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Abstract. When standing human subjects are exposed to 

a moving visual environment, the induced postural sway 

forms a stable temporal relationship with the visual in- 

formation. We have investigated this relationship experi- 

mentally with a new set-up in which a computer gener- 

ates video images which correspond to the motion of a 

3D environment. The suggested mean distance to a sinu- 

soidally moving wall is varied and the temporal relation- 

ship to induced sway is analysed (1) in terms of the fluctu- 

ations of relative phase between visual and sway motion 

and (2) in terms of the relaxation time of relative phase as 

determined from the rate of recovery of the stable relative 

phase pattern following abrupt changes in the visual mo- 

tion pattern. The two measures are found to converge to 

a well-defined temporal stability of the action- perception 

cycle. Furthermore, we show that this temporal stability 

is a sensitive measure of the strength of the action-per- 

ception coupling. It decreases as the distance of the visual 

scene from the observer increases. This fact and the in- 

crease of mean relative phase are consistent with predic- 

tions of a linear second-order system driven by the visual 

expansion rate. However, the amplitude of visual sway 

decreases little as visual distance increases, in contradic- 

tion to the predictions, and is suggestive of a process that 

actively generates sway. The visual expansion rate on the 

optic array is found to decrease strongly with visual dis- 

tance. This leads to the conclusion that postural control 

in a moving visual environment cannot be understood 

simply in terms of minimization of retinal slip, and that 

dynamic coupling of vision into the postural control sys- 

tem must be taken into account. 
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Introduction 

The contribution of vision to postural stability has been 
a topic of research for decades (Lestienne et al. 1977; 
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Dichgans and Brandt 1978; Berthoz et al. 1979). In these 

studies it was established how the amplitude and fre- 

quency content of sway depend on the presence and na- 

ture of visual information. More recent research (van As- 

ten et al. 1988a,b) has investigated how the temporal 

structure of postural sway depends on the temporal 

structure of visual motion. From this work we know that 

spontaneous sway takes place in a frequency range below 

about 1 Hz and that frequencies of visual motion must be 

below 0.5 Hz in order to induce coherent sway. The 

theoretical view was proposed that the postural control 

system can be characterized as a linear second-order 

low-pass system with a cutoff frequency at approximately 

0.5 Hz (van Asten et al. 1988b). 

Studying the relative timing of postural sway and mo- 

tion of the visual scene is crucial if we are to understand 

how the postural control system is coupled to vision. 

Unfortunately, there are a number of technical difficulties 

when this action-perception relationship is to be 

analysed precisely. In experiments in which an actual 

moving room is put into motion, little control of its pre- 

cise timing is possible (Lee and Lishman 1975; Stoffregen 

1986). However, these stimuli do have the advantage of 

being realistic which, among other things, is reflected in 

the small amplitudes of room motion that are sufficient 

to induce postural sway: 3 mm for a viewing distance of 

30 cm for Lee and Lishman and 2.5 cm for a viewing 

distance of 2 m for Stoffregen. These amplitudes are so 

small that they are generally not consciously perceived 

by the subjects. When visual scenes are generated by 

computer and are displayed on a screen, control over 

their timing is excellent. However, it is difficult to simu- 

late realistic three-dimensional (3D) scenes. For instance, 

sway of an observer parallel to the screen should lead to 
displacements of the scene on the optic array of the ob- 

server that are larger for objects nearby and smaller for 

objects far away. This requires measuring the eye posi- 

tion of the observer (i.e. the position of the optic centre of 

the eye in 3D space) and a fast update of the visual scene 

by feedback of the eye position of the observer. Here we 

report on experiments in which we solved this problem 
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without going way beyond perceptual thresholds. Com- 
puter displays of fronto-parallel walls were calculated in 
real-time based on feedback information from the mea- 

sured position of the observer's eyes such as to generate 

displays that represent walls with a consistent depth. 
These walls were sinusoidally moved in a fore/aft direc- 

tion in order to induce postural sway of the subject. The 

situation of a sinusoidally moving wall was chosen be- 

cause this is interpreted easily in terms of the model that 

is described below. It should be noted that neither the 

model nor the experimental set-up is restricted to this 

type of stimulus. An additional advantage of this set-up 
over previous arrangements, which employed force plates 

or other apparatus to measure posture, is that it gives the 

position of the eye in 3D space. This allows us to calcu- 

late precisely the optic flow on the optic array of the 

subjects caused by head movements. In the experiment, 
we varied the mean distance between subject and wall as 

the experimental variable. Distance is known to play an 

important role in postural control (Lee and Lishman 

1975; Paulus et al. 1989). Furthermore, in the model put 
forward by Sch6ner (1991), distance determines the sta- 

bility of the action-perception cycle, contrary to e.g. the 

frequency or the amplitude of the movement of the stim- 
ulus which have no influence on stability. 

With this set-up we address a number of questions 

about the temporal relationship of postural sway and 
wall movement in the fore/aft direction that are posed by 

a recent model on the dynamics of this action-perception 

pattern (Sch6ner 1991). This model characterizes the pos- 
tural state controlled by the nervous system in terms of 
the position of the eye in the physical environment. Many 

sensory processes other than vision may contribute to 

determine this postural state, such as proprioception, 

vestibular information and pressure sensing in the foot. 

The idea is that all of these sensory processes contribute 

to a dynamical system such that the equilibrium postural 
state (upright posture) is an attractor solution. It is im- 

portant to note that this dynamical system is not the 

same as the physical system of the passive biomechanical 
system involved in posture. Instead, the control proper- 

ties of the nervous system including reflex loops and ac- 

tive control systems are cast into the form of a dynamical 

system. The visual influence on postural control is 
parametrized by the expansion rate of the fixated object 

on the retina. This expansion rate is formally equal to the 

inverse of "time-to-contact" independently of object size 
and distance (Lee 1980; Tresilian 1991). The parametriza- 

tion of visual influence by the expansion rate is not essen- 

tial: other parametrizations, like the spatial mean of the 
optic flow, will have the same temporal characteristics 
and lead to the same model predictions. They only result 
in a rescaling of the coupling constant, which captures 
the strength of the visual influence on the postural con- 
trol system (see below). 

In the model the assumption was made that the non- 
visual contributions can be represented by a linear, sec- 
ond-order dynamical system. Additive coupling (via a 
coupling constant) to the expansion rate leads to a linear 
driven oscillator. When the visual surround is oscillating, 
the model predicts that vision would make two contribu- 

tions to the dynamics. Firstly, it would stabilize posture 
by enlarging the effective damping. The size of this extra 

stability would depend on the distance to the wall and on 
the coupling constant; stability would decrease with in- 

creasing distance. Secondly, according to this model, vi- 

sion drives the dynamics with the frequency of the oscilla- 

tion. The effective amplitude of the drive is the amplitude 
of the movement of the visual surround divided by the 

mean distance to the surround. It is important to note 

that this model tends to minimize expansion rate, but 

does not always do so, depending on the frequency of the 

visual drive and on the stability. Driving frequencies that 
are very different from the eigenfrequency lead to large 

phase delays and thus to large expansion rates. Low sta- 

bility leads to more variability in phase delay and thus to 

larger mean expansion rates. The hypothesis of mini- 

mization of retinal slip has been put forward to explain 

the observed increase of RMS amplitude of postural 
movements when the distance to a static surround is in- 

creased (Lee and Lishman 1975; Paulus et al. 1989). 

These last authors assume a threshold for detection of 

retinal slip and assume that the postural control system 

minimizes the supra-threshold retinal slip. The model is 
consistent with this increase in RMS because the stability 

in the model decreases with increasing distance. The 

model can be regarded as an extension of the minimiza- 

tion hypothesis to a dynamical context. The main differ- 

ence between the hypothesis of retinal slip minimization 

and the model is that the latter explicitly models the in- 
trinsic dynamics of the postural control system. 

The experimental results obtained by van Asten et al. 

(1988a,b) and by Berthoz et al. (1979) are compatible with 
the model, and a related model had already been pro- 

posed by these authors. The formulation given by 

Sch6ner (1991) stresses the temporal stability of the ac- 

tion-perception pattern. Stability is postulated to under- 
lie both the persistence of phase locking between stimulus 

and response in the face of fluctuations as well as the 
return to phase-locked behaviour following an external 

perturbation. This postulate and a number of other pre- 
dictions cannot be tested on the basis of these older data, 

because methods to measure the stability of the relative 
timing of stimulus and sway were not implemented, and 

no perturbations of that relative timing were performed. 
Here we calculate two measures of temporal stability 

from the data: (1) the variance of relative phase, evaluat- 
ed from a time series of relative phase and (2) the relax- 

ation time of the action-perception pattern obtained by 

determining the time it takes the system to recover its 

stable relative timing pattern after an abrupt phase shift 
of the sinusoidally moving visual array. We manipulate 
the temporal stability by varying the distance between 

the eye and the visual scene. We have tested the concrete 
model predictions that as visual distance increases, (1) 
temporal stability decreases; (2) the time delay between 
visual drive and postural response increases (when the 
eigenfrequency of sway control is lower than the driving 
frequency); (3) the amplitude of postural sway decreases; 
(4) the expansion rate of the visual surround on the optic 
array of the observer decreases. 



video projec tor  

! 
! 

I 
! 

! 

! 

I 
i 
i 
I 

Experimental 

I 

set-up 

cameras  
L . . . .  - - -  

markers  

--I 

I 

I 

I 

479 

gral)hics works ta t ion  

Fig. 1. Experimental set-up 

sclee~ mot ion  de tec t ion  sys tem 

M a t e r i a l s  a n d  m e t h o d s  

Experimental set-up 

Red/green stereograms were generated by a SUN4/260 CXP work- 

station running under SunOS 4.0.3 and were projected onto a 

translucent screen of dimensions 2.5 by 2 m by a Barco Graphics 

400 video projector (red phosphor p56, green phosphor  p53). The 

green stimuli were barely visible through the red filter (Kodak Wrat- 

ten 25), transmission being less than 2%, while the red stimuli were 

invisible through the green filter (Kodak Wratten 58), transmission 

being less than 0.5%. The screen was homogeneously white without 

any visible texture. The subject wore a pair of goggles that  con- 

tained the filters and limited the field of view to approximately 

120 deg wide by 100 deg high. Due to the restriction of the viewing 

range, the edge of the screen was not visible to the subject. 

The subject stood approximately 50 cm in front of the screen 

wearing a fiat-topped helmet on which six diodes emitting infrared 

light (ireds) were mounted (Fig. 1). The positions of these markers 

were measured with two cameras of a Watsmart  system (Northern 

Digital ) at a rate of 400 Hz. The two cameras were placed approx- 

imately 2 m behind and 1.5 m above the subject in order to have the 

best possible signal-to-noise ratio for detecting movement in a hori- 

zontal plane. The walls and ceiling of the room were covered with 

infrared-absorbing cloth. This same cloth also hung in front of the 

screen leaving only a small, door-sized window for the subject to 

stand. With these precautions we never encountered difficulties with 

reflections of the infrared light. 

The 2D coordinates of the two cameras were converted real- 

time into 3D coordinates and sent to the SUN4. This computer was 

programmed to generate a new stereogram of the wall from the 

current viewpoint of each eye of the observer, using an algorithm to 

be explained below. With this set-up, every frame (15 ms) provided 

a new view of the simulated wall. The mean 3D position of the 

viewpoints, the position of the cyclopean eye, and the orientation of 

the head were stored, together with the position of the stimulus, for 

later analysis. These signals were sampled at a rate of 66 Hz. The 

delay in the feedback loop between eye translation and position 

change of a pixel in the middle of the screen was measured using a 

turntable and found to be 43 _+ 3 ms. The small variability was prob- 

ably caused by the fact that  SunOS is not a real-time operating 

system. 

The position of each eye in 3D space was calculated using a 

quaternion algorithm described by Horn (1987). Each session start- 

ed with a calibration in which the subject faced the cameras and 

held two additional markers in front of the eyes. The position of all 

ireds in this configuration was sampled for 200 ms at 200 Hz, and 

from these data the position of each eye relative to each marker of 

the helmet was calculated. Then the experiment would start with 

the subject facing the screen. The rotation of the helmet relative to 

the orientation in the calibration procedure was calculated using a 

real-time implementation of Horn's  algorithm for a planar figure 

(Sect 5 of Horn 1987). Thus the position of each eye could be 

calculated during the experiment using the positions of the eyes 

with respect to the ireds on the helmet. It should be noted that  we 

do not measure the orientation of the eyes relative to the head 

(rotations of the eyes in their sockets) but the position of each eye 

in 3D space. Assuming the accuracy of the Watsmart  system to scale 

linearly with the calibrated volume, which in our case was a cube 

with sides of length 0.6 m, we estimate the accuracy for the position 

of one marker  to be 3 mm (Ball and Pierowsky 1987). From this we 

estimate the systematic error of eye position relative to the simulat- 

ed wall to be of the order of 1 cm. The dynamic noise in the eye 

position is approximately white and has a standard deviation of 

1 mm. 
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Stimuli 

The stimuli simulated a fronto-paralM wall covered with 140 stereo 

dots, each with a size of 0.2 deg by 0.2 deg. The simulation was 

implemented by keeping a list of the dots in the memory of the 

graphics processor. The projection matrices (one for each eye) were 

recalculated every frame on the basis of the most recent positions of 

each eye and on the sinusoidal translation of stimulus. The density 

of dots was uniform per solid angle as seen from the view position 

when the experiment started. Therefore, dot density could not 

provide a cue to the distance to the wall. The dots lay in an annulus 

between 10 deg and 60 deg visual eccentricity and thus had a densi- 

ty of 0.056%. The hole in the middle of the stimulus was made to 

suppress the visibility of aliasing effects, which are most visible in 

the foveal region. The spatial resolution of the system was 1152 by 

900 pixels and the frame rate was 66 Hz. 

The wall was suggested to be at distances of 25, 50, 100 and 

200 cm. The first is suggested to be in front of the screen, the second 

on the screen and the last two behind the screen. Distance was 

suggested both by stereo vision as well as by simulation of the 

geometrically correct displacement of the image on the screen, using 

feedback of the eye position of the observer. Subjects reported that 

stereo vision strongly enhanced the perceptual quality of the display 

and made viewing for longer times more comfortable. However, it is 

not essential for our experiment, since in a pilot experiment to 

compare trials with and without stereo vision we found no signifi- 

cant differences. Subjects might also use accommodation as a dis- 

tance cue but this effect has been shown to be very weak (Fisher and 

Ciufredda 1988). 
The wall was sinusoidally driven with an amplitude of 4 cm and 

a frequency of 0.2 Hz. Each of the four distances was measured both 

with and without perturbations, giving a total of eight conditions. 

The perturbed trials had three perturbations of 180 deg each, al- 

ways at the point of maximum velocity (so there was no discontinu- 

ity in position, cf. Fig. 2) and occurring at random moments. Each 

condition was repeated four times, and the order of trials was ran- 

dom. The experiment was conducted in two sessions of approxi- 

mately 1 h each and always started with a trial without any visual 

stimulus for dark adaptation of the subject. In all there were 34 

trials for each subject. Each trial lasted for 140 s; the first 20 s were 

for adaptation and were not stored. 

Analysis o f  data 

Data were analysed in two ways, by a linear time-invariant analysis, 

which is quite common in physiology (Marmarelis and Marmarelis 

1978), and by a dynamic approach, as described, for example, by 

Sch6ner and Kelso (1988). This approach was used in the context of 

postural control by Schuster and Talbot (1980). The data for both 
types of analysis were the sinusoidal motion of the wall and the 

response of the subject in the fore/aft direction sampled at 66 Hz for 

2 min. Both types of analysis were implemented in MATLAB ver- 

sion 3.5i on a SUN4. 
In the linear time-invariant analysis we calculated the Fourier 

transform of the drive and the response of the subject. From these 

the spectra of the magnitude squared coherence (MSC), the phase 
and the gain were calculated. The MSC is a measure for the strength 

of locking of the subject to the movement of the wall if the system 
is linear, or of the relative contribution of the linear part of the 

system if the system has non-linear components (Carter 1987). All 
spectra were only evaluated at the driving frequency because there 

were never any peaks at other frequencies in the spectra. All spectra 

were calculated with a Welch procedure (Marple 1987) in order to 

obtain unbiased estimates of the spectra. For the unperturbed trials 
we used 15 overlapping segments each 15 s long and a factor 7 zero 

padding. The MSC depends strongly, the phase and gain very 
weakly on the number of segments (Carter 1987). We only use the 
variation of the MSC with distance and this is independent of the 

number of segments. For the perturbed trials we excluded two cy- 

cles after a perturbation to assure stationarity and for each of the 

remaining four parts we used seven segments and a factor 3 zero 

padding to get approximately the same segment length as in the 

unperturbed case. We always scaled the Fourier-transformed signals 

in such a way that Parseval's theorem would hold, i.e. that the 

power in the original signal and in the Fourier-transformed signal is 

the same. 
Fouriertechniques were also used to determine the amplitude of 

the expansion rate of the stimulus on the optic array of the subject 

(the inverse of time-to-contact). We first calculated a time series of 

the retinal eccentricity of the edge of the stimulus 0 at a distance Z(t) 
by tan 0 = Xo/Z(t ), with X o the distance between the centre and 

edge of the stimulus (physical size). From this we extracted a time 

series of expansion rate by dividing the time derivative of 0 by 0. In 

the terminology of Tresilian (1991) this would be the inverse of 

dilatation tau, denoted by xL (1). This time series of expansion rate, 

being constructed from a difference of two sinusoidal signals (i.e. the 

motion of the wall and of the subject) is itself a sinusoidal signal at 

the same frequency as the drive. As a rough characterization of the 

time series of expansion rate we calculated its amplitude by Fourier- 

transforming it and taking the height of the peak in the spectrum, 

which always occurred at the driving frequency, as the amplitude of 

the expansion rate. 
The dynamic analysis amounted to calculating a discrete time 

series of relative phase (phase of stimulus minus phase of response; 

this definition entails a different sign convention than, for instance, 

that of van Asten 1988a) as follows. From the input and response 

data the significant extrema both of position and velocity traces 

were picked using a peakpicker. Before peakpicking, the data were 

smoothed using a gaussian window with a standard deviation of 

0.25 s. The criterion for significance of an extremum was a fraction 

of the range (i.e. the difference between maximum and minimum) in 

a segment of 5 s before and 5 s after the extremum. An extremum in 

position was accepted as significant when it differed more than 40% 

from the neighbouring extrema. For an extremum in velocity the 

criterion was 70%. We chose these different percentages because 

velocity tended to be somewhat more peaked than position. The 

results depend weakly on the precise values of these percentages. 

From the eight time series of extrema (maxima and minima, both 

position and velocity of both input and response), relative phase 

was calculated with the drive as reference and the response as 

target. This was done by matching each extremum in the reference 

signal to all extrema in the target signal of the same type and within 

half a cycle before and half a cycle after the extremum. A relative 

phase value was calculated by taking the time difference between 

two extrema of the same type and dividing this by the time differ- 

ence between two extrema in the reference signal. As the time value 

of this relative phase we used the time of the target extremum. The 

result of these manipulations are four time series of relative phase: 

maxima and minima of position and velocity. Because these four 

time series were not very different (see Results) we combined these 

time series in one overall time series of relative phase (see Fig. 2 b,d). 
As we have four samples per cycle the mean sampling frequency is 

0.8 Hz. 

For all trials we calculated mean phase and angular deviation 

(Batschelet 1981) from the combined time series of relative phase, 

using circular statistics. Mean phase is a measure of the time delay 

between input and response, and angular deviation is a measure of 
the stability of the response. For the perturbed trims we excluded 
the data points in the two cycles after the perturbation, because 

mean phase and angular deviation are measured for the stationary 

behaviour. The relaxation time, the time it takes the system to 
regain its in-phase behaviour after a perturbation, was estimated as 

follows. We defined a band around the mean of relative phase of the 

unperturbed part of 1.5 times its angular deviation. After a pertur- 

bation the phase generally leaves this band and we calculated relax- 
ation time by fitting an exponential to the points outside the band 

and the first four points inside the band (cf. Fig. 2). The fit was 
implemented by linear regression on the logarithm of the absolute 
phase values. As a rough quality measure of the fit we took the 
explained variance of the fit divided by the angular deviation. If the 
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relative phase did not leave the band or if the quality measure was 
lower than 2, we excluded the perturbation. The relaxation time of 
a trial was the average of the non-excluded relaxation times in a 
trial. This relaxation time depends somewhat on the parameters 
used, but the trend with distance does not depend on them. It 
should be noted that this procedure probably somewhat underesti- 
mates the larger relaxation times: these generally occur for lower 
stability, which means that the band is wider so the system is bound 
to return faster inside the band. 

Subjects 

Four subjects with normal vision or vision corrected to normal and 
normal stereo vision were tested in all conditions. Three of the 
subjects were familiar with the purpose of the experiment. The main 
findings were confirmed by a fifth subject who was naive as to the 
purpose of the experiment. This subject was not tested in all condi- 
tions of the experiment. Subjects were instructed to look at the 
centre of the stimulus and to stand relaxed; they stood on a firm 
stable support in normal Romberg posture. 

Results 

Results were obtained for four subjects whose order of 

presentation will be: G.S., M.G., S.G., C.K. Unless other- 

wise noted, all statistical tests are one-way ANOVAs 

with distance as the independent variable at a signifi- 

cance level of 5%. For post hoc analysis (pairwise com- 

parison) we used the Newman-Keuls procedure (Hays 

1988), also at a significance level of 5%. In order to keep 

the burden down we averaged over subjects, which is 

allowed because the assumption of sphericity was never 

violated (Hays 1988). 
Generally the subjects responded to the sinusoidally 

moving wall with an almost sinusoidM posturM response 

in the fore/aft direction. They did not consciously per- 

ceive visual motion, except for the condition where the 

wall was nearest (25 cm) and at the perturbations. Those 

parts of the trials where the response did not show a clear 

sinusoidal pattern were excluded from the analysis. For 

the four subjects the proport ion of data excluded was 

7%, 22%, 0% and 2%, respectively. Most of these exclu- 

sions occurred in the first few trials after the start of the 

experiment, or after the midway break, and for a suggest- 

ed distance of 100 or 200 cm. We interpret the fact that 

the trials with non-oscillatory parts occurred primarily 

subsequent to a break as a sign of long term adaptation. 

The detailed study of such adaptation effects is, however, 

beyond the scope of this contribution. In relation to the 

linear dynamic model, we note that a decreased oscillato- 

ry response component  is expected at larger distances: 

stability is so low that phase-locked behaviour some- 

times does not occur. 

As a descriptive measure for our data we calculated 

the RMS of the position and velocity signals of subject 

movement in the fore/aft direction. Neither of these 

changed significantly with distance for any of the sub- 

jects. Averaged over all subjects the RMS of the position 

signal at a distance of 200 cm decreased by 13% relative 

to the RMS at 25 cm. For the velocity the decrease was 

only 2%. The other signals (left/right and up/down trans- 

lation of the eye and orientation of the head) showed little 

variation. The left/right translation was by far the largest 

with a RMS of approximately 8 mm. 

The means and angular deviations of the four time 

series of relative phase were generally significantly differ- 

ent as revealed by two-way ANOVAs with distance and 

type (minima or maxima of position or velocity) as inde- 

pendent factors. For an example of this difference see Fig. 

2 b, where the estimates of relative phase after the pertur- 

bation based on velocity are larger than the estimates 

based on position. The differences caused by type were 

not consistent across subjects except that the angular de- 

viation of the relative phase calculated from the velocity 

signals was higher. This is to be expected since velocity is 

derived from the position by differentiation, a noise-en- 

hancing procedure. The ANOVAs revealed no interac- 

tion between type and distance, and as we are interested 

in the effect of distance we combined the four time series. 

Further, after a perturbation the combined time series of 

relative phase generally is nicely approximated by an ex- 

ponential (Fig. 2), indicating that it is reasonable to com- 

bine the individual time series. 

All statistical parameters calculated from the station- 

ary part of the perturbed trials and from the unperturbed 

trials were never significantly different, so the perturba- 

tions did not change the stationary behaviour. Therefore 

we only show the results of the perturbed trims. 

Stability 

In Fig. 3-5 three different measures for the temporal sta- 

bility are plotted. All three indicate a decrease of stability 

with increasing distance. The MSC (Fig. 3) decreases with 

increasing distance. This decrease is significant for sub- 

jects G.S. and S.G. The mean decrease over all subjects 

between 25 cm and 200 cm is approximately 10%. Post 

hoc analysis revealed all pairs of conditions to be signifi- 

cantly different except the 25/50 cm pair. 

The increase in angular deviation of relative phase 

(Fig. 4) is significant for three subjects, but not for subject 

S.G. Also note that the stability across subjects as reflect- 

ed in the angular deviation shows almost exactly the 

same pattern as reflected in the MSC: subjects S.G. and 

C.K. are strongly phase-locked to the stimulus, G.S. is in 

the middle and subject M G  shows the weakest phase 

locking. This is also reflected in the correlation between 

MSC and angular deviation: ~).75, -0 .84 ,  -0 .78  and 

-0 .50 ,  respectively. The mean increase over all subjects 

in angular deviation from 25 cm to 200 cm is approxi- 

mately 45%. Post hoc analysis showed only the 200-cm 

condition to be significantly different from all others. 

The relaxation after a perturbation generally shows a 

clear exponential decay in phase. Figure 2 shows two 

data records and the derived time series of relative phase. 

Figure 2 a is from a trial with a small distance (25 cm) 

between subject and wall and shows a large stability as 

reflected in the fast relaxation after the perturbation and 

in the small angular deviation. Figure 2c is from a trial 

with a large distance (200 cm) between subject and wall 

and shows little stability as reflected in the slow relax- 
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are the time of the perturbation (left vertical line) and the time when 
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ation after the perturbation and in the large angular devi- 

ation. Those cases that did not show this exponential 
decay were excluded. For the four subjects, the propor- 

tion of perturbations excluded was 17%, 44%, 6% and 
6%, respectively. Roughly half of these exclusions were 

caused by non-oscillation, as previously discussed. The 
remaining exclusions almost always occurred for dis- 

tances of 100 and 200 cm, where stability is lowest. The 

exclusion was usually caused by the fact that it took the 
subjects a very long time (longer than 15 s) to return to 

in-phase behaviour. During this period the phase would 
drift considerably, causing our exponential fit to be a 
very bad approximation. The increase in relaxation time 

(Fig. 5) is significant for three subjects, but not for M.G. 
The mean increase over all subjects from 25 cm to 200 cm 
is approximately a factor 2. A separate ANOVA to test 
for an effect of the order of the perturbation within a trial 
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revealed no effect of order on relaxation time. This is 

consistent with the fact that we never found any signifi- 

cant difference in the statistics between perturbed and 

unperturbed trials. Post hoc analysis revealed all pairs of 

conditions to be significantly different except the 25/ 

50 cm pair. 
The theory predicts a covariance between angular de- 

viation squared and relaxation time. Figure 6 gives a 

graphical impression of this covariance. The correlation 

coefficients for the four subjects are 0.67, 0.29, 0.61 and 

0.62, respectively. Only the coefficient of subject M.G. is 

not significantly different from zero. This is probably 
caused by the small number of included relaxations at a 

distance of 2 m (2 out of 12). The temporal stability of this 

subject at this distance is so low that he often failed to 

return to a stable in-phase pattern after a perturbation 
within a few cycles. This of course biases the correlation, 

because we only take the fast relaxations. 

Delay 

In Fig. 7 two different measures for the time delay be- 

tween visual drive and postural response are plotted. In 
Fig. 7a the delay as calculated from the phase spectrum is 

plotted, whereas in Fig. 7b the mean phase difference as 
calculated from the time series of relative phase is shown 

(note that our definition of delay entails a sign conven- 

tion different from that of, for example, van Asten 1988a). 

Both indicate an increase of delay with increasing dis- 

tance. There is a significant effect of distance on both 
measures for three subjects, not for M.G. The correlation 

between delay as calculated from the phase spectrum and 
as calculated from the time series of relative phase are 

large: 0.93, 0.97, 0.99 and 0.98, respectively. This indicates 

that the procedure we used to calculate relative phase 
leads to sound results. Post hoc analysis showed all pairs 

of conditions to be significantly different except the 25/ 

50 cm pair and the 100/200 cm pair. 

Gain and optic flow 

In Fig. 8 the gain is plotted as a function of distance. It 

shows a slight decrease which is significant only for sub- 

ject S.G. Further, the gain is near 1, which means that the 
amplitude of the response of the subjects is the same as 

the amplitude of the drive. Especially for the smaller dis- 

tances, the gain is even larger than 1, indicating over- 
compensation for the perceived ego-motion. Post hoc 

analysis showed that only the 200-cm condition was sig- 
nificantly different from all others. 

Figure 9 shows the amplitude of the expansion rate of 

the visual surround on the optic array of the subject. This 
expansion rate is calculated using the sampled move- 
ments of the subjects relative to the movements of the 

wall and therefore depends on the distance to the wall 
and on the gain and the delay of the response. For refer- 
ence, we also include a curve which gives the expansion 
rate if the subject did not move. The expansion rate de- 
creases significantly for all subjects. Note that while the 
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gain decreases by approximately 20% with increasing 

distance, the expansion rate decreases by approximately 

70%. Post hoc analysis revealed that all conditions were 

significantly different from one another. 

Discussion 

This investigation involved experiments on visually in- 

duced postural sway in which information from the mea- 

sured position of the eyes is fed back to the display com- 

puter in such a way that it generates scenes with realistic 

geometry and consistent depth. Our focus was on the 

temporal relationship between stimulus movement and 

postural response. To characterize this relationship we 

measured the relative phase between sway movement 

and the sinusoidal motion of the visual scene. This pro- 

vides us with a time series characterizing the temporal 

evolution of this relationship. We manipulated visual dis- 

tance because this parameter is predicted to affect the 

temporal stability of the action-perception cycle (Sch6ner 

1991). 
We found an enhanced variability of the timing of 

sway relative to the sinusoidal motion of the visual sur- 

round as the distance to the wall increased. Further we 

found a larger relaxation time after a phase perturbation 

of the sinusoidal motion of the visual surround at larger 

distances. The correlation between the two measures was 

about 0.6. This shows that processes underlying recovery 

f rom perturbations and the processes controlling fluctua- 

tions of the unperturbed action-perception cycle are gov- 

erned by the same temporal stability. In the model of 

Sch6ner there is an exact relation between angular devia- 
tion and relaxation time. Because the systematic change 

in temporal stability induced by our distance manipula- 

tion is not very large compared to the fluctuations in the 

angular deviation and relaxation time (see the large error 
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bars in Figs. 4,5), we cannot, on statistical grounds, ex- 

pect a large correlation between these two stability mea- 

sures. Beyond statistics, we have no firm explanation for 

this low, although significant, correlation. In a separate 

analysis we ruled out one possible explanation by finding 
no significant effect when we tested whether the phase 
value just prior to the perturbation might influence the 

relaxation time. An explanation that remains possible is 

the fact, already mentioned, that the procedure to calcu- 
late the relaxation time may well underestimate relax- 

ation time for higher values of the angular deviation. It 
should be noted that our analysis of relaxation presumes 

the existence of a stable attractor (in-phase behaviour). 
When this attractor is very weak, as in the case of the 

excluded perturbations, one might expect the relaxation 

to be strongly influenced by noise. Thus the fact that we 

had to exclude some of the relaxations when stability is 

low, is qualitatively in agreement with the model�9 Gener- 

ally, such exclusions are conservative with respect to the 

hypothesized decrease in stability. 

The decrease of stability is also reflected in the MSC, 
although somewhat less sensitively. The observed de- 

crease of temporal stability as visual distance increases is 

consistent with the predictions of the model. In the mod- 

el, this decrease is caused by the decrease of the ampli- 
tude of visual expansion rate (also experimentally ob- 

served, see Fig. 9), which leads to a reduced effective cou- 

pling strength of posture to the time structure of visual 

motion. 

Secondly, we showed an increase of the delay between 

sway and visual motion as visual distance is increased. 

This observation is likewise consistent with the model. In 
the model, this effect leads to the hypothesis that the 

eigenfrequency of the sway control system is lower than 

the driving frequency for all subjects. Eigenfrequencies of 
0.2-0.15 Hz have been reported before (van Asten et al. 

1988a). Surprising here is the small range of eigenfre- 
quencies that is compatible with the data: eigenfrequen- 

cies larger than 0.2 Hz lead to a system that has a phase- 

lead relative to the drive, and eigenfrequencies below 0.15 
lead to a steep increase in delay. Only the small range of 

0.16 to 0.19 Hz leads to reasonable results. So despite the 

considerable difference in biomechanics between the sub- 

jects, the eigenfrequency is strongly constrained in this 

experiment. 
Thirdly, there was no significant change of the ampli- 

tude of postural sway as visual distance was varied. Sway 
amplitude always closely matched the amplitude of the 
visual motion. We have found this result before (Dijkstra 
et al. 1992). The slight, non-significant decrease of the 

gain is not by any means as strong as that predicted by 

the model and therefore is quantitatively in contradiction 

with the model�9 From an ecological viewpoint, however, 

this result makes sense: subjects correct their posture by 
matching the amplitude of their egomotion with the visu- 

al motion, irrespective of the distance to the visual sur- 

round. 
Finally, we found that the expansion rate of the visual 

surround on the optic array of the observer was not con- 
stant. This contradicts the hypothesis that the system 
controls posture purely by minimizing the expansion rate 
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of the visual surround (Paulus et al. 1989). For if this were 
the case, the expansion rate would always be at threshold 
and would not depend on distance as we found. Instead, 

this result indicates that the relation between visual mo- 
tion and postural control must be viewed dynamically: 
the postural control system tends to minimize retinal slip, 
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because the slip is smaller than  when the subject does no t  

move.  However ,  this tendency also depends on the dis- 

tance to the stimulus. 

To examine the relationship of  experimental  results 

and  model  more  quantitatively,  we have est imated the 

order  of  magni tude  of  the model  parameters .  Such esti- 

mates  can be based on the observed dependence of  relax- 

a t ion time, mean  and angular  deviat ion of relative phase 

on distance (cf. Eqs. 11, 15 and 17 in Sch6ner  1991). Pro-  

ceeding in this manner ,  we found:  ~ = 0.5 Hz, c0 = 2~ 

0.18 rad/s, Cen~ ---- 50 cm/s. In  Fig. 10 we have plot ted the 

resulting dependences of  the various observables on dis- 

tance. Clearly, ampl i tude is predicted to decrease much  

more  s t rongly than  observed, while all o ther  relation- 

ships are cap tured  quite well. 

It is a general p roper ty  of  driven linear systems that  

the response ampli tude decreases as the coupl ing to the 

driving force decreases. If  we assume (as in Sch6ner  1991), 

that  the visual expansion rate is the driving force, then 

relative t iming stability decreases concomitant ly .  There-  

fore, the fact that  this l inkage of  ampl i tude and stability 

is no t  observed in the present da ta  hints that  the theoret-  

ical picture of  posture  in a visual env i ronment  as a pas- 

sive linear system driven by the expansion rate is no t  

adequate.  Instead, the central  nervous  system might  ac- 

tively generate movement s  (corresponding,  mathemat i -  

cally, to non- l inear  dynamics  possessing limit cycle at- 

tractors) which ma tch  the visual mo t ion  in ampli tude 

and frequency. This active m o v e m e n t  m a y  then be cou- 

pled dynamical ly  to the visual information,  consistent 

with the successful model  predict ions for the t iming as- 

pects of  the data. H o w  compell ing such an alternative 

theoretical  view is will be tested in future experiments by 

manipula t ing  the frequency of  visual mot ion.  
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