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Abstract. The Resource Description Framework (RDF) is a metadata
model and language recommended by the W3C. This paper presents a
framework to incorporate temporal reasoning into RDF, yielding tem-
poral RDF graphs. We present a semantics for temporal RDF graphs, a
syntax to incorporate temporality into standard RDF graphs, an infer-
ence system for temporal RDF graphs, complexity bounds showing that
entailment in temporal RDF graphs does not yield extra asymptotic
complexity with respect to standard RDF graphs and sketch a temporal
query language for RDF.

1 Introduction

The Resource Description Framework (RDF) [14] is a metadata model and lan-
guage recommended by the W3C for building an infrastructure of machine-
readable semantics for the data on the Web, a long-term vision known as Se-
mantic Web. In the RDF model, the universe to be modeled is a set of resources,
essentially anything that can have a universal resource identifier, URI. The lan-
guage to describe them is a set of properties, technically binary predicates. De-
scriptions are statements very much in the subject-predicate-object structure.
Both subject and object can be anonymous objects, known as blank nodes. In
addition, the RDF specification includes a built-in vocabulary with a norma-
tive semantics (RDFS) [4]. This vocabulary deals with inheritance of classes and
properties, as well as typing, among other features allowing the descriptions of
concepts and relationships that can exist for a community of people and software
agents, enabling knowledge sharing and reuse.

Although some studies exist about addressing changes in an ontology [15], or
the need for temporal annotations on Web documents [22], little attention has
deserved the problem of representing, updating and querying temporal informa-
tion in RDF. Time is present in almost any Web application. Indeed, as pointed
out by Abiteboul [1] the modeling of time is one of the key primitives needed in
a query language for Web and semistructured data. Thus, there is a clear need
of applying temporal database concepts to RDF to allow metadata navigation
across time.
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Fig. 1. Initial RDF graph (left) and after some changes (right)

Consider an RDF graph describing information about a university, as of its
creation time, Figure 1 (left). Students were classified as technical, graduate
or undergraduate, and the only graduate programs offered were at the level of
‘Master’ studies, like MBA or MSc; ‘Professional Diploma’ was the only program
offered at the technical level. As the university evolved, a Ph.D program was
created. Figure 1 (right) illustrates the new situation. Notice the dynamics of this
example: students (e.g., John) can enroll in one program (e.g., Undergraduate),
then shift to another one (e.g., Master), and so on. The figures show that the
impact of disregarding the time dimension is twofold: on the one hand, when
a change occurs, a new metadata document must be created (and the current
document dropped). On the other hand, queries asking for past states of the
metadata cannot be supported. For instance, we cannot ask for the programs
offered at the time when the university was created.

1.1 Problem Statement: Introducing Time into RDF

Generally speaking, a temporal database is a repository of temporal information.
Although temporal databases were initially studied for adding the time dimen-
sion to relational databases, as new data models emerged, temporal extensions
to these models were also proposed (see Section 1.2). We next discuss the main
issues that arise when extending RDF with temporal information.

Versioning Versus Time Labeling. There are two mechanisms for adding the time
dimension to non-temporal RDF graphs: labeling and versioning (following the
timestamp and snapshot models, respectively). The former consists in labeling
the elements subject to changes (i.e. triples). The latter is based on maintaining
a snapshot of each state of the graph. For instance, each time a triple changes, a
new version of the RDF graph is created, and the past state is stored somewhere.
Although both models are equivalent, versioning appears to be not suitable for
queries of the form: “all time instants where Φ holds in the database”.

There are at least two temporal dimensions to consider when dealing with
temporal databases: valid and transaction times. Valid time is the time when
data is valid is the modeled world; transaction time is the time when data is
actually stored in the database. The versioning approach captures transaction
time, while labeling is mostly used when representing valid time. The approach
we present in this paper supports both time dimensions.
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Fig. 2. A temporal RDF graph accounting for the evolution of the university ontology

In summary, we believe that for RDF data, labeling is better than versioning,
because (a) it preserves the spirit of the distributed and extensible nature of
RDF, and (b) in scenarios where changes are frequent and only affecting a few
elements of the document, creating a new physical version of the graph each
time an update occurs may lead to large overheads when processing temporal
queries that span multiple versions.

Time Points Versus Time Intervals. We will work with the point-based temporal
domain for defining our data model and query language, but we will encode time-
points in intervals when possible, for the sake of clarity. We will consider time as
a discrete, linearly ordered domain, as usual in virtually all temporal database
applications. An ordered pair [a, b] of time points, with a ≤ b, denotes the closed
interval from a to b. Figure 2 shows a temporal RDF graph for the university
example above. The arcs in the graph are labeled with their interval of validity.1

For example, the interval [0,Now] says that the triple (technical,sc,student) is
valid from the document’s creation time to the current time. Also, note that the
figure shows that John was an Undergraduate student in the interval [0,10], and
now he is a PhD student.

Vocabulary for Temporal Labeling. Temporal labeling can be implemented within
the RDF specification, making use of a simple additional vocabulary, as Figure 3
shows. As we adopted the point-based, discrete and linearly ordered temporal
domain, the left and right hand sides of Figure 3 are equivalent. We will use both
representations indistinctly. Moreover, we define constructs that allow moving
between intervals and time instants as follows: the instants depicted in Figure 3
(left) can be encoded in an interval as shown in Figure 3 (right). Both alternatives
will be used in the query language.

1 Note that the standard graph(ical) representation of an RDF graph is not the most
faithful to convey the idea of statements (triples) being labeled by a temporal ele-

ment. Technically, temporal labels should be attached to a whole subgraph u
p→ v,

and not only to an arc.
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Fig. 3. Point-based labeling (left) and Interval-based labeling (right)

Temporal Entailment. An RDF graph can be regarded as a knowledge base
from which new knowledge, i.e., other graphs, may be entailed. Entailment in a
temporal setting is a slightly more involved in the RDF case than in the standard
database case. In principle, one may be tempted to define the semantics as in
temporal relational databases, i.e., defining the temporal database as the union
of all of its snapshots. (A snapshot at time t of a temporal RDF graph G is the
corresponding subgraph formed by triples labeled by and instant t.) Blank nodes
impose some constraints to this naive approach. For example, each of the three
snapshots of Figure 4 (right) entails the corresponding snapshots of Figure 4
(left). However, the whole graph of Figure 4 (left) cannot be entailed by the
graph of Figure 4 (right). Indeed, the graph of Figure 4 (left) states that there
is an anonymous object X in the triple (a, b,X) at times 3 and 4, which is not
the case for the other graph.

Temporal Query Language. Regarding query languages in temporal databases,
basically two choices for defining the temporal domains exist: the point-based
and the interval based temporal domains, yielding different query languages
[20, 3]. In the point-based approach, temporal variables in query languages refer
to individual time instants, while in the interval-based domain, variables in the
queries range over intervals, making queries more complicated and unnatural.
Anyway, one can move easily between these two domains.

1.2 Related Work

The RDF model was introduced five years ago as a W3C recommendation [14].
Formal work in RDF includes the study of formal aspects of RDF data and
query languages [10, 21], considering RDF features like the entailment, presence

temporal

temporal

instant

instant

3
4 X

a Y

b

b

temporal

temporal

instant

instant

3
4 X

a Y

b

b

Fig. 4. Temporal entailment: for each t the corresponding snapshots at t are equivalent,
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of blank nodes, reification, premises in queries, and the RDFS vocabulary with
predefined semantics. Several languages for querying RDF data have been pro-
posed and implemented. Some of them in the lines of traditional database query
languages (e.g. SQL, OQL), others based on logic and rule languages. Good sur-
veys are [13, 16]. To the best of our knowledge, there is still no formal study of
temporality issues in RDF graphs and RDF query languages.

Temporal database management has been extensively studied, including data
models, mostly based on the relational model and query languages [19], leading
to the TSQL2 language [18]. Beyond the relational model, managing historical
semistructured data was first proposed by Chawathe et al [6], who extended the
Object Exchange Model (OEM) with the ability to represent updates and to
keep track of them by means of “deltas.” Later, Dyreson et al [7] allowed anno-
tations on the edges of the database graph. In the XML world, Amagasa et al [2]
introduced a temporal data model based on XPath for the first time. Dyreson [8]
proposed an extension of XPath with support for transaction time by means of
the addition of several temporal axes for specifying temporal directions, focus-
ing on document versioning over the web in the absence of explicit time stamps.
Chien et al [5] proposed update and versioning schemes for XML through an
edit-based schema in which the most current version of the document is main-
tained, and reverse edit scripts allow moving backward in time. Gao et al [9]
introduced τXQuery, an extension to XQuery supporting valid time while main-
taining the data model unchanged. Mendelzon et al [17] proposed a temporal
model for XML, a temporal extension to XPath, and a novel indexing strategy
for temporal XML documents. Like in our approach, they use labeling, and a
point-based temporal domain and query language. Finally, Visser et al [22] pro-
posed a temporal reasoning framework for the Semantic Web, which has been
applied in BUSTER, an ontology-based prototype developed at the University
of Bremen, supporting the so-called concept@location in time type of query.

1.3 Contributions

In this paper we present a framework to incorporate temporal reasoning into
RDF, yielding temporal RDF graphs. In particular, we present the following con-
tributions: (a) a semantics for temporal RDF graphs in terms of the semantics
of non-temporal RDF and RDFS graphs; (b)a study of properties of temporal
RDF graphs and the interplay between timestamp and snapshot semantics in
temporal RDF graphs; (c) a syntax to incorporate this framework into standard
RDF graphs, which includes a vocabulary and rules. The syntax uses the stan-
dard RDF vocabulary plus temporal labels; (d) a sound and complete inference
system for temporal RDF graphs; (e) complexity bounds which show that entail-
ment in temporal RDF graphs does not yield extra asymptotic time complexity
with respect to standard RDF graphs; (f) a sketch for a temporal query language
for RDF. For the sake of space, we do not include proofs in this version of the
paper.
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2 RDF Preliminaries

In this section we present a streamlined formalization of the RDF model following
the W3C documents [14, 12, 4], along the lines of [10].

2.1 RDF Graphs

Assume there is an infinite set U (RDF URI references); an infinite set B =
{Nj : j ∈ N} (Blank nodes); and an infinite set L (RDF literals). A triple
(v1, v2, v3) ∈ (U ∪B)×U × (U ∪B ∪L) is called an RDF triple. In such a triple,
v1 is called the subject, v2 the predicate and v3 the object. We often denote by
UBL the union of the sets U , B and L.

An RDF graph (just graph from now on) is a set of RDF triples. A subgraph is
a subset of a graph. The universe of a graph G, universe(G), is the set of elements
of UBL that occur in the triples of G. The vocabulary of G is the set universe(G)∩
(U ∪ L). We will use letters N,X, Y, . . . to denote blank nodes, and a, b, c, . . .
for URIs and literals. A graph is ground if it has no blank nodes. Graphically we
represent RDF graphs as follows: each triple (a, b, c) is represented by the labeled
graph a

b→ c. Note that the set of arc labels can have non-empty intersection
with the set of node labels.

A map is a function µ : UBL → UBL preserving URIs and literals, i.e.,
µ(u) = u and µ(l) = l for all u ∈ U and l ∈ L. Given a graph G, we define
µ(G) as the set of all (µ(s), µ(p), µ(o)) such that (s, p, o) ∈ G. A map µ is
consistent with G if µ(G) is an RDF graph, i.e. , if s is the subject of a triple,
then µ(s) ∈ UB, and if p is the predicate of a triple, then µ(p) ∈ U . In this case,
we say that the graph µ(G) is an instance of the graph G. An instance of G is
proper if µ(G) has fewer blank nodes than G. This means that either µ sends a
blank node to an URI or a literal, or identifies two blank nodes of G. We will
overload the meaning of map and speak of a map µ : G1 → G2 if there is a map
µ such that µ(G1) is a subgraph of G2.

Two graphs G1, G2 are isomorphic, denoted G1
∼= G2, if there are maps µ1, µ2

such that µ1(G1) = G2 and µ2(G2) = G1.
We define two operations on graphs. The union of G1, G2, denoted G1 ∪G2,

is the set theoretical union of their sets of triples. The merge of G1, G2, denoted
G1 + G2, is the union G1 ∪G′

2, where G′
2 is an isomorphic copy of G2 whose set

of blank nodes is disjoint with that of G1. Note that G1 + G2 is unique up to
isomorphism.

2.2 RDFS Vocabulary

There is a set of reserved words defined in the RDF vocabulary description
language, RDF Schema [4], –just rdfs-vocabulary for us– that may be used to de-
scribe properties like attributes of resources (traditional attribute-value pairs),
and also to represent relationships between resources. It defines classes and prop-
erties that may be used for describing groups of related resources and relation-
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ships between resources.2 Classes are sets of resources. Elements of a class are
known as instances of that class. To state that a resource is an instance of a class,
the property rdf:type may be used. The following are the most important classes
(in brackets the name we will use in this paper) rdfs:Resource [res], rdfs:Class
[class], rdfs:Literal [literal], rdfs:Datatype [datatype], rdf:XMLLiteral
[xmlLit], rdf:Property [property]. Properties are binary relations between sub-
ject resources and object resources. The built-in properties are: rdfs:range [range],
rdfs:domain [dom], rdf:type [type], rdfs:subClassOf [sc], rdfs:subPropertyOf [sp].

3 Temporal RDF Graphs

In this paper we extend RDF graphs by allowing temporal elements to label
triples. A temporal label is a temporal element t labeling a triple (a, b, c). For
simplicity, without loss of generality, we will work with single intervals instead
of temporal elements. In an RDF graph, given a triple (a, b, c), the temporal
element t represents the time period when the triple was valid, i.e. the valid
time of the triple. At this time we do not deal with transaction time, which can
be addressed in an analogous way.

3.1 Basic Definitions

In this section we define the notion of temporal RDF at a conceptual level.

Definition 1 (Temporal graph).

1. A temporal triple is an RDF triple with a temporal label (a natural number).
We will use the notation (a, b, c) : [t]. The expression (a, b, c) : [t1, t2] is a
notation for {(a, b, c) : [t] | t1 ≤ t ≤ t2}.

2. A temporal graph is a set of temporal triples. A subgraph is a subset of the
graph.

For a temporal graph G, define the snapshot at time t as the RDF graph

G(t) = {(a, b, c) | (a, b, c) : [t] ∈ G}
The underlying RDF graph of a temporal RDF graph G, denoted u(G), is

⋃
t G(t),

the union of the graphs G(t).
For an RDF graph, define Gt as the temporalization of all its triples by a

temporal mark t, that is, Gt = {(a, b, c) : [t] | (a, b, c) ∈ G}.
The above definitions give the following elementary consequences about the

relationship between RDF graphs and temporal RDF graphs.

2 We omit in this paper vocabulary intended to describe lists, collections, some varia-
tions on these, as well as vocabulary to help document and describe other function-
alities for which there is no normative semantics. The complete vocabulary can be
consulted in [4].
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Lemma 1. Let G be an RDF graph, and G′ be a temporal RDF graph. Then:
(1) Gt(t) = G; (2) (G′(t))t ⊆ G′, and (3) G′ =

⋃
t(G

′(t))t.

Several issues on the definition of temporal RDF graph are in order:

– Recall we use a temporal model where an interval [a, b] is of the form [a, a+
1, . . . , b] for a given unit of time that we will assume to be universal in this
paper. The natural way to approach this issue is to specify, together with
the temporal mark, the unit of time it represents. All the results given here
extend without difficulties to this setting.

– Temporal triples do not belong to the RDF syntax. In the next section
we introduce an RDF-complying syntax for temporal triples, using a small
temporal vocabulary.

– Source of a temporal statement: Due to the extensible nature of the RDF
model, it is possible to include the source of a temporal statement (i.e. who
is the author of the temporal statement), and other properties that apply.
Although our model (see next section) allows this, we will not study the
semantic consequences of this extra information in this paper, but rather
stay in the classic setting of temporal models.

3.2 Semantics

In what follows, we present the semantics for the notion of entailment for tem-
poral graphs based on the corresponding notion for RDF graphs.

Definition 2 (Temporal Entailment). Let G1, G2 be RDF temporal graphs.
Define

– For ground temporal RDF graphs G1, G2 define G1 |=t G2 as G1(t) |= G2(t)
for each t;

– For general graphs, G1 |=t G2 iff there exist ground instances µ1(G1) and
µ2(G2) such that (µ1(G1))(t) |= (µ2(G2))(t) for each t.

Note that the definition for ground graphs resembles classical temporal defi-
nitions:

Proposition 1. Let G1, G2 be temporal graphs. Then, G1 |=t G2 implies G1(t) |=
G2(t) for all t, and the converse is true for ground graphs.

In fact, the problems for general graphs are introduced by blank nodes and
the notion of entailment. For example, G1(t) |= G2(t) for all t does not imply
G1 |=t G2 (see Figure 4). We have the following issues:

– A blank node represents the same (unnamed) resource throughout the time
range, rather than a sequence of different resources. This makes the behavior
of temporal marks in Temporal RDF different from the classical setting.
Temporal marks here –contrary to temporal XML for example– are not only
a relation among fixed objects, but also among time-varying objects, the blank
nodes. See example in Figure 4.
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– The notion of entailment for temporal RDF needs a basic arithmetic of inter-
vals in order to combine the notion of temporality and deductive properties.
For example if we have (a, sc, c) : [2, 3], (c, sc, d) : [2], then we should be able
to derive (a, sc, d) : [2], but not (a, sc, d) : [3].

In the rest of this section, we show that the notions of closure, lean graph, core
–fundamental to define notions of normalization of this data– can be extended
without difficulty to the temporal setting. (Compare discussion in [10]).

The closure of a temporal graph G, denoted tcl(G), is a maximal set of
temporal triples G′ over universe(G) plus the RDF vocabulary such that G′

contains G and is equivalent to it.

Proposition 2 (Entailment for Temporal graphs).
Let G,G1, G2 be temporal RDF graphs. Then

1. tcl(G) =
⋃

t(cl(G(t)))t;
2. G1 |=t G2 if and only if tcl(G1) |=t G2.

A temporal graph G is lean if and only if there is no proper temporal subgraph
G′ of G such that G |=t G′. The core of G, core(G) is a lean subgraph of G
equivalent to it. With these notions, for a temporal RDF graph G we can define
–as in the case of RDF graphs– a notion of normal form, denoted by nft(G), as
follows: nft(G) = coret(G′) for a temporal closure G′ of G.

The computational complexities of computing the core and testing whether
a graph is lean, are asymptotically the same as the case of standard RDF
graphs [10].

Proposition 3. Let G,G′ be graphs.
1. The problem of deciding if G′ is the closure of G is DP-complete.
2. The problem of deciding if G′ is the normal form of G is DP-complete.

4 Syntax and Deductive System for Temporal Graphs

We present a deductive system for temporal RDF. It is based on a sound and
complete set of rules given in [12], plus three rules capturing temporal issues.

4.1 RDF Syntax of Temporal Triples

Definition 3 (Temporal vocabulary). The temporal vocabulary is the follow-
ing: temporal (abbreviated as tpl), instant,interval, initial and final, all
of type property, and now of type plain literal. The range of instant, initial
and final is the set of natural numbers.

We will use the following notation shortcuts: reif(a, b, c,X): the set of triples
(X,tsubj, a),(X,tpred, b),(X,tobj, c)(a kind of “temporal reification”of (a, b, c)).3

3 We could have used here the standard reification vocabulary of RDF. We chose not
to in order to stress the fact that the notions presented in this paper are independent
of any view one may have about the concept of reification in RDF.
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Definition 4 (Temporal triples and graphs). Temporal triples are the fol-
lowing graphs using the temporal vocabulary.

– (a, b, c), reif(a, b, c,X), (X, tpl, Y ), (Y, instant, n) where n is a natural num-
ber; we will summarize this as (a, b, c) : [X,Y, n];

– (a, b, c), reif(a, b, c,X), (X, tpl, Y ), (Y, interval, Z), (Z, initial, I),
(Z, final, F ); where I, F are natural number; we will summarize this as
(a, b, c) : [X,Y, I, F ];

A temporal graph will be defined as a merge of a set of temporal triples.

Because RDF is extensible, nothing prevents the use of the blank nodes in-
cluded in the definition as target or source of other properties beyond the tempo-
ral vocabulary. We want to have a definition of temporal triple independent of the
blank nodes occurring in the proposed syntactic definition of temporal triples,
e.g., we want that (a, b, c) : [X,Y, n] be essentially equivalent to (a, b, c) : [n].
Both previous issues are overcame in our syntax by adding certain rules, which
regulate the temporal vocabulary.

4.2 Rules

The set of rules is arranged in four groups. Groups A, B, C, and D are intended
to describe the classical RDFS semantics, and we follow the approach in [10].
We omit another group of rules that has to do with internal relationships of the
RDF model itself and that we do not consider in this paper.

The novelty here is Group T (temporal rules), whose main objective is to be
able to standardize the interval version and the instant version as well as help
defining “absolute” temporal marks.

GROUP A (Existential) For a map µ : G′ → G, G
G′

GROUP B (Subproperty)

(a, type, property)

(a, sp, a)
,

(a, sp, b) (b, sp, c)

(a, sp, c)
,

(a, sp, b) (x, a, y)

(x, b, y)

GROUP C (Subclass)

(a, type, class)

(a, sc, a)
,

(a, sc, b) (b, sc, c)

(a, sc, c)
,

(a, sc, b) (x, type, a)

(x, type, b)

GROUP D (Typing)

(a, dom, c) (x, a, y)

(x, type, c)

(a, range, d) (x, a, y)

(y, type, d)

GROUP T (Temporal)

(i2t)
{(X, tpl, Y ), (Y, instant, n) : n ∈ [t1, t2]}

(X, tpl, Y ), (Y, int, Z), (Z, initial, t1), (Z, final, t2)

(t2i)
(X, tpl, Y ), (Y, int, Z), (Z, initial, t1), (Z, final, t2)

{(X, tpl, Y ), (Y, instant, n)
, n ∈ [t1, t2]
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(abs)
(a, b, c) : [X1, Y1, n1], (a, b, c) : [X2, Y2, n2]

(a, b, c) : [U, V, n1], (a, b, c) : [U, V, n2]
, U, V fresh

Rules (i2t) (interval to instants) and (t2i) are needed to standardize the
interval version and the instant version, by making them equivalent. Rule (abs)
essentially says that marks (instants) can be collected in a single node. This
permits to concentrate on temporal marks independent of other contexts in
which the variables involving temporal vocabulary are immersed.

The definition behaves well in the sense of the following lemma.

Lemma 2. 1. There exist blanks X,Y such that G |=t (a, b, c) : [X,Y, t1, t2]
if and only if there exist blanks U, V such that ∀j with t1 ≤ j ≤ t2 G |=t

(a, b, c) : [U, V, tj ]
2. There exist blanks X1, Y1,X2, Y2 such that G |=t (a, b, c) : [X1, Y1, t1] and

G |=t (a, b, c) : [X2, Y2, t2] if and only if there exist blanks U, V such that
G |=t (a, b, c) : [U, V, t1] and G |=t (a, b, c) : [U, V, t2].

For a temporal RDF graph G, define G∗ as the RDF graph {(a, b, c) :
[Xt, Yt, t] | (a, b, c) : [t] ∈ G}, where Xt, Yt are free blank variables, different for
each t. Conversely, for each RDF graph G with temporal vocabulary, define G∗
as the temporal graph defined as {(a, b, c) : [t] | ∃X∃Y (a, b, c) : [X,Y, t] ∈ G}.

Theorem 1. 1. Let G1, G2 be temporal RDF graphs. Then G1 |=t G2 implies
G∗

1 |= G∗
2.

2. Let G1, G2 be RDF graphs with temporal vocabulary. Then G1 |= G2 implies
(G1)∗ |=t (G2)∗.

3. Let G be a temporal RDF graph, and G′ an RDF graph with temporal vocab-
ulary. Then (G∗)∗ = G and G′ |= (G′

∗)
∗.

Now we can show that the syntax introduced captures the semantics of tem-
poral RDF. The following deductive system based on the rules presented, is
sound and complete for entailment of RDF graphs with rdfs vocabulary.

Definition 5. Let G be a graph. For each rule r : A
B above, define G 
r G∪µ(B)

iff there is a map µ : A → G. Also define G 
s G′ if and only if G′ is a subgraph
of G.

Define G 
 G′ if there is a finite sequence of graphs G1, . . . , Gn such that (1)
G = G1; (2) G′ = Gn; and (3) for each i, either, Gi 
r Gi+1 for some r, or
Gi 
s Gi+1.

The following theorem shows that one can give a syntactic characterization
over RDF graphs with temporal vocabulary for entailment of temporal RDF
graphs:

Theorem 2. For any pair of temporal RDF graphs G1, G2:
G1 |=t G2 if and only if G∗

1 
 G∗
2.
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Note that that we cannot establish the theorem in its complete generality,
namely, to prove that for RDF graphs G1, G2 with temporal vocabulary, G1 
 G2

if and only if (G1)∗ |=t (G2)∗. (Both graphs in Figure 4 have identical ( )∗-images
but are not 
-equivalent.)

The previous theorem permits to concentrate for the following sections in
temporal RDF (instead of diving into syntactic issues).

5 Query Language

In this section we present query language for temporal RDF graphs, along with
its semantics. We also present a brief study of the complexity of query processing.

5.1 The Query Language by Example

We will give the flavor of the query language using our running example, the
database of Figure 2. Let us begin with a simple query: “Find students who have
taken a Master course between year 2000 and now and return them qualified by
21-century-student”. This query can be expressed as:

(?X, type, 21-century-student) ←
(?X, takes, ?C) : [?T ], (?C, type,Master) : [?T ], 2000 ≤?T, ?T ≤ Now.

This example query illustrates the need of a built-in arithmetic language in
order to reason about time and intervals. Another important observation is that
temporal queries may output non-temporal RDF graph, as the previous query
does.

For the query asking for a snapshot of the graph at t1, we have:

(?X, ?Y, ?Z) ← (?X, ?Y, ?Y ) : [t1].

Now consider the query “Students taking Ph.D courses together, and the time
instants when this occurred.” For simplicity we expressed this as a point-based
query. The translation of the result into intervals is straightforward.

(?X, together, ?Y)[?T ] ← (?X, type, Ph.D) : [?T ], (?Y, type, Ph.D) : [?T ].

Next, we give examples of queries that use temporal triples with intervals.
The query “Time intervals when the IT Master was offered” can be expressed
as follows:

(X, interval, Y ), (Y, initial, Ti), (Y, final, Tf ) ←
(IT Master, sc,Prof.Master) : [Ti, Tf ].

Observe that the previous query returns a set of intervals. In order to retrieve
maximal intervals we need a more subtle query, since their computation do not
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follow from the temporal rules. For the query “Compute the maximal interval
when the triple (a, b, c) holds”, we need aggregate operators MAX and MIN.

(a, b, c) : [?T1, ?T2] ← (a, b, c) : [?Ti, ?Tf ], ?T1 = MIN(?Ti), ?T2 = MAX(?Tf )

For a query asking for “Students applying for jobs at time t after finishing
their Ph.D. program in no more than 4 years”, we have:

(?X, apply, job) ← (X, type,Ph.D) : ‖ti, tf‖ , tf − ti < 4, tf < t.

Here, the notation ‖ti, tf‖ stands that ti and tf match with the maximal
interval for the corresponding triple computed with the query given above.

5.2 Semantics and Complexity

Let V be a set of variables (disjoint from UBLT). Individual variables will be
denoted ?X, ?Y , ?Z, etc. There is also a set of temporal variables Vt ⊂ V .

The query language we define is analogous to the one presented by Gutierrez
et al. [11]. A query is a temporal tableau, which is a pair (H, B ∪ A), where
H and B are temporal RDF graphs with some elements of UBL replaced by
variables in V , and with some elements of T replaced with variables in Vt, B has
no blank nodes and all the variables in H occur also in B. The set A has the
usual arithmetic built-in predicates such as <,>,=,. over elements in Vt and T .

We adopt the usual notion of safe rule from Datalog to prevent operations
on infinite predicates. A rule is safe if all its variables are limited. A variable
is limited if one of the following hold: a variable appears as an argument in a
non-built-in predicate of the body; the variable X appears in a subgoal X = t
(or t = X), where t is a constant in T ; or the variable X appears in a subgoal
X = Y (or Y = X), where Y is limited.

The semantics is the usual in these cases. Given a temporal tableau (H, B∪A)
and a temporal RDF graph G, for each matching of the graph pattern B in G,
pick up the values of the variables and check whether they satisfy the built-in
predicates in A. If this is the case, construct a pre-answer, which is the graph
resulting by substituting the values of the variables in the head. Finally, the
answer of the query is the union of all pre-answers.

We end this section by showing that the additional time dimension in our
model does not play any relevant role in the complexity of query answering, that
is, the query language preserves the tractability of answers. In order to do this,
we consider the simpler problem of testing emptiness of the query answer set in
the following forms: (1) Query complexity version: For a fixed database D, given
a query q, is q(D) non-empty? (2) Data complexity version: For a fixed query q,
given a database D, is q(D) non-empty?

Theorem 3. The evaluation problem is NP-complete for the query complexity
version, and polynomial for the data complexity version.

The previous result shows that the temporal labeling over the triples does
not introduce any complexity overhead. This is consistent with previous works
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in temporal databases. As Toman [20] showed, a point-based temporal query
language has the same properties than a first order query language, in spite of
the temporal variable.

6 Conclusions

We have proposed an RDF vocabulary to assert the times when triples are
valid in RDF graphs. This allows an explicit treatment of time inside RDF. We
have also offered a complete and sound inference procedure for temporal RDF
graphs, and a query language for them. Our framework allows to browse, query,
and reason across different versions of RDF graphs.

There are several aspects left for future work. Among the most important
are the definition of a built-in arithmetic, aggregate functions, and a unified
semantic for the two classes of RDF answers –temporal and plain– which would
allow closeness and full query composition in a temporal query language for
RDF. Probably one of the challenging issues open is the handling of anonymous
times. For example, one may want to say that a triple holds in a particular time
inside an interval, but do not know the exact valid time of the triple. Anonymous
times may help in the specification of triples without temporal labels, which is
a form to specify incomplete temporal information.
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