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Abstract -- This paper reports work on a language called 
Ada/TL for the specification of the temporal behavior of 
interacting Ada tasks in both concurrent and distributed 
systems. The language Ada/TL is an extension of the task 
specification declarations required by the Ada language. The 
extensions include (i) temporal assertions about rendezvous 
and other events of external interaction and (ii) non-temporal 
'in' and 'out' assertions about parameters and other data items 
which flow between tasks. We use linear-time operators to 
specify the sequential behavior of individual tasks and 
branching-time operators to specify global properties about 
the interaction of tasks. Task specifications are intended to 
follow the style of Ada declarations and to be constructive 
inasmuch as they to lead directly to the design of task 
rendezvous behavior. The paper defines the representation of 
an externally viewable state of an Ada task and it defines 
operators to specify a task behavior as a sequence of state 
conditions. Specifications are illustrated for several examples 
of tasks using shared resources and interaction using both 
synchronous and asynchronous communication, Continuing 
work on specification of timing constraints and on analysis of 
global correctness of specifications is discussed. 

1. INTRODUCTION 
Specifying the behavior of programs with temporal logic 

was formulated by Burstall [ll], Pnueli [38,39,40], and 
Manna [32]. Their work led to methods of proving properties 
of concurrent programs by Abadi [l], Barringer [3, 4, 71, 
Clarke [12,13], Emerson [15,16,17], Hailpern [20] 
Lamport [23, 24, 25, 26, 27, 281, Manna [33, 34, 35, 36, 
371, and others. Recently, efforts have shifted to temporal 
specification of program modules rather than specification of 
global properties of programs, as in Barringer [7], Lamport 
[24], and Pnueli [42]. Usually temporal specifications have 
been used with respect to programs written in some abstract 
language or in CSP. Some work has been done on specification 
of Ada programs, for example Barringer [2, 5. 61 and Pnueli 
[41]. So far these temporal logic specification techniques 
have not been incorporated into a formal specification language 
for Ada tasking. 

TSL (for Task Specification Language) by Helmhold [21] 
and Luckham [31] is tailored for description of the behavior of 
Ada tasks. Its notation for interaction of task events is 
similar in concept .to temporal predicates, but TSL is not 
founded on temporal logic. TSL follows style conventions of 
Anna (for "annotation language for Ada"), an earlier 
specification language for Ada programs by Luckham [30]. 
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We present here initial development of a formal 
specification language which is tailored to Ada tasks. It 
provides a notation for specifying the constraints on the local 
behavior of individual tasks and the global behavior of 
interaction between tasks in concurrent and distributed 
systems. This tasking language is called AdaiTL. It merges 
ideas from three different styles of specifications: 

1) It is an extension of Ada task specifications defined in 
the Ada Language Reference Manual (ALRM) 1141. 

2) It uses the model-based style of VDM (Vienna 
Development Method), as in Bjorner [9], Lucas 
[29], and Jackson [22], to specify the result of 
procedures, including "accept" operations of tasks. 

3 ) It uses a variation of the temporal operators defined 
in the logic system called UB introduced by Ben-Ari 
et a1 [a]. Linear time operators are used to specify 
the sequential behavior of individual tasks. 
Branching time operators are used to specify 
properties of task interaction that are not 
constrained by individual task behaviors. 

The contribution of Ada/TL is in the merging of the model- 
based and temporal based specifications into an Ada framework. 

The further purpose of AdailL is to be a design language 
for Ada tasking systems. To that end, it is intended that Ada/TL 
specifications should be constructive in the sense that task 
bodies can be developed from specifications. Task 
specifications should be concise yet easily read by Ada 
programmers, and easily mapped into Ada code. The 
requirement for constructive specifications is similar in focus 
to the work of Wolper [43, 441 and Manna [35] using 
specifications to synthesize concurrent programs. However, 
we do not deal with synthesis of programs in this paper. 

2. A D M L  LWGUAGE 
We introduce Ada/TL specifications using a simple 

example of tasks accessing a common buffer task. The 
example system is represented in Figure 1 in the graphic 
notation presented by Buhr ilO]. Producer tasks put items in 
a bounded Queue task and Consumer tasks remove items from 
the Queue. The following sections focus separately on the 
ALRM framework, model-based procedure specifications, and 
temporal specifications. 
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Fig. 1. Example System 

2.7 Relation to Ada Specifications 

The syntax rules for Ada/TL are given in the Appendix. 
The rules extend the general rules for declaration of Ada 
modules given in the ALRM but with some additions that will be 
explained. Specification of the example system is given in 
Figure 2. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
gener ic  

type ItemType i s  pending; -- specification parameters 
MaxSize: natural pending; 

package Producers-Consumer is 

task type ProducerType is -- task specification 
procedure Def(ltem: out ItemType); -- define Item 
property 0 0 seq(Def(ltem), Queue.Put(ltem) ); 

end Produce rTy pe ; 

task Consumer is -- task specification 
procedure Cons(ltem: ItemType); -- consume Item 
property 0 0 seq(Queue.Get(ltem), Cons(1tem)); 

end Consumer; 

task Queue i s  -- task specification 
-- state variable Q : seq of ItemType; 

in i t  Q'length = 0; -- initial assertion 
entry Put( Item: ItemType); 

in Q'out = Q'in + Item; 
entry Get( Item: OUT ItemType); 

out Q'in = Item + Q'out; 
property Q'length I MaxSize; -- global assertion 

end Queue; 

SysProperty 'do (all P: ProducerType: 
P:Def(ltem) imp 0 Consumer:Cons(ltem) ); 

end Producers-Consumer; 

Fig. 2. Sample specification. 

The specification is a generic package, which means that 
some parameters of the system are left unspecified; namely, 
ItemType is identified only as pending and ProducerType is a 
task type, so that the number of producers is never identified. 
The primitive type "pending" follows from the language Gypsy 
in Good [18. 191. "pending" is used to denote generic 
parameters which are identified but otherwise not specified. 
The package specification consists of three task specifications 
(described below) followed by a SysProperty. The 
SysProperty specifies temporal properties of task 
interactions which are not directly specified by the individual 
task specifications. 

Task specifications include entry declarations as in the 
ALRM. Entry specifications may be decorated with non- 
temporal in and out assertions, as in VDM specifications 
[22]. Task specifications also define static variables and 
operations (procedures, functions) which are referenced as 
part of the task specification. We refer to these items as 
externally observable, in that they are used in description of 
the task specification but they are not accessible by other 
tasks. For example, the variable Q must be identified as part 
of the specification, but it is not intended to be accessed by 
tasks other than task Queue. Observable items serve in task 
specifications in a way analogous to that of private items in 
package declarations as defined by the ALRM. The last 
component of each task specification is the "property" 
assertion which specifies the temporal behavior of the subject 
task, including interaction with other tasks and access to 
either global items or its own observable items. 

In summary, the following specification components are 
additions to Ada specifications defined in the ALRM and were at 
least partially illustrated in the sample specification: 
+ "pending" type 
+ abstract types, as sets, sequences 
+ declaration of variables and operations for tasks 
+ init and property assertions for packages and tasks 
+ in and out assertions for procedures and entries 
+ SysProperty assertion about task interactions 

2.2 Relationship to VDM 

The Vienna Development Method allows specification of the 
effect of operations by modeling data objects in terms of 
certain abstract types (sets, maps, etc). The effect of 
operations is defined by pre-assertions which specify 
constraints on parameters, by post-assertions which relate 
pre and post values of both parameters and module variables, 
and by invariant assertions about module parameters. 

Ada/TL incorporates the VDM model-based style to specify 
the effect of individual entry operations of tasks, but with 
syntax tailored for Ada specifications. It uses in and o u t  
assertions for operations and inv (for invariant) and in i t  
(for initial) assertions for static data objects. Static data 
objects can be represented by either Ada structures or the 
abstract types set, map, or sequence. In the example, the 
variable Q is a static object of the task Queue. Q is modeled as a 
bounded sequence, with initial size zero. This is, in the 
specification Q is declared to be of the abstract type sequence, 
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but in the task code Q must be implemented as some concrete 
data structure. In the procedure out assertions, Q'in and 
Q'out represent pre and past values of Q and the + operation 
represents concatenation of an item to the sequence. The 
assertions together constrain the task Queue as a bounded 
queue. Further details of the model-based part of AdaKL are 
not covered here since that is not the focus of this paper. 

2.3 Temporal Specifications 

The specification of interaction of tasks is given in task 
property assertions and in the SysProperty assertion. Each 
property assertion is a linear-time temporal predicate that 
defines required behaviors of the subject task; the 
SysProperly assertion is a predicate in branching time logic 
that further constrains the behaviors of tasks. Temporal 
predicates are composed using temporal operators applied to 
non-temporal and control predicates. Non-temporal 
predicates express constraints about parameters and 
observable variables. Control predicates express constraints 
about events of execution of entry procedures and observable 
operations. These concepts are defined in the subsections that 
follow. 

In the example, the "U 0 ,seq" operators express that 
the task must infinitely repeat a sequence of conditions. Each 
ProducerType task must repeatedly call its Def procedure and 
pass the Item value to the Queue.Put entry. Similarly, the 
Consumer task must repeatedly receive an Item value from 
the Queue.Get entry and pass the value to its Cons 
procedure. Those specifications are constructive in that they 
imply the code structure for the task bodies. The SysProperty 
requires that for all execution paths, whenever an Item 
value is determined by a Def operation with some task P , 
then eventually that value will be passed to the Cons 
operation within the Consumer task. In this case, the task 
properties are sufficiently strong that the SysProperty will 
be satisfied. 

2.3.1 Task States 

Predicates about tasks are expressed in terms of the state 
of a task. The state of a task is a symbolic representation of all 
information maintained in during execution of the task. Such 
execution information is maintained in the activation record of 
tasks and in the run-time kernel that controls task 
interaction. The symbolic information is not actually 
computed by each task, but the symbolic representation is 
needed to order to express the specifications. Not all of the 
components of the state are defined within the Ada language, 
but they are part of the underlying semantic model of Ada and 
they are needed to write specifications. For purposes of just 
writing specifications of tasks, no formal semantics for Ada or 
Ada/TL are given. Such formal semantics would be defined in 
terms of the task state. The state components are described 
informally below. 

(1) All observable variables of the task (declared in the task 
specification) are part of its state. In the task Queue example, 
Q is an observable variable. 

(2) Some components of the state are represented as fields of a 
new task attribute called STATE (even though it is only part. 
of the full state). STATE has type: 
abs type 

TaskStateType is record 
TaskName : TaskNameType; --identifies task 
StateName: StateNameType; --accepting, waiting 
CallStack : seq of CallRec; --stack of call records 

Time : time; 
Callerld : TaskNameType; --rendezvous client 
Timed : Boolean; --true for timed entry 
DeltaTime : time ; 

: NameType --Entry, Proc, or Exception called 
--time of start of current Op 

OP 

--remaining time for entry 
end TaskStateType; 

The declaration "abs type" indicates the type is composed of 
some abstract structures (the sequence). StateNameType is 
an enumeration of state names drawn in part from Burns [45]. 

StateNameType = (calling, pending-accept, accept, 
completing-accept, proc, raise, ... ); 

with the following meanings: 

eTvDe F xnhn a t ion 
calling Task is a client calling an entry in 

some server task. 

pending-accept Task suspended prior to "arrival" of a 
client task. 

accept Server task executing an accept 
statement. 

completing-accept Server task transferring any OUT 
parameters of accept statement. 

proc Task either elaborating or executing a 
procedure. 

raise Task raising an exception. 

The CallStack field represents the execution stack of 
procedure activation records. The Op field identifies the name 
of the most recent entry accepted, or procedure or entry 
called, or exception raised. The Time field contains the time 
of the start of the current Op measured with the appropriate 
local clock. During a rendezvous, the Callerld is the name of 
the client task. If an "accept" or entry call is timed, then the 
Timed field is true and DeltaTime is the remaining time for 
the delay operation. 

Within a task specification we allow the STATE 
components to be referenced as STATE.field , without 
explicitly writing task-name'STATE.field. In referring to 
other tasks or in writing a SysProperty, the task name must 
be written, but word STATE can be omitted. For example, the 
expression T'field refers to the "field" component of the STATE 
of task T. 

412 



(3) Associated with each entry procedure is the new attribute 
QUEUE of type EntryQueue, which is a sequence of EntryRec's. 
If E is an entry, then EQUEUE has length ECOUNT. 

(4) Finally, the task state also includes the parameters of 
each active procedure call and accepted entry. Parameters can 
be referenced in IN and OUT assertions, as in the assertions 
for the entry Put in the Queue example. Also, parameters can 
be referenced in temporal "property" ana SysProperty 
assertions. Interpretation of parameters in temporal 
predicates is covered in the next section. 

2.3.2 Control Predicates 

Control predicates express conditions about the point of 
control of task execution. Control predicates are composed 
using operators "at" and "in" defined below, but the "at" 
operator may be omitted. "at" is the default if it is omitted. 
Points of execution can only be expressed relative to 
structures visible in the specification (procedures, entries, 
and exceptions). 

Control D rediMte for task T 
at(EntryName) T'StateName = pending-accept 

Meanina 

and T'Op = EntryName 

at( Task.€nttyName) T'StateName = calling 
and T'Op = Task.Entp,"me 

at(ProcName) T'StateName = proc 
and T'Op = ProcName 

at(Excepti0nName) T'StateName = raise 
and T'Op = ExceptionName 

in(EntryName ) at (EntryName) or 
(T'StateName = accept and T'Op = EntryName) 

use linear-time predicates for paths of execution of a single 
task and we use branching-time predicates for paths of 
execution of a system of interacting tasks. 

Let path h = (so, s i ,  s2, ... ) represent the sequence of 
observable states of a task T. Each state Si is a tuple of the 
state components identified in Section 2.3.1. Let P, Q, PI, ... 
be predicates over states of T, and let i be a natural number 
which denotes the index of a "current" state. The notation 
Ki,h(P) , called a Kripke structure, denotes that P holds (is 
true) in the i th state of h. The primary linear time 
operators are defined below. Note that the Kripke structure is 
not actually written in specifications; it is merely used to 
define the operators. Note also that the path of execution of 
the Task T is not actually known; it is merely used in symbolic 
form to explain "property" assertion. The purpose of using a 
predicate P in a constructive specification is to be able to 
design the task body so that any execution path of T will 
satisfy the specification. 

N a m e  M e a n i n a  

eventually 

nexttime Ki,h( 0 p ) == Kit.1 ,h( p )  

Ki,h( 0 P ) == (exists 1: j2i: Kj,h(P)) 

before Ki,h(P before 0 )  == 
(exists i,k: i I < k: Kj,h(P) and Kk,h(Q) ) 

infinitely often U 0 P 

in(ProcName) at (ProcName) or 
ProcName in T'CallStack 

Although not shown above, control predicates allow parameters 
for procedures and entries. "in" parameters are required to 
have a value already bound in the surrounding context. "out" 
parameters interpreted as becoming bound to some value 
determined by the procedure or entry any satisfying all 
associated assertions. (This follows the concept of unifying of 
parameters in logic languages such as Prolog.) In the example 
SysProperty, the Item is bound in the Def procedure and the 
same bound value satisfies the Cons procedure. 
2.3.3 Temporal Predicates 

Temporal predicates are composed of non-temporal 
predicates (operators and quantifiers of first order predicate 
calculus), control predicates, and temporal operators. The 
temporal operators are defined in this section. Whereas non- 
temporal predicates are interpreted for a single state, 
temporal predicates are interpreted over a sequence of states, 
which is called a path of execution. As indicated before, we 

Branching time operators are defined in a similar fashion, 
but over a composite path of all tasks of a system. A system 
consists of global variables and a set of interacting tasks. Let a 
system state Si represent a tuple of the global variables of the 
system and the states of all tasks of a system. Let 
H = (So, S i ,  S2, ... ) represent a sequence of states of a 
system. Each component of H (except the global variables 
component) is a path h of one of the tasks of the system. Even 
though each task of a system may be deterministic, the total 
system behavior is generally nondeterministic. So, even 
though the path of each task satisfies its own property (that is, 
each task behaves in the proper sequence of states), there may 
be many possible interleavings to the tasks, and hence many 
possible paths H. (That is why the SysPropery assertion is 
necessary.) The Kripke structure for system paths is 
interpreted as follows. Let W be the set of system paths that 
contain a current state Si. Then, 

Ki,H(P) == (all H in H : K~,H(P)). Branching time 
temporal operators V U ,  VO , VO are all defined in the 
following form, where # represerits anv of the linear time 
operators : 

Ki,B.B( V#P) == (all H in &3 : Ki,H(#P) ) 
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3. SMALL TASKING SYSTEM SPECIFICATIONS 

This section presents three examples of tasking 
specifications together with some skeletal task bodies. The 
objective is to demonstrate the specification style of the 
Ada/TL language and lo suggest its constructive relation to 
program design. Tasks in these synchronization examples are 
grouped together in packages with corresponding system 
properties. The three examples belong to a family of tasking 
systems. Each member of this family consists of a collection 
of tasks competing for access to a shared resource. A Server 
task provides the necessary synchronization so that no more 
than one task at a time has access to the shared resource. In 
each of these examples, we first show a tasking system in the 
graphical style suggested by Buhr [lo]. This is followed by an 
AdaITL specification and the corresponding task bodies. 

3.7 Synchmnized Access to a Shared Resource 

Figure 3 shows a configuration, called Synchronizer-1 I 

of a collection of tasks which compete for access to a shared 
resource through a Server. The Server performs a desired 
operation on the resource. The Ada/TL Specification for 
Synchronizer-1 is given in Figuce 4. 

In this specification, the Request entry of the Server 
calls the Perform procedure to compute OpChoice (the desired 
operation) on the shared resource. The "map" predicate is a 
primitive relation. The "out" assertion of Perform indicates 
that Result is determined as a function (mapping) of OpChoice 
and "resource". 

The specification of User tasks states that each such task 
repeatedly performs the following sequence actions to use the 
shared resource: 

Define OpChoice 
Rendezvous with Server 
Consume Result 

Finally, no system property is required for Synchronizer-1 . 
Mutually exclusive use of the resource results from the Ada 
rendezvous. The Server hold the resource and the Server can 
only service one request at a time . 

The tasking system specification can be implemented with 
the following task bodies: 

task body Server is 
with resource; use resource; 
procedure Perform(0pChoice: IN OpType; 

Result : OUT ResultType); 
--code to perform operation OpChoice on resource 

-- and return result 
begin 

loop 
accept Request(0pChoice: IN OpChoice; 

Perform( OpChoice, Result ); 
Result : OUT ResultType) do  

end Request; 
end loop 

end Server; 

User 1 

I 

- Resource 

Fig. 3. Synchronizer-1 
gener ic  

type ResourceType is pending; 
type ResultType is pending; 
type OpType is pending; 

package Synchronizer-1 is 

resource: ResourceType; 
procedure Perform( OpChoice: IN OpType; 

task Server i s  

Result : OUT ResultType); 
--perform operation OpChoice on resource and 
-- return Result 

out map(OpChoice, resource, Result); 
entry Request(0pChoice: IN OpType; 

out Perform(OpChoice,Result); 

Result : OUT ResultType); 
--process request from user to perform operation 

property 0 0 Request; 
end Server; 

task type UserType i s  
procedure Def(0pChoice: OUT OpType); 

--select operation to be perforrned on resource 
procedure Cons(Value: IN ResultType); 
--consume Value 
p roper t y  

0 0 seq(Def(OpChoice), 
Server.Request(OpChoice, Result), 
Cons(Resu1t) ); 

end UserType; 

SysProperty true; 
--mutual exclusion ensured by Server rendezvous 

end Synchronizer-1 ; 

Fig. 4 Synchronizer-1 Specification 
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task body UserType is 
procedure Def(0pChoice: OUT OpType); 
--code to select operation OpChoice to be performed on 
--resource 
procedure Cons(Va1ue: IN ResultType); 
--code to consume value 

begin 
loop 

Def(0pChoice); 
Server.Request(OpChoice, Result); 
Cons( Result); 

end loop; 
end UserType; 

The purpose of showing the structure of the task bodies is 
to point out that the body structure follows directly from the 
looping and sequence structure of the specification. We believe 
that Ada/TL task specifications can be used to generate the 
structure of the corresponding task bodies. 

3.2 Capability Passing 

A variation of the tasking system in Section 3.1 is one in 
which each of the competing tasks acquires the capability to 
access a shared resource. A graphical rendition of this new 
configuration, called Synchronizer-2, is system is shown in 
Figure 5. The specification of Synchronizer-2 is shown in 
Figure 6. 

In Synchronizer-2, the Server task regulates access to 
the shared resource by first granting access capability to a 
client task and then later retracting access rights to the same 
client. The Server property restricts a rendezvous between a 
client task and the Server Done entry with 

TaskToGetCapability = TaskToReleaseCapability 

A client User task repeatedly performs the following sequence 
of actions: 

Define the OpChoice to be performed 
Get access rights from the Server 
Perform the desired OpChoice on the resource 
Release access rights to the Server 
Consume the result obtained from the resource. 

The SysProperty for Synchronizer-2 is a safety property. 
That is, enforcement of this SysProperty guarantees that 
nothing "bad" happens relative to the shared resource. We 
want to guarantee that no more than one User task accesses the 
shared resource at the same time (mutual exclusion 
property). This system property is expressed in branching 
time and says that for any two User tasks U1 and U2, they are 
not both "in" (executing) the Perform operation. This mutual 
exclusion property is achieved by the tasking system 
protocol, but that is not proved by the specification. Such 
proof is left for further work. 

User 1 - 

- 
Fig 5. bynchronizer-2 

generic 
type ResourceType is pending; 
type ResultType is pending; 
type OpType is pending; 

package Synchronizer-2 is 

resource: ResourceType; 

task Server is 

entry Get(TaskToGetCapabi1ity: IN TaskName); entry Done(TaskToReleaseCapabi1ity: IN TaskName); 
property 
f3 0 seq( Get(TaskToGetCapability), 

(Done(TaskToReleaseCapabi1ity) 
and TaskToGetCapability = 

TaskToReleaseCapability) ); 
end Server; 

task type UserType is 
procedure Def(0pChoice: OUT OpType); 

procedure Perform( OpChoice: IN OpType; 
--select operation to be performed on resource 

--perform operation OpChoice on resource and 
-- return Result 

Result : OUT ResultType); 

out map(OpChoice, resource, Result); 

--consume Value 

0 seq(Def(OpChoice), 

procedure Cons(Va1ue: IN ResultType); 

property 

Server.Get(STATE.TaskName), 
Perform(OpChoice, Result), 

Server.Done(STATE.TaskName), 
Cons(Resu1t) ); 

end UserType; 
Sys Property 

MI (all U1, U2: UserType and U1 /= U2: 
not(in U1: Perform and in U2: Perform)); 

l 
We leave it as an exercise that implementation of the task 

end Synchronizer-2; 

bodies will have the same structural form as the specification. Fig.6 Synchronizer-2 Specification 
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3.3 Time Entry calls 

This section introduces a third version of the tasking 
system with a simple timed entry call. Each User task 
requests service from the Server task and then waits for a 
response subject to a time limit on how long it takes the 
Server to respond. If the response is late, an alarm is raised. 
There is no recovery mechanism for this simple example. A 
graphical overview of this new tasking system, called 
Synchronizer-3. is given in Figure 7. The specification is 
given in Figure 8. 

User 1 

m 

Legend 8' means timed entry call 

Figure 7 Synchronizer-3 

In the Synchronizer-3 specification, the Server obtains 
an OpChoice from a client via the Request entry. After the 
Request rendezvous, the Server does We Perform and then 
attempts to send this Result back by calling the Receive entry 
in the client task. The client puts a time limit on how long it 
waits before it gets a response from the Server. If the time 
limit for the response is exceeded, the User task is "at raise 
No-Response" which is the end of the execution path for the 
task. There is no specification of recovery behavior. 

A possible implementation structure of task bodies for 
Synchronizer-3 is shown below. The implementation assumes 
User tasks are contained in a family called UserFamily. An 
additional entry Init is provided to set the Index for each user. 

gener ic  
type ResourceType is pending; 
type ResultType is pending; 
type OpType is pending; 

package Synchronizer-3 Is 

task Server i s  
procedure Perform( OpChoice: IN OpType; 

Result : OUT ResultType); 
--perform operation OpChoice on resource and 
-- return Result 

--receive request from user to perform operation 

out map(OpChoice, resource, Result); 
entry Request(0pChoice: IN OpType); 

p roper t y  
0 0 seq((Request(0pChoice) 

and Who = STATE.Caller1d). 
Perform(OpChoice, Result), 

Who.Receive(Result) ); 
end Server; 

task type UserType is 
No-Response: exception; 
procedure Def(0pChoice: OUT OpType); 

--select operation to be performed on resource 
--determine an Id for the request 

procedure Cons(Resu1t: IN ResultType); 
--consume Result returned by Server 

entry Receive(Resu1t: IN ResultType); 
--receive Result of OpChoice from Server 

p roper t y  
0 0 seq(Def(OpChoice), 

Server.Request(OpChoice), 
( (Receive(Resu1t) and STATE.DeltaTimec0.2) 

or 
(STATE.DeltaTime2 0.2 and No-Response)), 

Cons(Resu1t) ); 
end UserType; 

end Synchronizer-3; 

Fig. 8 Synchronizer-3 Specification 

task body Server i s  
wi th resource; use resource; 
Result: ResultType; 
Who: User-Index; 
procedure Perform(0pChoice: IN OpType; 

Result : OUT ResultType); 
--perform operation OpChoice and return Result 
begin 
loop 

accept Request(0pChoice: IN OpType; 

end Request; 
Who: In User-Index) do 

Perform(OpChoice, Value); --access to resource 
UserFamily(Who).Receive(Value); --return Value 

end loop; 
end Server; 
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task body UserType i s  
Op: %Type; 
Index: User-Index; 
Result: ResultType; 
procedure Def(0pChoice: OUT OpType); 

procedure Cons(Value: IN ResultType); 
--Consume Value 

accept Init(lndex: IN natural); 

--Select operation to be performed on resource 

begin 

loop 
Def(0p); 
Server. Request(Op, Index); 

select 
accept Receive(Resu1t: IN ResultType); 
or 
delay 0.2; 

raise No-Response; 
--wait 2 10ths sec before alarm 

end select; 
Cons(Resu1t); 

end loop; 
end UserType; 

4. C m c L u s m  

This paper has presented initial concepts of the new 
specification language ADNTL. The language integrates 
concepts of Ada specifications, temporal predicates, and VDM. 
We feel that this style of specification language can be used by 
ADA developers and it can have the mathematical foundations of 
temporal logic and VDM. ADNTL. specifications have both a 
logical style and "pseudo-code" style of a design language. This 
conforms to the guidance given by Lamport [23] for simple 
specification of concurrent systems. We conjecture that 
ADNTL specifications are constructive in the sense that they 
lead to the structure of the target system code. This has been 
illustrated by the examples and it is one subject of continuing 
work. Development of ADNTL specifications should be 
supported by development tools such as a syntax directed 
editor and a structure checker (parser and semantic checks). 
An important part of validating specifications is to verify that 
task properties are consistent with each other and with the 
system property. Towards that end, we are developing a proof 
system for A D M L  specifications (46). 
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APPENDIX ADA/TL GRAMMAR 

This grammar gives the extensions to the grammar of Ada 
specifications given in the ALRM. Items in italics refer to the 
corresponding item as defined in the ALRM. Items on the left 
hand side of a production with the same name as an item in the 
ALRM grammar redefine the item. 

Legend: [ ] indicates 0 or 1 occurrences 
{ } indicates 0 or more occurrences 

I* ' I  delimit comments for this grammar 

AdaTLspec ::= generic-specification I package-specification 

basic-declaration ::= basic-declaration 
I global-assertion 
I def-declaration 
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type-declaration ::= type-declaration 
I abstract-type-declaration 

abstract-type-declaration ::= a bs type-declaration 

type-definition ::= type-definition [ pending ] 
I seq of subtype-indication 
I set of subtype-indication 
I pending 

def-declaration 

task-specification ::= 

::= def function-call = boolean-expression 

t ask  [type] identifier i s  
{TaskParts} 

end TaskName : 

TaskParts ::= en try-declara tion 
I representation-clause 
I subprogram-specification 
I StateVar 
1 init expression 
I localgroperty 
I exception-declara tion 

subprogram-speccification ::= 
subprogram-specification 

[--in inv-assertion ] 
[ - -out  inv-assertion ] 

entry-declaration ::= 
entry-declaration 

[--in inv-assertion ] 
[ - -out  inv-assertion ] 

StateVar ::= objecLdeclaration 
init-assertion ::= expression = constant 
inv-assertion ::= expr 

global-assertion ::= SysProperty branching-expr 
I' can occur only in the system package spec */ 

localgroperty ::= property temporal-expr ; 
/' can occur only within task specifications *I 

branching-expr ::= branching-time-op quant-expr 

quant-exp ::= 
(quant name {,name) : name-constr : quant-exp) 
I temporal-expr 

quant ::= all I exist 
name-consts := name-const { logicaloperator name-const} 
name-const ::= type-mark I expression 

temporal-expr ::= 
[temporal-op] expr [ binary-op temporal-expr ] 

expr ::= expression 
I seq( temporal-expr { , temporal-expr } ) 
I controlgredicate 

primary ::= primary 
I exception-name 
I (temporal-expr ) 

temporal-op ::= linear-time-op 
I branching-time-op 

linear-time-op ::= U I o  I O ( K I 0  
branching-time-op ::= V linear-time-operator 
binary-operator ..- imp 
control-operator ..- at I in 

1.- 

..- 

controlgredicate ::= 

control-point ::= procedure-call_statement 
[control-operator] [task-name : ] controlpint  

I entry-call-statement 
I abort-statement 
I delay-statement 
I exception-name 

simple-name ::= identifier I - 
,I* - is "don't care" symbol 'I 
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