
Te m po ral

William

Specification of Ada Tasks

Hankley and James Peters

Department of Computing
Kansas State University,

Abstract -- This paper reports work on a language called
Ada/TL for the specification of the temporal behavior of
interacting Ada tasks in both concurrent and distributed
systems. The language Ada/TL is an extension of the task
specification declarations required by the Ada language. The
extensions include (i) temporal assertions about rendezvous
and other events of external interaction and (ii) non-temporal
'in' and 'out' assertions about parameters and other data items
which flow between tasks. We use linear-time operators to
specify the sequential behavior of individual tasks and
branching-time operators to specify global properties about
the interaction of tasks. Task specifications are intended to
follow the style of Ada declarations and to be constructive
inasmuch as they to lead directly to the design of task
rendezvous behavior. The paper defines the representation of
an externally viewable state of an Ada task and it defines
operators to specify a task behavior as a sequence of state
conditions. Specifications are illustrated for several examples
of tasks using shared resources and interaction using both
synchronous and asynchronous communication, Continuing
work on specification of timing constraints and on analysis of
global correctness of specifications is discussed.

1. INTRODUCTION
Specifying the behavior of programs with temporal logic

was formulated by Burstall [ll], Pnueli [38,39,40], and
Manna [32]. Their work led to methods of proving properties
of concurrent programs by Abadi [l], Barringer [3, 4, 71,
Clarke [12,13], Emerson [15,16,17], Hailpern [20]
Lamport [23, 24, 25, 26, 27, 281, Manna [33, 34, 35, 36,
371, and others. Recently, efforts have shifted to temporal
specification of program modules rather than specification of
global properties of programs, as in Barringer [7], Lamport
[24], and Pnueli [42]. Usually temporal specifications have
been used with respect to programs written in some abstract
language or in CSP. Some work has been done on specification
of Ada programs, for example Barringer [2, 5. 61 and Pnueli
[41]. So far these temporal logic specification techniques
have not been incorporated into a formal specification language
for Ada tasking.

TSL (for Task Specification Language) by Helmhold [21]
and Luckham [31] is tailored for description of the behavior of
Ada tasks. Its notation for interaction of task events is
similar in concept .to temporal predicates, but TSL is not
founded on temporal logic. TSL follows style conventions of
Anna (for "annotation language for Ada"), an earlier
specification language for Ada programs by Luckham [30].

0073-1 129/90/0000/0410$01.00 0 1990 IEEE

& Information Sciences
Manhattan KS 66506

We present here initial development of a formal
specification language which is tailored to Ada tasks. It
provides a notation for specifying the constraints on the local
behavior of individual tasks and the global behavior of
interaction between tasks in concurrent and distributed
systems. This tasking language is called AdaiTL. It merges
ideas from three different styles of specifications:

1) It is an extension of Ada task specifications defined in
the Ada Language Reference Manual (ALRM) 1141.

2) It uses the model-based style of VDM (Vienna
Development Method), as in Bjorner [9], Lucas
[29], and Jackson [22], to specify the result of
procedures, including "accept" operations of tasks.

3) It uses a variation of the temporal operators defined
in the logic system called UB introduced by Ben-Ari
et a1 [a]. Linear time operators are used to specify
the sequential behavior of individual tasks.
Branching time operators are used to specify
properties of task interaction that are not
constrained by individual task behaviors.

The contribution of Ada/TL is in the merging of the model-
based and temporal based specifications into an Ada framework.

The further purpose of AdailL is to be a design language
for Ada tasking systems. To that end, it is intended that Ada/TL
specifications should be constructive in the sense that task
bodies can be developed from specifications. Task
specifications should be concise yet easily read by Ada
programmers, and easily mapped into Ada code. The
requirement for constructive specifications is similar in focus
to the work of Wolper [43, 441 and Manna [35] using
specifications to synthesize concurrent programs. However,
we do not deal with synthesis of programs in this paper.

2. A D M L LWGUAGE
We introduce Ada/TL specifications using a simple

example of tasks accessing a common buffer task. The
example system is represented in Figure 1 in the graphic
notation presented by Buhr ilO]. Producer tasks put items in
a bounded Queue task and Consumer tasks remove items from
the Queue. The following sections focus separately on the
ALRM framework, model-based procedure specifications, and
temporal specifications.

410

ProducerType

n Queue

H' -/Put /
A Get

Consumer

Fig. 1. Example System

2.7 Relation to Ada Specifications

The syntax rules for Ada/TL are given in the Appendix.
The rules extend the general rules for declaration of Ada
modules given in the ALRM but with some additions that will be
explained. Specification of the example system is given in
Figure 2.

.
gener ic

type ItemType i s pending; -- specification parameters
MaxSize: natural pending;

package Producers-Consumer is

task type ProducerType is -- task specification
procedure Def(ltem: out ItemType); -- define Item
property 0 0 seq(Def(ltem), Queue.Put(ltem));

end Produce rTy pe ;

task Consumer is -- task specification
procedure Cons(ltem: ItemType); -- consume Item
property 0 0 seq(Queue.Get(ltem), Cons(1tem));

end Consumer;

task Queue i s -- task specification
-- state variable Q : seq of ItemType;

in i t Q'length = 0; -- initial assertion
entry Put(Item: ItemType);

in Q'out = Q'in + Item;
entry Get(Item: OUT ItemType);

out Q'in = Item + Q'out;
property Q'length I MaxSize; -- global assertion

end Queue;

SysProperty 'do (all P: ProducerType:
P:Def(ltem) imp 0 Consumer:Cons(ltem));

end Producers-Consumer;

Fig. 2. Sample specification.

The specification is a generic package, which means that
some parameters of the system are left unspecified; namely,
ItemType is identified only as pending and ProducerType is a
task type, so that the number of producers is never identified.
The primitive type "pending" follows from the language Gypsy
in Good [18. 191. "pending" is used to denote generic
parameters which are identified but otherwise not specified.
The package specification consists of three task specifications
(described below) followed by a SysProperty. The
SysProperty specifies temporal properties of task
interactions which are not directly specified by the individual
task specifications.

Task specifications include entry declarations as in the
ALRM. Entry specifications may be decorated with non-
temporal in and out assertions, as in VDM specifications
[22]. Task specifications also define static variables and
operations (procedures, functions) which are referenced as
part of the task specification. We refer to these items as
externally observable, in that they are used in description of
the task specification but they are not accessible by other
tasks. For example, the variable Q must be identified as part
of the specification, but it is not intended to be accessed by
tasks other than task Queue. Observable items serve in task
specifications in a way analogous to that of private items in
package declarations as defined by the ALRM. The last
component of each task specification is the "property"
assertion which specifies the temporal behavior of the subject
task, including interaction with other tasks and access to
either global items or its own observable items.

In summary, the following specification components are
additions to Ada specifications defined in the ALRM and were at
least partially illustrated in the sample specification:
+ "pending" type
+ abstract types, as sets, sequences
+ declaration of variables and operations for tasks
+ init and property assertions for packages and tasks
+ in and out assertions for procedures and entries
+ SysProperty assertion about task interactions

2.2 Relationship to VDM

The Vienna Development Method allows specification of the
effect of operations by modeling data objects in terms of
certain abstract types (sets, maps, etc). The effect of
operations is defined by pre-assertions which specify
constraints on parameters, by post-assertions which relate
pre and post values of both parameters and module variables,
and by invariant assertions about module parameters.

Ada/TL incorporates the VDM model-based style to specify
the effect of individual entry operations of tasks, but with
syntax tailored for Ada specifications. It uses in and o u t
assertions for operations and inv (for invariant) and in i t
(for initial) assertions for static data objects. Static data
objects can be represented by either Ada structures or the
abstract types set, map, or sequence. In the example, the
variable Q is a static object of the task Queue. Q is modeled as a
bounded sequence, with initial size zero. This is, in the
specification Q is declared to be of the abstract type sequence,

41 I

but in the task code Q must be implemented as some concrete
data structure. In the procedure out assertions, Q'in and
Q'out represent pre and past values of Q and the + operation
represents concatenation of an item to the sequence. The
assertions together constrain the task Queue as a bounded
queue. Further details of the model-based part of AdaKL are
not covered here since that is not the focus of this paper.

2.3 Temporal Specifications

The specification of interaction of tasks is given in task
property assertions and in the SysProperty assertion. Each
property assertion is a linear-time temporal predicate that
defines required behaviors of the subject task; the
SysProperly assertion is a predicate in branching time logic
that further constrains the behaviors of tasks. Temporal
predicates are composed using temporal operators applied to
non-temporal and control predicates. Non-temporal
predicates express constraints about parameters and
observable variables. Control predicates express constraints
about events of execution of entry procedures and observable
operations. These concepts are defined in the subsections that
follow.

In the example, the "U 0 ,seq" operators express that
the task must infinitely repeat a sequence of conditions. Each
ProducerType task must repeatedly call its Def procedure and
pass the Item value to the Queue.Put entry. Similarly, the
Consumer task must repeatedly receive an Item value from
the Queue.Get entry and pass the value to its Cons
procedure. Those specifications are constructive in that they
imply the code structure for the task bodies. The SysProperty
requires that for all execution paths, whenever an Item
value is determined by a Def operation with some task P ,
then eventually that value will be passed to the Cons
operation within the Consumer task. In this case, the task
properties are sufficiently strong that the SysProperty will
be satisfied.

2.3.1 Task States

Predicates about tasks are expressed in terms of the state
of a task. The state of a task is a symbolic representation of all
information maintained in during execution of the task. Such
execution information is maintained in the activation record of
tasks and in the run-time kernel that controls task
interaction. The symbolic information is not actually
computed by each task, but the symbolic representation is
needed to order to express the specifications. Not all of the
components of the state are defined within the Ada language,
but they are part of the underlying semantic model of Ada and
they are needed to write specifications. For purposes of just
writing specifications of tasks, no formal semantics for Ada or
Ada/TL are given. Such formal semantics would be defined in
terms of the task state. The state components are described
informally below.

(1) All observable variables of the task (declared in the task
specification) are part of its state. In the task Queue example,
Q is an observable variable.

(2) Some components of the state are represented as fields of a
new task attribute called STATE (even though it is only part.
of the full state). STATE has type:
abs type

TaskStateType is record
TaskName : TaskNameType; --identifies task
StateName: StateNameType; --accepting, waiting
CallStack : seq of CallRec; --stack of call records

Time : time;
Callerld : TaskNameType; --rendezvous client
Timed : Boolean; --true for timed entry
DeltaTime : time ;

: NameType --Entry, Proc, or Exception called
--time of start of current Op

OP

--remaining time for entry
end TaskStateType;

The declaration "abs type" indicates the type is composed of
some abstract structures (the sequence). StateNameType is
an enumeration of state names drawn in part from Burns [45].

StateNameType = (calling, pending-accept, accept,
completing-accept, proc, raise, ...);

with the following meanings:

eTvDe F xnhn a t ion
calling Task is a client calling an entry in

some server task.

pending-accept Task suspended prior to "arrival" of a
client task.

accept Server task executing an accept
statement.

completing-accept Server task transferring any OUT
parameters of accept statement.

proc Task either elaborating or executing a
procedure.

raise Task raising an exception.

The CallStack field represents the execution stack of
procedure activation records. The Op field identifies the name
of the most recent entry accepted, or procedure or entry
called, or exception raised. The Time field contains the time
of the start of the current Op measured with the appropriate
local clock. During a rendezvous, the Callerld is the name of
the client task. If an "accept" or entry call is timed, then the
Timed field is true and DeltaTime is the remaining time for
the delay operation.

Within a task specification we allow the STATE
components to be referenced as STATE.field , without
explicitly writing task-name'STATE.field. In referring to
other tasks or in writing a SysProperty, the task name must
be written, but word STATE can be omitted. For example, the
expression T'field refers to the "field" component of the STATE
of task T.

412

(3) Associated with each entry procedure is the new attribute
QUEUE of type EntryQueue, which is a sequence of EntryRec's.
If E is an entry, then EQUEUE has length ECOUNT.

(4) Finally, the task state also includes the parameters of
each active procedure call and accepted entry. Parameters can
be referenced in IN and OUT assertions, as in the assertions
for the entry Put in the Queue example. Also, parameters can
be referenced in temporal "property" ana SysProperty
assertions. Interpretation of parameters in temporal
predicates is covered in the next section.

2.3.2 Control Predicates

Control predicates express conditions about the point of
control of task execution. Control predicates are composed
using operators "at" and "in" defined below, but the "at"
operator may be omitted. "at" is the default if it is omitted.
Points of execution can only be expressed relative to
structures visible in the specification (procedures, entries,
and exceptions).

Control D rediMte for task T
at(EntryName) T'StateName = pending-accept

Meanina

and T'Op = EntryName

at(Task.€nttyName) T'StateName = calling
and T'Op = Task.Entp,"me

at(ProcName) T'StateName = proc
and T'Op = ProcName

at(Excepti0nName) T'StateName = raise
and T'Op = ExceptionName

in(EntryName) at (EntryName) or
(T'StateName = accept and T'Op = EntryName)

use linear-time predicates for paths of execution of a single
task and we use branching-time predicates for paths of
execution of a system of interacting tasks.

Let path h = (so, s i , s2, ...) represent the sequence of
observable states of a task T. Each state Si is a tuple of the
state components identified in Section 2.3.1. Let P, Q, PI, ...
be predicates over states of T, and let i be a natural number
which denotes the index of a "current" state. The notation
Ki,h(P) , called a Kripke structure, denotes that P holds (is
true) in the i th state of h. The primary linear time
operators are defined below. Note that the Kripke structure is
not actually written in specifications; it is merely used to
define the operators. Note also that the path of execution of
the Task T is not actually known; it is merely used in symbolic
form to explain "property" assertion. The purpose of using a
predicate P in a constructive specification is to be able to
design the task body so that any execution path of T will
satisfy the specification.

N a m e M e a n i n a

eventually

nexttime Ki,h(0 p) == Kit.1 ,h(p)

Ki,h(0 P) == (exists 1: j2i: Kj,h(P))

before Ki,h(P before 0) ==
(exists i,k: i I < k: Kj,h(P) and Kk,h(Q))

infinitely often U 0 P

in(ProcName) at (ProcName) or
ProcName in T'CallStack

Although not shown above, control predicates allow parameters
for procedures and entries. "in" parameters are required to
have a value already bound in the surrounding context. "out"
parameters interpreted as becoming bound to some value
determined by the procedure or entry any satisfying all
associated assertions. (This follows the concept of unifying of
parameters in logic languages such as Prolog.) In the example
SysProperty, the Item is bound in the Def procedure and the
same bound value satisfies the Cons procedure.
2.3.3 Temporal Predicates

Temporal predicates are composed of non-temporal
predicates (operators and quantifiers of first order predicate
calculus), control predicates, and temporal operators. The
temporal operators are defined in this section. Whereas non-
temporal predicates are interpreted for a single state,
temporal predicates are interpreted over a sequence of states,
which is called a path of execution. As indicated before, we

Branching time operators are defined in a similar fashion,
but over a composite path of all tasks of a system. A system
consists of global variables and a set of interacting tasks. Let a
system state Si represent a tuple of the global variables of the
system and the states of all tasks of a system. Let
H = (So, S i , S2, ...) represent a sequence of states of a
system. Each component of H (except the global variables
component) is a path h of one of the tasks of the system. Even
though each task of a system may be deterministic, the total
system behavior is generally nondeterministic. So, even
though the path of each task satisfies its own property (that is,
each task behaves in the proper sequence of states), there may
be many possible interleavings to the tasks, and hence many
possible paths H. (That is why the SysPropery assertion is
necessary.) The Kripke structure for system paths is
interpreted as follows. Let W be the set of system paths that
contain a current state Si. Then,

Ki,H(P) == (all H in H : K~,H(P)). Branching time
temporal operators V U , VO , VO are all defined in the
following form, where # represerits anv of the linear time
operators :

Ki,B.B(V#P) == (all H in &3 : Ki,H(#P))

413

3. SMALL TASKING SYSTEM SPECIFICATIONS

This section presents three examples of tasking
specifications together with some skeletal task bodies. The
objective is to demonstrate the specification style of the
Ada/TL language and lo suggest its constructive relation to
program design. Tasks in these synchronization examples are
grouped together in packages with corresponding system
properties. The three examples belong to a family of tasking
systems. Each member of this family consists of a collection
of tasks competing for access to a shared resource. A Server
task provides the necessary synchronization so that no more
than one task at a time has access to the shared resource. In
each of these examples, we first show a tasking system in the
graphical style suggested by Buhr [lo]. This is followed by an
AdaITL specification and the corresponding task bodies.

3.7 Synchmnized Access to a Shared Resource

Figure 3 shows a configuration, called Synchronizer-1 I

of a collection of tasks which compete for access to a shared
resource through a Server. The Server performs a desired
operation on the resource. The Ada/TL Specification for
Synchronizer-1 is given in Figuce 4.

In this specification, the Request entry of the Server
calls the Perform procedure to compute OpChoice (the desired
operation) on the shared resource. The "map" predicate is a
primitive relation. The "out" assertion of Perform indicates
that Result is determined as a function (mapping) of OpChoice
and "resource".

The specification of User tasks states that each such task
repeatedly performs the following sequence actions to use the
shared resource:

Define OpChoice
Rendezvous with Server
Consume Result

Finally, no system property is required for Synchronizer-1 .
Mutually exclusive use of the resource results from the Ada
rendezvous. The Server hold the resource and the Server can
only service one request at a time .

The tasking system specification can be implemented with
the following task bodies:

task body Server is
with resource; use resource;
procedure Perform(0pChoice: IN OpType;

Result : OUT ResultType);
--code to perform operation OpChoice on resource

-- and return result
begin

loop
accept Request(0pChoice: IN OpChoice;

Perform(OpChoice, Result);
Result : OUT ResultType) do

end Request;
end loop

end Server;

User 1

I

- Resource

Fig. 3. Synchronizer-1
gener ic

type ResourceType is pending;
type ResultType is pending;
type OpType is pending;

package Synchronizer-1 is

resource: ResourceType;
procedure Perform(OpChoice: IN OpType;

task Server i s

Result : OUT ResultType);
--perform operation OpChoice on resource and
-- return Result

out map(OpChoice, resource, Result);
entry Request(0pChoice: IN OpType;

out Perform(OpChoice,Result);

Result : OUT ResultType);
--process request from user to perform operation

property 0 0 Request;
end Server;

task type UserType i s
procedure Def(0pChoice: OUT OpType);

--select operation to be perforrned on resource
procedure Cons(Value: IN ResultType);
--consume Value
p roper t y

0 0 seq(Def(OpChoice),
Server.Request(OpChoice, Result),
Cons(Resu1t));

end UserType;

SysProperty true;
--mutual exclusion ensured by Server rendezvous

end Synchronizer-1 ;

Fig. 4 Synchronizer-1 Specification

414

task body UserType is
procedure Def(0pChoice: OUT OpType);
--code to select operation OpChoice to be performed on
--resource
procedure Cons(Va1ue: IN ResultType);
--code to consume value

begin
loop

Def(0pChoice);
Server.Request(OpChoice, Result);
Cons(Result);

end loop;
end UserType;

The purpose of showing the structure of the task bodies is
to point out that the body structure follows directly from the
looping and sequence structure of the specification. We believe
that Ada/TL task specifications can be used to generate the
structure of the corresponding task bodies.

3.2 Capability Passing

A variation of the tasking system in Section 3.1 is one in
which each of the competing tasks acquires the capability to
access a shared resource. A graphical rendition of this new
configuration, called Synchronizer-2, is system is shown in
Figure 5. The specification of Synchronizer-2 is shown in
Figure 6.

In Synchronizer-2, the Server task regulates access to
the shared resource by first granting access capability to a
client task and then later retracting access rights to the same
client. The Server property restricts a rendezvous between a
client task and the Server Done entry with

TaskToGetCapability = TaskToReleaseCapability

A client User task repeatedly performs the following sequence
of actions:

Define the OpChoice to be performed
Get access rights from the Server
Perform the desired OpChoice on the resource
Release access rights to the Server
Consume the result obtained from the resource.

The SysProperty for Synchronizer-2 is a safety property.
That is, enforcement of this SysProperty guarantees that
nothing "bad" happens relative to the shared resource. We
want to guarantee that no more than one User task accesses the
shared resource at the same time (mutual exclusion
property). This system property is expressed in branching
time and says that for any two User tasks U1 and U2, they are
not both "in" (executing) the Perform operation. This mutual
exclusion property is achieved by the tasking system
protocol, but that is not proved by the specification. Such
proof is left for further work.

User 1 -

-
Fig 5. bynchronizer-2

generic
type ResourceType is pending;
type ResultType is pending;
type OpType is pending;

package Synchronizer-2 is

resource: ResourceType;

task Server is

entry Get(TaskToGetCapabi1ity: IN TaskName); entry Done(TaskToReleaseCapabi1ity: IN TaskName);
property
f3 0 seq(Get(TaskToGetCapability),

(Done(TaskToReleaseCapabi1ity)
and TaskToGetCapability =

TaskToReleaseCapability));
end Server;

task type UserType is
procedure Def(0pChoice: OUT OpType);

procedure Perform(OpChoice: IN OpType;
--select operation to be performed on resource

--perform operation OpChoice on resource and
-- return Result

Result : OUT ResultType);

out map(OpChoice, resource, Result);

--consume Value

0 seq(Def(OpChoice),

procedure Cons(Va1ue: IN ResultType);

property

Server.Get(STATE.TaskName),
Perform(OpChoice, Result),

Server.Done(STATE.TaskName),
Cons(Resu1t));

end UserType;
Sys Property

MI (all U1, U2: UserType and U1 /= U2:
not(in U1: Perform and in U2: Perform));

l
We leave it as an exercise that implementation of the task

end Synchronizer-2;

bodies will have the same structural form as the specification. Fig.6 Synchronizer-2 Specification

415

3.3 Time Entry calls

This section introduces a third version of the tasking
system with a simple timed entry call. Each User task
requests service from the Server task and then waits for a
response subject to a time limit on how long it takes the
Server to respond. If the response is late, an alarm is raised.
There is no recovery mechanism for this simple example. A
graphical overview of this new tasking system, called
Synchronizer-3. is given in Figure 7. The specification is
given in Figure 8.

User 1

m

Legend 8' means timed entry call

Figure 7 Synchronizer-3

In the Synchronizer-3 specification, the Server obtains
an OpChoice from a client via the Request entry. After the
Request rendezvous, the Server does We Perform and then
attempts to send this Result back by calling the Receive entry
in the client task. The client puts a time limit on how long it
waits before it gets a response from the Server. If the time
limit for the response is exceeded, the User task is "at raise
No-Response" which is the end of the execution path for the
task. There is no specification of recovery behavior.

A possible implementation structure of task bodies for
Synchronizer-3 is shown below. The implementation assumes
User tasks are contained in a family called UserFamily. An
additional entry Init is provided to set the Index for each user.

gener ic
type ResourceType is pending;
type ResultType is pending;
type OpType is pending;

package Synchronizer-3 Is

task Server i s
procedure Perform(OpChoice: IN OpType;

Result : OUT ResultType);
--perform operation OpChoice on resource and
-- return Result

--receive request from user to perform operation

out map(OpChoice, resource, Result);
entry Request(0pChoice: IN OpType);

p roper t y
0 0 seq((Request(0pChoice)

and Who = STATE.Caller1d).
Perform(OpChoice, Result),

Who.Receive(Result));
end Server;

task type UserType is
No-Response: exception;
procedure Def(0pChoice: OUT OpType);

--select operation to be performed on resource
--determine an Id for the request

procedure Cons(Resu1t: IN ResultType);
--consume Result returned by Server

entry Receive(Resu1t: IN ResultType);
--receive Result of OpChoice from Server

p roper t y
0 0 seq(Def(OpChoice),

Server.Request(OpChoice),
((Receive(Resu1t) and STATE.DeltaTimec0.2)

or
(STATE.DeltaTime2 0.2 and No-Response)),

Cons(Resu1t));
end UserType;

end Synchronizer-3;

Fig. 8 Synchronizer-3 Specification

task body Server i s
wi th resource; use resource;
Result: ResultType;
Who: User-Index;
procedure Perform(0pChoice: IN OpType;

Result : OUT ResultType);
--perform operation OpChoice and return Result
begin
loop

accept Request(0pChoice: IN OpType;

end Request;
Who: In User-Index) do

Perform(OpChoice, Value); --access to resource
UserFamily(Who).Receive(Value); --return Value

end loop;
end Server;

416

task body UserType i s
Op: %Type;
Index: User-Index;
Result: ResultType;
procedure Def(0pChoice: OUT OpType);

procedure Cons(Value: IN ResultType);
--Consume Value

accept Init(lndex: IN natural);

--Select operation to be performed on resource

begin

loop
Def(0p);
Server. Request(Op, Index);

select
accept Receive(Resu1t: IN ResultType);
or
delay 0.2;

raise No-Response;
--wait 2 10ths sec before alarm

end select;
Cons(Resu1t);

end loop;
end UserType;

4. C m c L u s m

This paper has presented initial concepts of the new
specification language ADNTL. The language integrates
concepts of Ada specifications, temporal predicates, and VDM.
We feel that this style of specification language can be used by
ADA developers and it can have the mathematical foundations of
temporal logic and VDM. ADNTL. specifications have both a
logical style and "pseudo-code" style of a design language. This
conforms to the guidance given by Lamport [23] for simple
specification of concurrent systems. We conjecture that
ADNTL specifications are constructive in the sense that they
lead to the structure of the target system code. This has been
illustrated by the examples and it is one subject of continuing
work. Development of ADNTL specifications should be
supported by development tools such as a syntax directed
editor and a structure checker (parser and semantic checks).
An important part of validating specifications is to verify that
task properties are consistent with each other and with the
system property. Towards that end, we are developing a proof
system for A D M L specifications (46).

REFERENCES

M. Abadi, "Temporal Logic Theorem Proving", Ph.D.
Dissertation, Stanford Univ., 1987, 160pp.
H. Barringer, "Axioms and Proof Rules for Ada Tasks",
/E€ Proceedings, Part E: Computers and Digital
Techniques, vol. 129, No. 2 (Mar 1982), 39-48.
H. Barringer, R. Kuiper, "A Temporal Logic
Specification Method Supporting Hierarchical
Development", Tech Report, Univ of Manchester (Nov.
1983) .

H. Barringer, R. Kuiper, A. Pnueli, "Now You May
Compose Temporal Logic Specifications", Proceedings
of the 76th ACM Symposium on Theory of Computing,
Washington, D.C. (1984), pp. 51-63.
H. Barringer, "Specifying Ada Tasks: Where we are
and where we need to be", Ada UK News, vol. 6, part 2

H. Barringer, "A Proof System for Ada Tasks", The
Computer Journal, vol. 29, No. 5 (Oct. 1986), 404-
41 5 .
H. Barringer, "Using Temporal Logic in the
Compositional Specification of Concurrent Systems",
University of Manchester TR UMCS-86-10-1, Oct.
29, 1986.
M. Ben-Ari, Z. Manna, A. Pnueli, "The Temporal
Logic of Branching Time", I'roceedings of the 8th ACM
Symposium on Principles of Programming Languages.
Jan. 26-28, 1981, 164-175.
D. Bjorner, C. Jones, Formal Specification and
Software Development. NJ: Prentice-Hall, 1982.
R. Buhr, System Design with Ada, NJ: Prentice-
Hall, 1984.
M. Burstall, "Program proving as hand simulation
with a little induction", Proceedings of I N P
Congress, 1974, Stockholm. Amsterdam: North-
Holland, pp. 308-312.
E. Clarke, M. Browne, E. Emerson, A. Sistla, "Using
Temporal Logic for Automating Verification of Finite
State Systems" in Logics and Models of Computer
Science. NY: Springer-Verlag, 1985, 3-26.
E. Clarke, 0. Grumberg, "Research on Automatic
Verification of Finite-State Concurrent Systems",
Carnegie Mellon TR CMU-CS-87-105, Jan. 1987.
US Dept Defense, Reference Manual for Ada
Programming Language, ANSVMIL STD 181 5A-
1983. NY: Springer-Verlag, 1983.
E. Emerson, J. Hailpern, "Decision Procedures and
Expressiveness in the Temporal Logic of Branching
Time", 14th Annual ACM Symposium on the Theory of
Computing, 1982.
E. Emerson, "Alternative Semantics for Temporal
Logic", Theoretical Computer Science, vol. 26

E. Emerson, T. Sadler, J. Srinivasan, "Efficient
Temporal Reasoning" (Extended Abstract).
Proceedings of 16th Annual ACM Symposium on
Principles of Programming Languages, Austin, TX,
Jan. 1989, 166-176.
D. Good, et al. "Report on the Language Gypsy: Version
2.0", TR ICSCA-CMP-10, Institute for Computing
Science, UT at Austin, 1978
D. Good, "Revised Report on Gypsy 2.1". Tech Report,
Institute for Computing Science, UT at Austin, July,
1985.
B. Hailpern, "Verifying Concurrent Processes Using
Temporal Logic", Lecture Notes in Computer Science,
129. Springer-Verlag: NY. 1981.

(Ap 1985), 24-31.

(1983), 121-130.

417

1231

1241

1321

I 3 3 1

D. Helmhold, D. Luckham, "TSL: Task Sequencing
Language", Proceedings of the 7985 SlGAda
International Conference, pp. 255-274.
M. Jackson, "Developing Ada programs using the
Vienna Development Method", Software-Practice and
Experience, vol. 15, no. 3, March 1985, pp. 305-
31 8.
L. Lamport, "Specifying Concurrent Program
Modules", ACM Trans. on Programming Languages and
Systems, vol. 5. no. 2, April 1983, 190-222.

L. Lamport,F. Schneider, "Formal Foundation for
Specification and Verification", Lecture Notes in
Computer Science 790, pp. 203-286. Springer-
Verlag: New York, 1982.
L. Lamport, "Reasoning about Nonatomic Operations",
Proceedings of the 70th Annual ACM Symposium on
Principles of Programming Languages, Austin, TX,

L. Lamport, "An Axiomatic Semantics of Concurrent
Programming Languages" in Logics and Models of
Concurrent Programs edited by K.R. Apt. Series F:
Computer and System Sciences, Vol. 13. Springer-
Verlag. Berlin, 1985, pp. 77-122.
L. Lamport, "Control Variables are Better than Dummy
Variables for Reasoning about Program Control", Tech
Report, Digital Equip. Corp., May 5, 1986.
L. Lamport, "A Simple Approach to Specifying
Concurrent Systems". CACM, vol. 31, no. 1 (Jan.

P. Lucas, "Main Approaches to Formal Specification"
In Formal Specification & Software Development., D.
Bjorner, C. Jones(eds.), NJ: Prentice-Hall, 1982.
D. Luckham, F. Von Henke, "An Overview of Anna, A
Specification Language for Ada" I€€€ Software, Mar.

D. Luckham, et al. "Task Sequencing Language for
Specifying Distributed Ada Systems TSL-1 *, Technical
Report No. CSL-TR-87-334, July 1987. Computer
Systems Laboratory: Stanford University, Stanford,

Z. Manna, A. Pnueli, The Modal Logic of Programs,
Automata, Languages and Programming, LNCS 79.
Berlin: Springer-Verlag, 1979, 385-409.
Z. Manna, A. Pnueli, "Temporal Verification of
Concurrent Programs: The Temporal Framework of
Concurrent Programs", The Correctness Problem in
Computer Science R. Boyer, J Moore. (eds), Orlando,
FL: Academic Press, 198'1, 215-272.
Z. Manna, A. Pnueli, Verification of Concurrent
Programs: Temporal Logic Principles, LNCS 131. NY:
Springer-Verlag, 1981.
Z. Manna, P. Wolper, "Synthesis of Communicating
Processes from Temporal Logic Specifications", ACM
Transactions on Programming Languages and
Systems, vol. 6, no. 1, Jan. 1984, pp. 68-93.

(1 9 8 3 , 28-37.

1989), 32-47.

1985, 9-22.

CA 94305-2192, 42 pp.

(3 6

I3 7

1381

I 3 9 1

I 4 0

I 4 1

I 4 2

[4 3

I 4 4 1

1451

1461

Z. Manna, A. Pnueli, "How to Cook a temporal proof
system for your pet language", Proc. ACM Symposium
on Programming Languages, Austin, TX, (Jan. 1983),
141 -154.

Z. Manna,A. Pnueli, "Adequate Proof Principles for
Invariance and Liveness Properties of Concurrent
Programs", Science of Computer Programming, 4,

A. Pnueli. "The Temporal Logic of Programs", 78th
Annual Symposium on the Foundations of Computer
Science, IEEE, Nov. 1977, pp. 46-57.
A. Pnueli, "The Temporal Semantics of Concurrent
Programs" in Lecture Notes in Computer Science 70,
Springer-Verlag, NY, 1979, pp. 1-20.
A. Pnueli, "The temporal Logic of concurrent
programs", Theoretical Computer Science, vol. 13

A. Pnueli, W. DeRoever, W.P. "Rendezvous with Ada-
-A 'Proof Theoretical View", Proceedings of the AdaTEC
Conference on Ada, Arlington, VA, Oct. 6-8, 1982,

A. Pnueli, "In transition from global to modular
temporal reasoning about programs", in Logics and
Models of Concurrent Programs, K. Apt. (ed) Series
F: Computer and System Sciences, vol. 13. Springer-
Verlag.
P. Wolper, "Synthesis of Communicating Processes
from Temporal Logic", Ph.D. Dissertation, Stanford
Univ., 1982, 111 pp.
P. Wolper, "Expressing Interesting Properties of
Programs in Propositional Temporal Logic",
Proceedings of 73th Annual ACM Symposium on
Principles of Programming Languages, Jan. 1986,

A. Burns, A. Lister, A. Wellings, A Review of Ada
Tasking, LNCS 262, Springer-Verlag, 1987.
W. Hankley, J. Peters, "A Proof Method for Ada/TL",
TR-CS-89-11, Kansas State Univ, 1989.

3 (1984), pp. 257-290.

(1981), pp. 45-60.

129-137.

184 -1 93.

APPENDIX ADA/TL GRAMMAR

This grammar gives the extensions to the grammar of Ada
specifications given in the ALRM. Items in italics refer to the
corresponding item as defined in the ALRM. Items on the left
hand side of a production with the same name as an item in the
ALRM grammar redefine the item.

Legend: [] indicates 0 or 1 occurrences
{ } indicates 0 or more occurrences

I* ' I delimit comments for this grammar

AdaTLspec ::= generic-specification I package-specification

basic-declaration ::= basic-declaration
I global-assertion
I def-declaration

418

type-declaration ::= type-declaration
I abstract-type-declaration

abstract-type-declaration ::= a bs type-declaration

type-definition ::= type-definition [pending]
I seq of subtype-indication
I set of subtype-indication
I pending

def-declaration

task-specification ::=

::= def function-call = boolean-expression

t ask [type] identifier i s
{TaskParts}

end TaskName :

TaskParts ::= en try-declara tion
I representation-clause
I subprogram-specification
I StateVar
1 init expression
I localgroperty
I exception-declara tion

subprogram-speccification ::=
subprogram-specification

[--in inv-assertion]
[- -out inv-assertion]

entry-declaration ::=
entry-declaration

[--in inv-assertion]
[- -out inv-assertion]

StateVar ::= objecLdeclaration
init-assertion ::= expression = constant
inv-assertion ::= expr

global-assertion ::= SysProperty branching-expr
I' can occur only in the system package spec */

localgroperty ::= property temporal-expr ;
/' can occur only within task specifications *I

branching-expr ::= branching-time-op quant-expr

quant-exp ::=
(quant name {,name) : name-constr : quant-exp)
I temporal-expr

quant ::= all I exist
name-consts := name-const { logicaloperator name-const}
name-const ::= type-mark I expression

temporal-expr ::=
[temporal-op] expr [binary-op temporal-expr]

expr ::= expression
I seq(temporal-expr { , temporal-expr })
I controlgredicate

primary ::= primary
I exception-name
I (temporal-expr)

temporal-op ::= linear-time-op
I branching-time-op

linear-time-op ::= U I o I O (K I 0
branching-time-op ::= V linear-time-operator
binary-operator ..- imp
control-operator ..- at I in

1.-

..-

controlgredicate ::=

control-point ::= procedure-call_statement
[control-operator] [task-name :] controlpint

I entry-call-statement
I abort-statement
I delay-statement
I exception-name

simple-name ::= identifier I -
,I* - is "don't care" symbol 'I

419

