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Temporal Readout Noise Analysis and Reduction

Techniques For Low Light CMOS Image Sensors
Assim Boukhayma, Arnaud Peizerat and Christian Enz

Abstract—In this paper, an analytical noise calculation is
presented to derive the impact of process and design parameters
on 1/f and thermal noise for a low noise CIS readout chain.
It is shown that dramatic noise reduction is obtained by using
a thin oxide transistor as the source follower of a typical 4T
pixel. This approach is confirmed by a test chip designed in a
180nm CIS CMOS process, and embedding small arrays of the
proposed new pixels together with state-of-the-art 4T pixels for
comparison. The new pixels feature a pitch of 7.5µm and a fill
factor of 66%. A 0.4e- RMS input-referred noise and a 185µV/e-
conversion gain are obtained. Compared to state-of-the-art pixels,
also present onto the test chip, the RMS noise is divided by more
than 2 and the conversion gain is multiplied by 2.2.

I. INTRODUCTION

THE development of pinned photo diodes has been crucial

for enhancing the sensitivity of CMOS image sensors

(CIS) through lower dark current and efficient reset noise

cancellation. Since then, efforts have been concentrated on

reducing the temporal noise of the readout chain. The im-

plementation of column level amplification and correlated

double sampling (CDS) reduces the input-referred readout

noise to just a few electrons [1] [2] [3] by reducing 1/f and

thermal noise of the readout chain and noise contributions of

the next stages such as the buffers and the analog-to-digital

converters. After performing these noise reduction techniques,

1/f and RTS like noise originating from the in-pixel amplifying

transistor become the dominant noise sources. During the last

few years, many works focused on reducing the input-referred

temporal noise below the limit of one electron by implement-

ing high column level gain and correlated multiple sampling

(CMS) [4] [5].Yet works based on these techniques reported

temporal noise ranging between 1 and 2 electrons RMS. The

combination of these techniques with device optimization like

using in-pixel buried channel source followers [6] [7] or in-

pixel PMOS amplifier [8] showed that the noise can be reduced

slightly below the one electron RMS barrier.

Both the pixel conversion gain and the 1/f noise depend

on the in-pixel source follower design and technological

parameters. Therefore finding the exact relationship between

the source follower gate size, the oxide thickness and the input-

referred noise leaves some room for further optimization. In
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order to address this problem, this paper presents an analytical

temporal noise calculation in a CIS readout chain with pinned

photo diode, column amplification and correlated sampling.

The obtained expressions of the input-referred noise show

the impact of the source follower gate dimensions and oxide

thickness as well as other design parameters and suggest that

the reduction of the gate oxide thickness of the source follower

leads to lower noise and better conversion gain. However, the

image sensor process flow is not yet compatible with gate

oxide thickness reduction, thus, a pixel, based on a state-of-

the-art CIS process, where only the source follower transistor

features a thin gate oxide is introduced. Compared to a state-

of-the-art pixel with an optimized source follower embedded

on the same chip, the new pixel shows more than 50% less

noise confirming the theoretical results.

This paper is organized as follows: Section II recalls the

operation principle of a CIS readout chain. In Section III the

analytical noise calculation of the input-referred thermal and

1/f noise is presented. The noise reduction strategy and the

new pixel design are detailed in Section IV. Sections V and

VI describe the test and measurement results.

II. OPERATION OF CIS READOUT CHAIN

State-of-the-art low light CMOS image sensors readout

chains are based on pixels with pinned photodiodes and

column level amplification. Fig. 1 shows a schematic of a

classical CIS readout chain with the corresponding timing

diagram. When the row selector switch is turned on (RS high),

the sense node is first reset to a voltage VRST higher than the

pinning voltage of the buried photo diode. After auto-zeroing

of the column amplifier, the reset voltage level is sampled at

the output of the column amplifier. Then, the transfer gate is

pulsed to allow charge transfer from the pinned photodiode to

the sense node. The voltage drop in the sense node is amplified

and sampled at the column level amplifier output. The first

(reset) and second (transfer) samples are then differentiated

using analog circuitry or after analog-to-digital conversion of

both samples. Correlated multiple sampling (CMS) can also

be used at the output of the readout chain. It consists of

differentiating the average values of multiple samples during

the reset and transfer phase. The double sampling readout

scheme of the CIS readout chain cancels the reset kT
C noise

as well as the column amplifier and pixel source follower

offset. The noise performance of the classical read-out chain

is analyzed in details in the next Section.
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Fig. 1. CIS readout chain with its timing diagram and a schematic depicting
the signal path togetehr with the source follower and the column amplifier
noise paths

III. NOISE ANALYSIS OF THE CIS READOUT CHAIN

In the following analysis, it is assumed that the noise sources

of the different devices are statistically independent and hence

uncorrelated. The transfer function from each noise source

to the output is first calculated. The total output referred

noise variance is then given by the sum of all variances

corresponding to each noise source. The 1/f and thermal noise

are analyzed separately in order to clarify their relative impact

on the output-referred noise. In this readout chain, only two

dominant noise sources are considered, namely, one from the

in-pixel source follower transistor, and one from the column

amplifier as depicted in Fig. 1. The noise originating from the

bias circuits and from the power supply are neglected at this

point since they can be designed to be negligible compared to

the noise sources directly affecting the signal-path.

The input signal of the CIS readout chain is the charge

transferred to the sense node. For the readout circuit, the

noise mechanism is better described as a current or voltage

fluctuation. Thus, the readout noise is calculated at the output

of the signal path as a voltage using the noise transfer

functions, then referred to the input as a charge after division

by the gain of the signal path, namely the pixel conversion

gain ACG and column level amplifier gain GA.

For noise calculation, we consider the noisy model of a MOS

transistor in saturation where the drain noise current PSD

including thermal and 1/f noise is given by [9]

SI,n(f) = 4kTγgm +
K

C2
oxWL

g2m
f

, (1)

where k is the Boltzmann constant, T the absolute

temperature, gm the gate transconductance, γ the excess noise

factor given by 2n
3 , for a transistor biased in strong inversion,

where n is the slope factor [9], K is a process dependent

parameter related to the flicker noise, Cox is the gate oxide

capacitance per unit area. W and L are respectively the width

and length of the transistor gate.

A. Signal transfer functions

The pinned photo diode is modeled with a current source

Iin(t) injecting a charge Qin = Iin · △t in the sense node.

The transfer function of the pixel giving the expression of the

column level voltage induced by a charge injected in the sense

node can be expressed using the simplified small-signal circuit

of Fig. 2a. Assuming that gout,SF ≪ gm,SF , where gout,SF is

output conductance of the source follower and gm,SF its gate

transconductance. The pixel transfer function is given by

Hpix(f) =
Vcol

Qin
=

ACG

1 + j f
fc,pix

, (2)

where fc,pix = 1
2π

gm,SF

Ccol·ACG·(CGS+CGD+CP ) is the cut-off

frequency of the in-pixel source follower stage, Ccol is the

column level capacitance, CGS and CGD are the gate-to-

source and gate-to-drain source follower capacitances, CP is

the sum of parasitic capacitances due to wiring, transfer gate,

reset transistor and the n+ junction, and n is the slope factor of

the source follower transistor [9]. In saturation, n =
gms,SF

gm,SF

where gms,SF is the source transconductance of the source

follower transistor. The value of n ranges from 1.2 to 1.6.

The conversion gain corresponds to the dc gain of the pixel

transfer function Hpix(f). It is given by

ACG =
1
n

CP + CGD + (1− 1
n )CGS

. (3)

The transfer function of the column amplifier when the auto-

zeroing switch is opened is calculated based on the small-

signal circuit shown in Fig. 2b. The column level gain is

given by GA = Cin

Cf
, where Cin and Cf are respectively

the integrating and feedback capacitors of the column level

amplifier. In order to simplify the noise calculations, it is

assumed that GA ≪
gm,A

gout,A
, where gout,A and gm,A are the

output conductance and the transconductance of the column

level operational transconductance amplifier (OTA). The zero

frequency of the column amplifier transfer function numera-

tor
gm,A

Cin
has been neglected. The column amplifier transfer

function is then expressed as

HA(f) =
−GA

1 + j f
fc,A

, (4)

where fc,A = 1
2π

gm,A

(GA+1)CL+Cin
, Cin and CL are the column

amplifier integrating and load capacitors.
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(a) In-pixel source follower stage

(b) Column level amplifier

Fig. 2. Simplified small-signal circuit

The transfer function of the CMS has been derived in previous

works [10] [11] its squared magnitude is given by

|HCMS(f)|
2 =

4

M2

sin4(πM · TCMS · f)

sin2(πTCMS · f)
, (5)

where M is the number of the equally spaced samples and

TCMS is the duration between them.

B. Noise transfer functions

Based on the small-signal circuit depicted in Fig. 2a, the

transfer function of the noise originating from the in-pixel

source follower referred to the column level is given by

Hn,pix(f) =

1
gm,SF

ACG · (CGS + CGD + CP )

1 + j f
fc,pix

. (6)

The column level amplifier operates in two phases, auto-

zeroing and amplification. After auto-zeroing, the noise frozen

in the integrating capacitor Cin is transferred to the feedback

capacitor and to the output during the amplification phase. This

frozen noise is canceled thanks to the action of the correlated

double sampling at the output of the column amplifier. Thus,

for noise calculation, we only need to consider the direct noise

at the output of the column amplifier during the amplification

phase. Using the small-signal circuit of Fig. 2b, the transfer

function for the noise originating from the column level

amplifier and referred to its output is given by

Hn,A(f) =

GA+1
gm,A

1 + j f
fc,A

. (7)

C. Thermal noise analysis

The current PSD of the thermal noise originating from the

in-pixel source follower is expressed based on (1). The output

referred source follower thermal noise voltage PSD is then

calculated using the pixel noise transfer function Hn,pix(f)
and the signal transfer functions of the column amplifier and

CMS as

Sn,th,SF,out(f) = 4kTγSF gm,SF |Hn,pix(f)HA(f)HCMS(f)|
2

(8)

In the same way, the expression of the output referred PSD of

thermal noise originating from the column amplifier is given

by

Sn,th,A,out(f) = 4kTγAgm,A|Hn,A(f)HCMS(f)|
2. (9)

In (8) and (9), γSF and γA are noise excess factors of the

source follower and the column amplifier respectively. The

total output thermal noise PSD is then given by the sum of

Sn,th,A,out(f) and Sn,th,SF,out(f). The input referred noise

charge variance is then calculated using the total gain of the

signal path. It is expressed as

Q2
n,th =

1

A2
CG ·G2

A

∫

∞

0

Sn,th,SF,out(f) + Sn,th,A,out(f)df.

(10)

It is not easy to find the analytical expression of Q2
n,th because

of the HCMS(f) term. But the impact of CMS on thermal

noise has been studied numerically in previous works [11]

[10]. When the readout chain cutoff frequency is sufficiently

larger than the sampling frequency, the thermal noise variance

after CMS is simply multiplied by a factor 2
M . Using this

assumption, the variance of the total input-referred thermal

noise charge can be expressed as

Q2
n,th =

2kT

M ·GA · C

(

γSF gm,A(CGS + CGD + CP )
2

gm,SF
+

γA
A2

CG

)

,

(11)

where C = CL + Cin

GA+1 . This equation is discussed in more

details in Section IV.

D. 1/f noise analysis

Since the 1/f noise PSD is inversely proportional to the

transistor gate area W · L, the 1/f noise contribution of all

the readout chain transistors could be made negligible at the

cost of a larger area and parasitic capacitances. However, this

unfortunately doesn’t hold for the source follower transistor.

Indeed, as will be shown in more details in Section IV,

its equivalent input-referred 1/f noise charge contribution

actually increases when increasing the gate area. This is

due the fact that the conversion gain is roughly inversely

proportional to W ·L. Referring the 1/f noise to the input by

dividing the noise PSD by the square of the conversion gain

makes the input-referred noise charge roughly proportional to

W · L. It is therefore crucial to correctly model the dominant

1/f noise contribution of the source follower. Following the

same steps used above for the thermal noise calculation, the

output referred PSD of the 1/f noise originating from the

pixel is given by

Sn,1/f,out(f) =
Kg2m,SF

C2
oxWLf

|Hn,pix(f)HA(f)HCMS(f)|
2(f),

(12)

and the input referred 1/f noise charge variance can be

expressed as

Q2
n,1/f =

1

A2
CG ·G2

A

∫

∞

0

Sn,1/f,out(f)df. (13)

We introduce the parameter αCMS given by

αCMS =

∫

∞

0

|HA(f)
2|

G2
A

|HCMS(f)
2|

f
df. (14)
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Fig. 3. CIS readout chain based on a thin oxide source follower with its
timing diagram

Fig. 4. NOIA parameter proportional of thin oxide PMOS and NMOS for
different foundries and technology nodes

αCMS has been studied numerically in [10]. It depends only

on the ratio between the column amplifier cutoff frequency

and the sampling frequency of the CMS as well as the CMS

order M . When the column amplifier cutoff frequency is much

larger than the sampling frequency and the order M is higher

than 4, αCMS ≃ 3 [10]. The input referred 1/f noise charge

variance is then given by

Q2
n,1/f =

K(CP + CGS + CGD)2

C2
oxWL

αCMS . (15)

This result is discussed in more detail in Section IV.

IV. NOISE REDUCTION TECHNIQUES FOR CIS READOUT

CHAINS

Based on (11), the input-referred thermal noise charge

variance can be reduced using parameters independent from

the pixel design, namely, the column amplification (GA),

correlated multiple sampling (M ) and bandwidth control (C).

CMS and bandwidth control play the same role in the thermal

noise reduction. In fact, increasing the number of samples M
increases the readout time by a factor of M . Reducing the

bandwidth by a factor of M by using M.C instead of C has

exactly the same effect. Simulation results detailed in [10]

show that the combination of these design parameters makes

Fig. 5. Calculated input referred 1/f noise (16) as a function of the in-
pixel source follower width W and length L for a thin oxide PMOS in a
180nm technology where CP = 0.6fF , Cgse = Cgde = 0.95fF/µm,

Cox = 9.5fF/µm2, K = 10
−12F 2V 2/m2 and αCMS = 3.

1/f noise originating from the in-pixel source follower the

dominant noise source.

Equation (15) determines the impact of design and technologi-

cal parameters on the input-referred 1/f noise charge variance.

But still, the expression of CGD + CGS as a function of the

source follower gate width and length is to be determined.

The gate-to-source CGS and gate-to-drain CGD capacitances

include both intrinsic and extrinsic components. The intrinsic

component is proportional to the gate area WL and depends

on the transistor biasing. The extrinsic component, including

overlap and fringing field parasitic capacitances , is less

dependent on the transistor biasing and is proportional to the

gate width W . When the source follower transistor operates

in strong inversion, the intrinsic component of CGD +CGS is

dominated by CGS , and is approximately equal to 2
3CoxWL.

The extrinsic component of CGD +CGS can be expressed as

(Cgde + Cgse)W . Thus the expression of the input-referred

1/f noise becomes

Q2
n,1/f =

K
(

CP + (Cgse + Cgde)W + 2
3CoxWL

)2

C2
oxWL

αCMS .

(16)

Equation (16) suggests that the input-referred 1/f noise can

be reduced by increasing the gate oxide capacitance per unit

area Cox and reducing the source follower gate size. Cox can

be increased by reducing the gate oxide thickness. CIS image

sensors process flow uses thick oxide transistors to support

high voltages used to reduce leakage currents and difficulties

to downscale the pinning voltage of buried photodiodes. A way

to overcome this limitation is by using a thin oxide transistor

only for the source follower. But still, it is important to verify

that reducing the gate oxide thickness does not come with a

negative impact on the 1/f noise K factor. Intuitively, since

the gate control over the channel increases when the gate

oxide thickness is reduced, the K factor should be smaller for

thin oxide transistors. In order to verify this assumption, data

from different foundries design kits are investigated. Design

kits are based on the BSIM3V3 model for all compared

technology nodes except for the 65nm technology where the

design kit is based on BSIM4. For BSIM3V3 [12], the NOIA
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parameter is proportional to the spice model K factor, the

BSIM4 NOIA parameter is converted using the following

equation [13]: NOIABSIM3V 3 = 1.6.10−17NOIABSIM4 .

Fig. 4 shows, for each foundry, that the NOIA parameter for

thick oxide NMOS is higher than for thin oxide PMOS and

therefore that the 1/f noise K factor is lower for the thin

oxide PMOS. Moreover, based on (11), the contribution of

the in-pixel source follower to the input-referred thermal noise

is proportional to CP + (Cgse + Cgde)W + 2
3CoxWL. Thus,

this contribution is also expected to decrease by reducing the

gate oxide thickness if both the width W and length L of the

source follower gate are reduced by at least by the same factor,

especially when 2
3CoxWL dominates.

The optimal sizing of the source follower transistor for low

1/f noise can also be calculated analytically [10] or numeri-

cally using (16) as shown in Fig. 5.

The new readout chain based on the thin oxide PMOS source

follower is depicted in Fig. 3. In the 180nm process used

for this work, the voltage difference between the four thin

oxide source follower transistor terminals (gate, source, drain

and bulk) must not exceed 1.8V . In this work a ”digital” thin

oxide PMOS source follower is used to meet this condition.

V. TEST DESCRIPTION

In order to confirm the theoretical results presented in the

previous sections, a test chip has been designed to compare

a state-of-the-art pixel, already optimized for low noise, with

the new pixel based on the thin oxide PMOS source follower

introduced in Fig. 3. Both pixels are based on 4 transistors

and a classical pinned photo diode. The new pixel features

a pitch of 7.5µm and a fill factor of 66%. The reference

pixel used for comparison features a pitch of 6.5µm. The

5mm × 1mm test chip presented in Fig. 6 is designed in

a 180nm CMOS process dedicated to image sensors and

includes a total of 24 columns connected to small arrays of

new and reference pixels, each surrounded by 8 dummy pixels

for proper characterization. Both pixels are implemented with

the same column level amplifier limiting the bandwidth to

265kHz and offering a gain adjustable between 8 and 64

in order to check its impact on noise. The internal amplifier

consists of a common source fully cascoded amplifier as

shown in Fig. 1. The column amplifier is followed by a

voltage buffer to drive the signal to the input of an external

14 bits ADC.

The test follows the same path than the one used for the

noise calculation: the overall conversion gain (ACG × GA)

of each readout chain is measured first, then the output

noise is measured and referred to the input using the

overall conversion gain. The source follower and column

Fig. 6. Test chip micrograph

Fig. 7. Conversion gain measurement using the photon transfer curve

amplification voltage gain is measured using the reset voltage

as an input while opening the reset switch.

VI. MEASUREMENT RESULTS

In order to measure the conversion gain, the photon transfer

curve (PTC) method [14] is used. Photon shot noise dominates

the readout noise when the pixel receives an amount of photons

between the noise floor and saturation. For an average number

N of received photons, the variance of the corresponding shot

noise is given by N . On the one hand, the mean value of the

signal at the output of the readout chain is given by

E[Vout] = N ×ACG ×GA. (17)

On the other hand, the variance of the output voltage when

the photon shot noise dominates is given by

V ar[Vout] = N × (ACG ×GA)
2. (18)

Thus, the readout chain conversion gain can be obtained

without knowing the exact value of N combining equations

(17) and (18)

ACG ×GA =
V ar[Vout]

E[Vout]
. (19)

Therefore, the plot of V ar[Vout] as a function of E[Vout]
should correspond to a line for which the slope matches

with the value of CG × GA. This technique is used for

both pixels by illuminating them with a voltage controlled

LED to obtain different points. For each LED voltage value,

a 100 readouts are operated in order to obtain statistically

Fig. 8. Measured input-referred noise for two column gains
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Fig. 9. Histograms of input-referred noise of readout chains based on both
pixels for a column level gain of 64

the corresponding values of V ar[Vout] and E[Vout]. Fig. 7

shows the results obtained for both pixels. The points of both

curves are well aligned, which confirms the validity of this

measurement method. The conversion gain is then calculated

by estimating the slope factor of both curves. The conversion

gain of the new pixel is equal to 185µV/e− whereas for the

reference pixel, it is equal to 85µV/e−.

The output noise variance and RMS value are measured for

all pixels by using a 14 bits ADC. The noise is measured

by operating 1000 readouts for each pixel without activating

the transfer gate. Fig. 9 shows the histograms of the input-

referred noise charge obtained with all the new and reference

pixels (85 of each) with a column gain of 64. The new pixel

shows a lower average input-referred noise below 0.4e−RMS .

The reference NMOS source follower based pixel features

an average input referred noise of 0.9e−RMS . In addition, the

histograms show that the standard deviation corresponding

to the noise measurement of the new pixels is three times

smaller than that of the reference pixel. The impact of the

column level gain on the average value of the input-referred

noise for both pixels is shown in Fig. 8. The new pixel shows

more than 50% less noise than the reference pixel even at

low gain (GA = 8) when 1/f noise is not dominating. This

confirms that reducing the gate dimensions and choosing a

thin gate oxide also reduces the input-referred thermal noise

of the readout chain as shown theoretically in Section IV.

An overview of the recently reported sensitive CMOS image

sensors is summarized in Table I. It shows that the reduction of

the temporal read noise to below 1e−RMS has been made at the

cost of a large pixel pitch and a low fill factor. A comparison

of the presented readout chain based on the new pixel with

state-of-the-art CMOS image sensors shows that the proposed

noise reduction technique is very promising. Indeed, the new

pixel features lower noise with higher fill factor and lower

pixel pitch. In addition, these results are obtained using a

”digital” thin oxide PMOS which leaves some room for more

optimization at the process level.

VII. CONCLUSION

A detailed noise analysis of a CIS readout chain showing

the impact of the in-pixel source follower gate size and oxide

TABLE I
OVERVIEW OF RECENTLY REPORTED SENSITIVE CMOS IMAGE SENSORS

Technique Noise
[e−rms]

Conversion
gain
[µV/e−]

Pixel
pitch
[µm]

Fill-
factor
[%]

Reference

Multiple Sam-
pling, Folding In-
tegration/ Cyclic
ADC

1.2 67 7.5 52 ISSCC
2011 [5]

Pseudo Multi-
ple Sampling
with SSADC

1.1 110 1.4 ISSCC
2010 [4]

PMOS Common-
Source Pixel Am-
plifier

0.86 300 11 50 ISSCC
2011 [8]

Buried Channel
NMOS source fol-
lower, Multi-
ple Sampling
with SSADC

0.7 45 10 33 ISSCC
2012 [7]

Thin oxide

PMOS source fol-

lower

0.4 185 7.5 66 This

work

thickness together with design and technological parameters is

presented. Analytical noise calculation shows that the input-

referred noise can be significantly reduced by, on one hand

reducing the gate oxide thickness of the in-pixel source fol-

lower (choosing a thin oxide transistor instead of a traditional

thick oxide transistor) and on the other hand reducing its

gate area, assuming that the 1/f noise factor K of the thin

oxide device remains equal or smaller than that of the thick

oxide transistor. A new pixel, based on a thin oxide PMOS

source follower with a pitch of 7.5µm and a fill factor of

66 % has been designed in a standard 180nm CIS CMOS

process to verify the theoretical results. The new pixel is

implemented on the same chip together with a state-of-the-art

pixel based on an thick oxide NMOS source follower already

optimized for low noise. Test and characterization of the new

pixel and the reference pixel shows that the noise reduction

technique proposed in this work is very promising. Indeed,

the new proposed pixel achieves an input-referred noise of

0.4e−RMS corresponding to a noise reduction of more than 50
% compared to the classical reference pixel.
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