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Temporal Surface Tracking using Mesh Evolution

Kiran Varanasi, Andrei Zaharescu, Edmond Boyer, Radu Horaud

LJK - INRIA Rhône-Alpes, France

Abstract. In this paper, we address the problem of surface tracking in multiple

camera environments and over time sequences. In order to fully track a surface

undergoing significant deformations, we cast the problem as a mesh evolution

over time. Such an evolution is driven by 3D displacement fields estimated be-

tween meshes recovered independently at different time frames. Geometric and

photometric information is used to identify a robust set of matching vertices. This

provides a sparse displacement field that is densified over the mesh by Laplacian

diffusion. In contrast to existing approaches that evolve meshes, we do not assume

a known model or a fixed topology. The contribution is a novel mesh evolution

based framework that allows to fully track, over long sequences, an unknown sur-

face encountering deformations, including topological changes. Results on very

challenging and publicly available image based 3D mesh sequences demonstrate

the ability of our framework to efficiently recover surface motions .

1 Introduction

Tracking the surface of moving objects is of central importance when modeling dy-

namic scenes using multiple videos. This key step in the modeling pipeline yields

temporal correspondences which are necessary when considering motion related ap-

plications such as motion capture. Furthermore, it allows recovery of improved and

consistent descriptions of object shapes and appearances.

In this work we address the problem of capturing the evolution of a moving and

deforming surface, in particular moving human bodies, given multiple videos. A large

variety of directions can be followed, depending on the a priori knowledge of the ob-

served shape, on the representation chosen for surfaces and on the information taken

into account for deformations. Model-based approaches assume a known model of the

observed surface, which is tracked over time sequences, hence solving for time cor-

respondences. This model can be locally rigid, e.g [1,2,3], or deformable, e.g. [4,5].

Unfortunately, exact models need to be available, which is seldom the case in general

situations. In particular, the topology of the surface can evolve over time as shown in

Figure 1. As a consequence, approaches in this category are restricted to specific sce-

narios.

In contrast, non model-based approaches try to find displacement fields between

2 different instants in the sequence. In this category, scene flow approaches consider

dense vector fields with various representations including voxels [6,7], implicit rep-

resentations [8] or meshes [9]. However, the associated differential methods are lim-

ited to small displacements between successive frames. Alternatively, feature-based

approaches [10,11,12] consider meshes and allow for larger motions by casting the
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(a) (b) (c)

Fig. 1. An example of a surface for which the topology can hardly be known in advance.

The belt of the dress forms a new protrusion that appears and disappears (a)-(b). (c)

Dense point trajectories computed from (a) to (b)

problem as a labeling between 2 meshes using local geometric or photometric informa-

tion. This labeling solves for partial correspondences between 2 frames only and might

lose efficiency when applied over long sequences, in particular as topological changes

occur. Our objective is different but complementary and targeted at providing full mesh

evolution over time sequences.

Our approach is grounded on the observation that natural surfaces are usually arbi-

trary shaped and difficult to model a priori. In addition, shapes can significantly evolve

over a time sequence. For instance, human bodies are usually covered by clothes whose

topologies can change. To handle such deformations, we use meshes which are mor-

phed from one frame to another. Like feature-based approaches, we use photometric

cues provided by images and geometric cues provided by the recovered meshes. How-

ever, instead of looking for a dense match between the vertices of the 2 meshes, we use

a sparse, but robust set of matches and its associated displacement vector field to drive

a full consistent mesh evolution, with possible topological changes. This approach pro-

vides both a consistent surface evolution over time and dense point trajectories on the

surface.

The framework we propose assumes little about the observed surface, thus relaxing

the constraints for markers, known models or limited deformations and displacements.

It allows for the recovery of trajectories of points, as shown in Figure 1, on a surface un-

dergoing significant deformations including topological changes. Instead of using tra-

ditional Eulerian methods e.g. level sets [13], a major innovation is to cast the problem

within a mesh evolution framework that performs mesh morphing, thereby avoiding

Eulerian limitations such as complexity and inappropriateness for tracking interface

properties, e.g. vector displacements.

The remainder of this paper is organized as follows. Related works are reviewed in

section 2. The proposed approach is outlined in section 3. The recovery of displacement

vector fields is described in section 4 and 5. The mesh deformation is then explained in

section 6. Experimental results obtained with publicly available sequences are shown

in section 7, before concluding in section 8.
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2 Related Work

Surfaces observed in multiple views can be fully tracked through a deformable model,

which is fitted to image related observations, see for instance [14] for a review on 3D

deformable models. This operation appears to be difficult, unless a precise model is

available. This is particularly true with recent works [9,15] that propose to use a laser-

scanned model of the surface prior to tracking. Unfortunately, precise models will not

be available in general situation. Moreover the fixed topology assumption significantly

limits the application domain.

An alternative is to directly estimate surface motions between temporal frames and

a significant effort has been put in that direction over the past years. Scene flow ap-

proaches recover dense motion fields using derivatives of the image signal [6,7,16]. In

[8] this is used within a variational framework to fully track surfaces using level sets. As

noticed in [12], flow-based approaches are nevertheless limited to small displacements,

as a consequence of finite difference approximations of derivatives.

Another class of approaches solve for shape matching. Assume that shape models,

e.g. meshes, can be recovered from images independently over time sequences, using

for instance [17,18,8]. Then temporal correspondences can be obtained through ver-

tex mapping between successive meshes. While providing displacement fields between

frames, temporal correspondences yet only partially solve the problem of surface track-

ing since the transformation that maps a surface onto another remains unknown. Nev-

ertheless, this can be seen as a first step towards full surface tracking. The associated

labeling problem can be solved in various ways. Point based approaches, e.g. [19,20],

register sets of points but do not account for shape information, i.e. mesh connectiv-

ity. More closely related to our framework, numerous mesh based approaches have

been proposed. Some solve for correspondences indirectly through embeddings, e.g.

[21,22,23], with the price of an often difficult intermediate step. Other approaches by-

pass this step and directly seek correspondences between meshes. For instance [10,11]

successfully match 2 different poses of a proper mesh, e.g. a range-scanned model, us-

ing geometric features only. However, these approaches do not easily extend to real ob-

jects’ surfaces recovered from images since the associated meshes can vary drastically

between successive frames and furthermore, their topologies can change. In that case,

photometric cues are advantageously added to geometric features to make the labeling

feasible as in [12]. While allowing for large motions, labeling approaches seek dense

correspondences, which are difficult to obtain on a regular basis over long sequences.

To the best of our knowledge, no previous work has attempted to perform the

full tracking of an unknown mesh undergoing deformations with possibly topologi-

cal changes, using multiple videos. Our method bridges the gap between model-based

and non model-based approaches since we evolve a mesh using temporal correspon-

dences. To this purpose, we build on some of the ideas already used in the approaches

mentioned above. We combine the interest of both photometric and geometric cues for

robust matching [12] with Laplacian diffusion [9] to get a dense displacement field. The

resulting vector field is used to initialize a consistent mesh evolution between succes-

sive frames. To demonstrate the robustness of our scheme, we have used challenging

real data sets with large motion and topological changes.
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(a)

(e)(d) (f) (g)

(c)(b)

Fig. 2. The different consecutive steps of the proposed framework: (a) original meshes

St and Mt+1; (b) features extracted; (c) feature matching; (d) the associated sparse-

displacement; (e)-(f) the dense displacement field after Laplacian diffusion; (g) mesh-

morphing (observe the topological change that takes place around the right arm of the

model - the right elbow de-attaches from the body, creating a genus change).

3 Approach Outline

We consider multiple camera environments and we assume that multiple calibrated

videos of an object with closed surfaces are available. We also assume that 3D mesh

models Mt∈[1..n] of the object at different time instances [1..n] estimated using multi-

view 3D modeling approaches, e.g. [17,18,8], are available. These meshes Mt∈[1..n]

correspond to discrete values of the time continuous mesh St. In order to recover St,

the mapping of St onto Mt+1 is iteratively estimated using the following 3 consecutive

steps, starting with S1 = M1:

1. Sparse match: photometric and geometric cues are used to match a set of points

between St and Mt+1 (see Figure 2-c). Unlike previous approaches, only a sparse

set of correspondences is expected.

2. Motion diffusion: the identified correspondences define a sparse displacement field

over St (cf. figure 2-d). This field is propagated over all vertices by Laplacian

diffusion hence preserving local shape details [24] (cf. Figure 2-e).

3. Mesh evolution: The dense displacement field is applied to the vertices of St yield-

ing a new mesh. The resulting mesh Ŝt is then morphed to Mt+1 by minimizing

the signed distance to Mt+1 (cf. Figure 2-fg). Mesh consistency within the opti-

mization is enforced using [25]. The final optimized mesh defines St+1.
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The Laplacian diffusion allows a partial vertex matching only and yields to a good

estimation of the motion at all vertex locations. Nevertheless, an additional step is re-

quired to guarantee that the resulting mesh fits the observations Mt∈[1..n] and also to

guaranty its correctness, e.g. manifoldness. This is in contrast with the work [9] which

also uses Laplacian diffusion to evolve a reference mesh to the observed posture, but

without refinement and therefore without guaranties. The 3 above steps are detailed in

the following sections.

4 Feature Matching

The primary step of our approach is to obtain a set of good feature matches across the

two frames. In contrast to the labeling approaches mentioned previously, we do not

intend here to produce a dense match over mesh vertices, but only a robust selection.

To this end, we first detect a set of interest points and provide them with a variety

of distinctive features (photometric and geometric). These sets of feature vectors are

then matched across in an exhaustive manner, to compute a preliminary set of potential

matches. The error of the matching is defined in terms of difference between the differ-

ent feature vectors. We employ a two-step minimization procedure (a coarse step will

guide a finer step) in order to avoid local minima. We detail each of these steps in the

following subsections.

4.1 Feature Extraction

For each frame, we are provided with a 3D mesh representation St coupled with a set

of images It
i depicting camera views of the object from different angles.

Image Features. We use corners as image features. If silhouettes are available, we use

them to constrain the features (in practice, we erode the silhouettes by α = 3 pixels

to eliminate the features close to the boundary). The feature points are computed as

maxima of the determinant of the image Hessian matrix. We have chosen Speeded-Up

Robust Features (SURF) [26] as an image descriptors, because of their robustness in

wide-baseline stereo and because of their increased speed of computation due to integral

images. We back-project the detected interest points onto the 3D mesh and assign the

corresponding SURF feature, together with color features, i.e. hue, saturation and value

(HSV). The color for the 3-D point is calculated as the median color in the visible

cameras. Figure 3-a illustrates the distribution of the feature points over a sample 3D

mesh.

Mesh Features. Geodesic distances between mesh points offer crucial information in

matching non rigid shapes. We use a feature called the normalized geodesic integral

[27], which is defined as:

µ(V ) =

∫

P∈S

G(V, P )dS , µn(V ) =
µ(V ) − MinP∈Sµ(P )

MaxP∈Sµ(P )
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where G(V, P ) denotes the geodesic distance between the points P and V and µ(V )
is defined as the sum of the geodesic distances from V to all points on S. After nor-

malization, µn(V ) provides a continuous function whose value indicates the apparent

nearness of a point to the center of the object. Its maxima will correspond to the ex-

tremities of the object. Figure 3-b illustrates the distribution of this function over the

sample 3D mesh.

(a) (b) (c)

Fig. 3. (a) SURF feature points back-projected onto the 3D mesh (b) The geodesic in-

tegral function over the 3D mesh (c) Surface Protrusions detected as the maxima of the

geodesic integral - the left figure has a collapsed protrusion

4.2 Coarse Matching by Surface Protrusions

We proceed to identify the extrema of the geodesic integral µn(v). This is done by

simply imposing a threshold on the value of µn(v) and selecting the points on the mesh

that lie above this threshold. Such points lie in compact clusters, typically corresponding

to the different protrusions of the object. As shown in Figure 3-c, between time-frames,

some of these protrusions collapse onto the surface inducing changes in the topology of

the mesh. We will devise an algorithm whose goal is to correctly detect the topological

changes and match the extrema accordingly.

We select the local extremum of the function µn(v) as representative for each clus-

ter. The extent of each protrusion is defined by a local geodesic neighborhood from

the representative point. We assign a feature to the protrusion based on color distribu-

tion in this region. This is a highly distinctive feature defined on a large neighborhood.

These features can be visualized as in Figure (4- a). We now proceed to match each

of these protrusions uniquely across the two frames. This problem is formulated as an

error minimization problem with the following error:

E =
∑

i

Ψ(Xt
i , X

t+1
i ) +

∑

i,j

|G(Xt
i , X

t
j) − G(Xt+1

i , Xt+1
j )|

where Xt+1
i denotes the match of a protrusion Xt

i , Ψ(Xt
i , X

t+1
i ) denotes the error

computed through color features and G(Xi, Xj) denotes the geodesic distance between
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(a) (b) (c)

Fig. 4. (a) Color features computed on surface protrusions (b) The surface clustered

into regions based on color (c) Surface protrusions matched with each other. Note that

even the collapsed protrusion is matched correctly.

the protrusions Xi and Xj . Since the number of detected protrusions is typically very

small, we proceed to do an exhaustive search to solve the matching problem.

In the particular case of tracking adjacent frames, we add an additional term ||Xt
i −

Xt+1
i || in the error, which denotes the Euclidean distance between the two matched

protrusions. This means that the two matched protrusions are not too far from each

other - a strong but valid assumption in our case. This helps the algorithm in resolving

issues raised by symmetry (such as between the two hands, or between the two legs).

For a human body in a normal condition, the number of protrusions are 5 (head +

2 hands + 2 legs). When there is a collapse (hand/leg touching a part of the body), the

number of detected protrusions will be 4 or lesser. There will be an implicit mismatch

in the number of protrusions detected, and this will be detected trivially. The corre-

spondences of such collapsed protrusions will be left without a match in the previous

minimization step. It should be noted that such collapses will not damage the geodesic

distances between protrusions which did not collapse themselves. In this way, we effi-

ciently use the geodesic distances only where they are meaningful.

To handle collapsed protrusions, we cluster the target surface region based on color,

and select the most appropriate cluster based on the error Ψ(Xt
i , X

t+1
i ) (or Ψ(Xt

i , X
t+1
i )+

||Xt
i − Xt+1

i ||) for adjacent frames. The surface regions clustered according to color

are shown in Figure 4-b. The result of the matching is shown in Figure 4-c.

4.3 Fine Matching by Feature Points

The previous step provides a good initialization to perform feature matching at a finer

level. We intend to produce a selection of feature matches that are representative of the

surface and that are mutually consistent with each other. We define an error function

based on color, SURF features and the array of geodesic distances of the feature points

from each of the protrusions which are matched successfully in the above step (without

collapse). We select a set of best features P t
i , P t+1

i based on this error, and prune this

further to impose mutual spatial consistency.

If two feature points P t
1 , P t

2 are found to be geodesically near to each other, we

connect them by a link which encodes the Euclidean length |
−−−→
P t

1P t
2 | of the line joining
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the two points, and the angles it makes with the normals P̂ t
1 , P̂ t

2 at both the ends. Then

the two pairs of matches (P t
1 , P t+1

1 ) and (P2, P
t+1
2 ) are checked for mutual spatial

consistency in terms of the elastic stretch (γs) and twist (γt1, γt2) of the link, defined

as:

γs = Γs(|
−−−→
P t

1P t
2 | − |

−−−−−−→
P t+1

1 P t+1
2 |)

γt1 = Γt(θ(
−−−→
P t

1P t
2 , P̂ t

1) − θ(
−−−−−−→
P t+1

1 P t+1
2 , ˆP t+1

1 ))

γt2 = Γt(θ(
−−−→
P t

1P t
2 , P̂ t

2) − θ(
−−−−−−→
P t+1

1 P t+1
2 , ˆP t+1

2 ))

where θ(v1, v2) denotes the angle between two vectors, and Γs, Γt denote two

Gaussian penalty functions.

Furthermore, pairs are checked for parity in order (ρ1) and orientation (ρ2) with

respect to the nearest matched protrusion (Xt, Xt+1), and defined as:

ρ1 : Sign(|
−−−→
P t

1X
t| − |

−−−→
P t

2Xt|) = Sign(|
−−−−−−−→
P t+1

1 Xt+1| − |
−−−−−−−→
P t+1

2 Xt+1|)

ρ2 : θ(
−−−→
P t

1Xt ×
−−−→
P t

2Xt,
−−−−−−−→
P t+1

1 Xt+1 ×
−−−−−−−→
P t+1

2 Xt+1) < 180◦

An example of the set of identified feature matches is shown in Figure 5-a.

(a) (b)

Fig. 5. (a) The set of identified feature matches (b) The dense motion field computed

by Laplacian diffusion.

5 Motion Diffusion

The feature matches computed as above provide the initialization for the transformation

of the mesh. We propagate them across the entire mesh by Laplacian diffusion.

5.1 Approach

The geometric Laplacian operator is a way of encoding the local curvature of the mesh.

This has proven to be useful in a variety of mesh applications [24], such as interactive

mesh editing. This operator provides an efficient approach to deform the mesh while
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preserving the local shape information. If NV is the number of vertices, the Laplacian

matrix L of size NV × NV is defined by these equations

L(i, j) = wt(i, j) ∀j∈N(i)

L(i, j) = 0 ∀j /∈N(i)

L(i, i) = −1 ∗
∑

j∈N(i) wt(i, j)

where N(i) is the set of vertices sharing an edge with the vertex i, and wt(i, j)
is the weight of the edge as defined by mean-value coordinates [24]. We compute the

differential coordinates of the mesh at time t into three vectors δXt, δY t and δZt,

where δXt = L ∗ Xt (similarly for δY t, δZt).

The feature matches computed earlier as initialization, we now define 3 matrices

Lx, Ly and Lz , corresponding to the three dimensions X , Y and Z . If the number of

feature matches is NF , these matrices shall be of order (NV + NF ) × NV . The first

NV rows shall be identical to the L matrix. The later rows are defined by constraints

(∀i ∈ {features}) (similarly for Ly , Lz):

Lx(i, j) = 0 ∀j 6= i

Lx(i, i) = λ

where λ is a weighting factor we set to 4000.

Similar to the matrix Lx, we append the vector δXt by adding NF new elements

{λ∗Xt+1
F } where Xt+1

F are the X-coordinates of the feature matches in the frame t+1.

The diffusion of the matches is done as a matrix inversion.

Xt+1 = (L⊤
x Lx)−1L⊤

x ∗ δXt

The matrix Lx being extremely sparse, this inversion can be efficiently implemented

using Cholesky factorization.

Thus we propagate the mesh St via Laplacian diffusion to Ŝt. An example of the

dense motion field obtained from a sparse set of feature matches is shown in Figure 5-b.

In [9] the Laplacian operator is also used to diffuse motion information over meshes.

However, motion is limited to rotation since flow information is considered. In contrast,

we propagate full displacement vectors as obtained by matching feature points between

Ŝt and the observed mesh Mt+1 .

6 Mesh Deformation

The matching and diffusion steps presented in the previous sections provide us with

a dense displacement field over the mesh St. As mentioned before, such motion field

is a good estimate of the true motion field between time t and t + 1. However, it will

not guarantee the exact overlap with the mesh observed at t + 1, i.e. Mt+1, nor the

correctness of the resulting mesh. Therefore, a final step is needed in order to ensure

both convergence to the observations and correctness. Our approach is motivated by

the fact that the solution mesh Mt+1 and the propagated Laplacian mesh Ŝt are dif-

ferent, but nearby. Thus a solution is to perform surface-morphing, that is starting from

the source surface, i.e. Ŝt, and evolving it towards the destination surface Mt+1. To
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this purpose, we have used [25] as an explicit surface evolution approach which han-

dles self-intersections and topological changes and guarantees correctness. To drive the

surface evolution, we adopt here a simple morphing scheme introduced in [28] and

described below.

6.1 Approach

Consider an open set OA ⊂ R
3 representing the source object, enclosed by surface

SA = ∂OA, and similarly the open set OB ⊂ R
3 representing the target object, en-

closed by SB = ∂OB . Consider the signed distance uB of SB , as defined by:

uB(x) =

{

−d(x, SB) ∀x ⊂ OB ,

d(x, SB) otherwise,
(1)

where d(x, y) is the Euclidean distance between x and y in R
3. Following [28], the sur-

face motion that maximizes the overlap between the morphed object and SB is defined

by:
∂S

∂t
= −uB(x)N(x), (2)

where x is a point on the surface S and N(x) is the normal to S at x. The strategy

described above will converge to the desired solution if the surface of departure SA and

the destination surface SB overlap.

6.2 Discussion

In a few cases, certain tracks are temporarily lost, due to the non-overlap of certain parts

of the surface between the propagated Laplacian and the next frame. Such an example

can be observed in Figure 6-f, where the left hand had the fist properly propagated (due

to the protrusion region matching), but not the forearm (due to the lack of features). This

caused the signed distance function based evolution to collapse a sub-part of the forearm

and regrow it from the upper-arm and the fist. These rare cases can be addressed by

interpolating the trajectories from the neighboring vertices which are tracked correctly.

If we are not satisfied with the propagated Laplacian, we can also try to increase the

number of the matches by exploring the neighborhoods of the sparse matches detected

by our method. These increased matches are then diffused in a similar fashion using

the mesh Laplacian. At a minor additional computational cost, this process produces a

better initialization for the mesh deformation step.

Another remark is that instead of surface morphing, one could also consider other

functions. One such choice is multi-view stereo photo-consistency. We have experi-

mented with such a distance function [8], observing that the optimizer could not easily

handle situations where the source mesh is relatively far from the destination mesh.

This is in part due to its coarse to fine nature. Another benefit of the mesh morphing

approach is that, assuming there is some overlap between the source Ŝt and the desti-

nation Mt+1 meshes, it is guaranteed that the approach will converge, with potential

topological changes. In addition, every vertex will reach the destination mesh. Once

reached, it will neither move nor oscillate.
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7 Results

7.1 Qualitative Evaluation

(a) pop2lock : frames 20-40 (b) pop2lock : frames 78-87 (c) flashkick : frames 50-60

(d) dance-2 : frames 567-582 (e) dance-2 : frames 620-635 (f) dance-2 : frames 607-622

Fig. 6. The tracked trajectories are presented in a color coded scheme where cooler

colors represent earlier frames. On top the pop2lock and flashkick sequences (Univ. of

Surrey) and bottom the dance-2 sequence (INRIA).

For our evaluation we have been using sequences from two sources: the dance-1

(used to exemplify the method) and the dance-2 sequences are available publicly on

our website 1. The pop2lock and flashkick sequences were made available to us by the

Surface Motion Capture project at the University of Surrey [29].

The pop2lock sequence provides us with full 3-D reconstruction results, together

with the camera calibration, input images and silhouettes, using 8 cameras (1920x1080).

The dance-2 sequence is captured using 8 cameras (780x582). For this last sequence we

decided to test the limits of the algorithm. We have used rougher 3-D surfaces approxi-

mation obtained via a fast visual hull reconstruction (exclusively based on silhouettes).

Despite their coarse nature and topological changes, we still obtain consistent point tra-

jectories. We ensured proper mesh sampling via edge collapses and edge swaps, such

that each edge is around 3 pixels when projected onto the image (pop2lock meshes -

12,000 vertices; dance-2 - 3,000 vertices). Coarser meshes were used for computing

geodesics (1,500 vertices).

Our results are presented in Figure 6, with a close-up of a topological change il-

lustrated in Figure 7. The tracks are color-coded, where cooler colors represent earlier

frames. Additional convincing results are provided as a video 2, the natural way of dis-

playing temporal information.

1 https://charibdis.inrialpes.fr/html/sequences.php
2 https://perception.inrialpes.fr/Publications/2008/VZBH08/ECCV08.mp4
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Fig. 7. Mesh deformation over topological change (from left to right): initialization;

intermediate step; final step; Overall algorithm behavior (sparse set of matches shown

only for ease of visualization purposes).

We were able to successfully track without problems long sequences of over 100

frames with large inter-frame shifts. The running times are satisfactory, depending a lot

on the mesh density and the number of images used within each frame. As an exam-

ple, in the dance-2 sequence, an inter-frame surface tracking is produced in about 30

seconds, whereas for the pop2lock dataset, it takes about 2.5 minutes.

7.2 Numerical Evaluation
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Fig. 8. Numerical Evaluation : (a) Example mesh with texture (b) Computed trajectories

(c) Error over the sequence

Lack of proper ground truth makes quantitative assessment of 3D tracking algo-

rithms difficult. A manual labeling could be inconsistent because the accuracy of the

tracks needs to be measured with high precision. Due to the absence of real world test

data, we evaluated the trajectories of our algorithm against known deformations of a 3D

graphical model. We used an artificially textured female humanoid model (figure 8-a),

and the multi-view video is captured using a 16 camera setup. An example trajectory

computed by our algorithm is visualized in figure 8-b.
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We evaluated the error in point trajectories with respect to the average edge length,

which defines the resolution for temporal correspondences. Figure 8-c shows such er-

rors for 600 points randomly distributed over the mesh and as obtained with independent

estimations of the surface evolutions between frames. We observe that the error is less

than half the average edge length after 50 frames. In the same duration, the average true

deformation encountered by each point is about 10 times the average edge length. Thus

we stay within reasonable limits of accuracy in producing our tracks.

8 Conclusion

In conclusion, we have presented a robust algorithm for temporal mesh tracking that

incorporates the following key ingredients: it uses both geometric and photometric in-

formation in a coarse to fine fashion in order to efficiently solve for a sparse set of

matches; it uses Laplacian propagation to obtain a dense match set; it ensures proper

evolution using a mesh-morphing approach that is capable of dealing with topological

changes. Thus, we are able to perform surface tracking with large displacements of

surfaces with topological changes over long sequences in the context of multiple cam-

era environments. In addition, our algorithm performs gracefully even when provided

with inexact surfaces. For future work, we are considering real time motion capture sys-

tems, improvements of surface recovery, and reducing the drift in trajectories by time

integration.
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