) to accommodate long videos.

We use the Adam optimizer [30], and train for 50 epochs in

the first stage, followed by 30 more epochs in the second.

4. Datasets, Baselines, Label Sets, and Metrics

We evaluate TQN for fine-grained action recognition on two

video datasets, namely, FineGym [46], and Diving48 [37].

We introduce the datasets, list the baselines methods we

compare against, detail the query-attribute based label sets

for them, and state the evaluation measure below.

FineGym. FineGym is a recently introduced dataset

(2020) for fine-grained action understanding, consisting of

HD gymnasium classes with subtle motion details. We eval-

uate for classification under two settings specified in the
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Figure 5. TQN temporal attention. Blue colored maps visualize the attention averaged over all queries predicted by TQN for two clips from

the Diving48 dataset [37]. The peaks in these maps correspond to temporal location of diving ‘flight’ highlighted in orange. TQN rejects

non-informative frames at the start and end of untrimmed videos to localize discriminative frames relevant for fine-grained recognition.

dataset with standard train/eval splits: (1) Gym99: rela-

tively balanced data for 99 categories with 26k training/8.5k

testing videos; and (2) Gym288: long-tailed data for 288

categories with 29k training/9.6k testing videos. There is a

large variation in video lengths: min: 13 frames, max: 877

frames, average: 47 frames.

Diving48. Diving48 contains competitive diving video

clips from 48 classes. It similarly evaluates fine-grained

video recognition by having a common diving setting where

subtle details of diving sequences define the various cate-

gories instead of coarse objects or scenes. We use the stan-

dard split containing 16k training/2k test videos. The video

lengths have a very wide range: min: 24 frames, max: 822

frames, average: 158 frames. We use the cleaned-up labels

(denoted ‘v2’) released in Oct 2020.

Diving48-v2 SotA comparison. We trained publicly

available SotA action recognition models on v2 labels,

namely: (i) TSM [40], (ii) TSN [59], (iii) TRNms [74],

(iv) I3D [5], (v) S3D [66], and (vi) GST-50 [42]. Note,

GST-50 is the top-performing method on Diving48-v1

amongst those using a ResNet-50 backbone (refer to v1

comparison in the extended version [72]). The origi-

nal dataset paper [37] reports results only for TSN and

C3D [25]; C3D (2013) is omitted as it is outperformed

by more recent methods, e.g., I3D and S3D. We could not

benchmark against other prominent methods reported for

v1, namely, CorrNet [57] and AttnLSTM [26], as their im-

plementation is not public.

Baseline methods. Since we use S3D [66] as the vi-

sual backbone for TQN, the following two methods form

the baselines: (i) Short-term S3D (ST-S3D): following the

original dataset papers [37, 46], it is trained on single clips

of fixed number (=8 if not specified otherwise) of frames,

while for inference, the predicted probabilities from mul-

tiple clips spanning a given video are averaged for final

classification. (ii) Long-term S3D (LT-S3D = S3D + Fea-

ture Bank): uses our stochastically updated feature bank

at training time in order to pool information from the entire

video. Specifically, LT-S3D replicates the ST-S3D’s multi-

clip evaluation setting at training time, i.e., class probabili-

ties obtained from multiple clips spanning the entire video

are averaged and used for prediction and backpropagation.

Note at training time ST-S3D incorrectly bases its decisions

on individual clips which may not contain information rel-

evant for classification. LT-S3D overcomes this issue using

multi-clip feature bank and learns better clip-level features

(Section 5.2).

Label sets: query-attributes. We define query-

attributes independently for each dataset. Diving48: The

original 48 classes are defined in terms of four stages of

a diving action. We use four queries corresponding to the

stages, and the possible instantiation of each stage as at-

tributes. FineGym: Each category in Gym99 and Gym288

is defined by a textual description for the specific sequence

elements in a gymnastic set, e.g., “double salto backward

tucked with 2 twist”. We extract nouns from these and cate-

gorize them into 12 queries, e.g., swing, landing, jump and

leap, etc. and their instantiations form the attributes. Com-

plete factorization is specified in the extended version [72].

In addition to these query and attribute sets, we augment

the TQN query set with a “global”query class with the orig-

inal fine-grained categories as its attribute set, and use its

response for the final category prediction.

Metrics. We evaluate on (top-1) classification accuracy,

both per original class (48 in Diving48, 99 in Gym99 and

288 in Gym288), and per video.

5. Experiments

5.1. Leveraging Multi­Attribute Labels

We evaluate alternative methods and losses for exploiting

multi-part text descriptions on the Diving48-v2 dataset, and

compare performance to our query-attribute label factoriza-

tion (Section 3.3). Table 2 summarizes the results for vari-

ous encoders, decoders and losses; detailed description are

given in the extended version [72]. TQN multi-task losses

perform the best (81.8% per-video accuracy), followed by
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Backbone Encoder
Decoder

(Aggregation)
Classification Label

Accuracy

per-class per-video

S3D

– average pooling multi-class

(cross entropy)
class index

72.3 80.4

self-attention

– 73.7 80.0

–
multi-label

(binary cross entropy) text

descriptions

47.9 50.3

auto-regressive

Transformer

sequence prediction

(cross entropy)
51.9 65.1

– TQN
multi-task

(cross entropy)
74.5 81.8

Table 2. Leveraging multi-part text descriptions. We compare

our query-attribute label factorization (Section 3.3) to alternative

methods for learning with unaligned (no temporal location infor-

mation) multi-part text descriptions. Our TQN + label factorization

outperforms other approaches which are representative of standard

classification, and modern encoder-decoder architectures for se-

quences (see Section 5.1). Evaluation on the Diving48-v2 dataset.

standard multi-class classification (avg. pool: 80.4%, self-

attention: 80.0%) which only uses the class index, not the

text descriptions. Other sequence based methods for text

perform substantially worse (−15-30%), due to the restric-

tive ordering imposed by the text string. TQN goes beyond

just attention-based context aggregation, as it outperforms

S3D+attention-encoder trained without queries (2nd row)

(81.8% vs. 80.4%). This is most likely due to: (i) data re-

use enabled by shared sub-labels; and (ii) the learnt queries

act as ‘experts’ to identify discriminative events.

5.2. Feature Bank Ablations

We benchmark our stochastically updated feature banks

(Section 3.2) in two ways: first, we evaluate the effect of

increasing the temporal context during training, and second

the effect of backpropagation through the feature bank. We

use Diving48-v2 for both.

Effect of increasing training temporal context. To

evaluate the importance of dense and long temporal con-

text during training for fine-grained action recognition, we

train the S3D visual encoder [66] on an increasing num-

ber of input frames N = {8, 32, 64, all frames}, where ‘all

frames’ corresponds to LT-S3D, i.e. training with our fea-

ture bank. At inference, full temporal support is used for

all methods by averaging class probabilities from multiple

clips spanning the entire video (no decoder). To control

for visual discontinuity between frames due to large input

stride, we sample the frames in two ways: (i) consecu-

tively sample N frames with a temporal stride of 2 start-

ing at random temporal locations, and (ii) uniformly sample

N frames with a span of the entire video, where the tem-

poral stride s is proportional to the actual length T of the

video, i.e., s = ⌊ T
N

⌋. Table 5 summarizes the results. Con-

secutive sampling performs better as uniform sampling im-

plies varying input stride which is not amenable to S3D’s

temporal convolutional filters with fixed stride. More im-

portantly, longer temporal context is better regardless of the

frame sampling strategy: all frames: 80.5% per-video accu-

racy; for N = {8, 32, 64}: <75%. This demonstrates the

critical role of our feature bank for training.

Effect of updating bank features during training. A

key difference between our feature bank and previous meth-

ods for extended temporal support for videos, e.g., Long-

term feature banks [62] and [34, 44, 52], is that they use

frozen features, while we continuously update them. We

train with frozen/updated features, with/without the TQN

decoder on top of visual features, and summarize the results

in Table 4. For both with/without TQN, updating the fea-

tures improves the performance substantially (≈ +15%).

5.3. Comparison with State­of­the­art

Finally, in Table 3 we compare the performance of

TQN against SotA methods on Diving48-v2, Gym99 and

Gym288. For completeness, performance on the origi-

nal noisy Diving48-v1 is reported in the extended ver-

sion [72]. TQN outperforms all methods on all the three

benchmarks on both per-video and per-class measures, even

when flow+RGB (two-stream) input is allowed for other

methods, while only RGB is input to TQN; a detailed ta-

ble with breakdown for RGB and flow is included in the

extended version [72]. Compared to the ST-S3D baseline

(S3D with short temporal context), having long-term con-

text (LT-S3D) using our feature bank leads to drastic im-

provements: >30% (absolute) on Diving48-v2, and >10%

(absolute) on the Gym datasets. Adding TQN decoder on

top of LT-S3D leads to further improvements, notably on

the ‘VT’ (vaulting) subset of Gym99 (+5.8%) which con-

tains longer videos: 7−8 seconds compared to 1−2 seconds

in the ‘FX’ (floor exercise) subset (+1.2%). Note, the visual

backbone of TQN can be made stronger by replacing S3D

with, e.g., TSM, TSN, or GST-50. However, we adopt S3D

in our experiments as it achieves top performance while fit-

ting within our limited compute budget.

5.4. Performance on Videos of Different Length

In Figure 6 we plot classification accuracy of TQN and the

baseline long-term S3D as a function of video length. On

videos shorter than 5 seconds, LT-S3D performs similar to

TQN as max-pooling suffices to pick out relevant informa-

tion in short videos. However, TQN’s attention based classi-

fication outperforms simple pooling for longer videos.
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Figure 6. Classification accuracy on videos of different length.

Mean values plotted with 95% confidence interval.

4492



Network Pretrained dataset Modality # frames in training

Gym99 Gym288 Diving48-v2

Per-class
Per-video

per-class per-video per-class per-video
subset VT subset FX total

I3D K400 RGB 8 64.4 47.8 60.2 75.6 28.2 66.7 33.2 48.3

TSN Imagenet two-stream 3 79.8 47.5 84.6 86 37.6 79.9 34.8 52.5

TSM Imagenet two-stream 3 81.2 44.8 84.9 88.4 46.5 83.1 32.7 51.1

TRNms Imagenet two-stream 3 80.2 47.3 84.9 87.8 43.3 82.0 54.4 66.0

GST-50 Imagenet RGB 8 84.6 53.6 84.9 89.5 46.9 83.8 69.5 78.9

ST-S3D K400 RGB 8 72.9 45.3 82.8 81.5 42.4 75.8 36.3 50.6

LT-S3D K400 RGB dense 88.9 69.1 90.4 92.5 57.9 86.3 72.3 80.4

TQN K400 RGB dense 90.6 74.9 91.6 93.8 61.9 89.6 74.5 81.8

Table 3. Comparison to state-of-the-art. We compare TQN to several SotA methods for Gym99, Gym288, and Diving48-v2. The results

for the Gym datasets are reproduced from the original dataset publication [46], except for S3D [66] and GST-50 [42] was trained by us;

no further results are available as the dataset was recently published (2020). For Diving48-v2, since the corrected labels were released

recently, we train the publicly available implementations of all methods while replicating the setting of their application to the original

Diving48-v1 dataset. TQN achieves top-performance on all three datasets, detailed discussion in Section 5.3.

Description
Visual

Encoder
Memory bank Decoder

Accuracy

per-class per-video

train linear classifier on frozen encoder
frozen

computed

offline

avg

pool
57.1 66.6

train TQN on frozen encoder TQN 60.9 68.2

train linear classifier + encoder
fine-tuned

updated

online

avg

pool
72.3 80.4

train TQN + encoder TQN 74.5 81.1

Table 4. Frozen vs. updated feature bank. To study the impor-

tance of updating the feature-bank during training, we train with

the TQN decoder and without it (average pooling for temporal ag-

gregation), on top of frozen or stochastically updated visual fea-

tures in the memory bank. For both the decoder settings, updating

features improves performance drastically (≈ +15%). Evaluation

on the Diving48-v2 dataset; details in Section 5.2.

Training Test (w/ all frames)

temporal support # frames (N ) frame sampling stride per-video acc

fixed number

of frames

8
consecutive 2 58.8

uniform – 50.6

32
consecutive 2 72.9

uniform – 71.2

64
consecutive 2 74.2

uniform – 70.0

full temporal

support

proportional to

length of videos
memory bank 2 80.4

Table 5. Impact of temporal support during training. To an-

alyze the importance of temporal support for training and use of

stochastically updated feature bank, we train S3D with an increas-

ing number of input frames N and find that longer temporal con-

text consistently improves performance on Diving48.

5.5. Transfer learning with TQN

To investigate the transferability of TQN across domains

which differ visually as well as in their query-attributes, we

fine-tune the model pre-trained on Gym288 for Diving48.

The query vectors q and the response classifiers Ψ are tied

to dataset specific query-attributes. Hence, to fine-tune on a

new dataset, we initialize these randomly and retain the ini-

tialization from pre-training for other TQN and visual back-

bone parameters. We compare this to the random initial-

ization baseline in Table 6. We note that fine-tuning gives

better accuracy and trains substantially faster as compared

to training from scratch. This is likely because the trans-

former has learnt (and retained) how to match query vectors

Pre-training Epochs Diving48-v2 top-1

None (random init.) 80 81.8

Gym288 25 83.3

Table 6. Transferring TQN. Per-video performance on Diving48-

v2 for a TQN model pre-trained on Gym288.

to temporal events, and encode the event representation for

response classifiers. It is thus able to benefit from the addi-

tional training data despite the domain shift.

5.6. Extension to Multi­label Action Recognition

We apply TQN to the Charades dataset [47] and achieves

SotA results. Charades labels multiple actions in one video

as different classes with precise temporal annotations, as

opposed to classification in FineGym and Diving48 where a

sequence of combined actions are labelled as one class with-

out localization. Please refer to the extended version [72].

6. Conclusion

We have developed a new video parsing model, the Tem-

poral Query Network (TQN), which learns to answer fine-

grained questions about event types and their attributes in

untrimmed videos. TQN furthers state-of-the-art in fine-

grained video categorization on three datasets, and in addi-

tion provides temporal localization and alignment of seman-

tically consistent events. The query-response mechanism

employed in TQN enables efficient data use through shar-

ing training videos across common sub-labels and outper-

forms alternative strategies for exploiting textual descrip-

tions. The mechanism is more generally applicable to prob-

lems which require spotting entities with varying spans in

dense data streams. Our training method with stochasti-

cally updated feature banks enables such applications with-

out imposing heavy requirements for expensive large-scale

training infrastructure.
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