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Chapter 1

Introduction

1.1 What are temporal textures?

Temporal textures are textures with motion. Examples of temporal textures are wavy
water, rising smoke, leaves or grass rippling in the wind, flocks of birds circling in
the sky, or a crowd of people milling about. Temporal texture has been defined
more precisely by Polana and Nelson [34] as motion patterns of indeterminate spatial
and temporal extent. This is in contrast to activities, which are temporally periodic
but spatially restricted. A person walking or swimming, or the spinning wheels of a
machine, are examples of activities. A third class of motions are motion events which
are single motions that do not repeat spatially or temporally. This class includes
motions such as opening a door, lifting a briefcase, or throwing a ball.

An alternative characterization of temporal textures is based on the types of physi-
cal deformations occurring during the motion [1]. The simplest type of motion is rigid
motion, which involves no deformation at all. All distances and angles of the moving
object are preserved. This area has been extensively studied in the field of structure
from motion, and other fields in machine vision. Rigid motion can be generalized
by connecting several rigid objects together. Now, articulated motion is produced
when the rigid parts move non-rigidly with respect to each other. This is useful for
approximating human motion using stick figures. If we continue relaxing the con-

straints, we obtain elastic motion, which is any continuous, smooth motion allowing
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Iiaure 1-1: Two familiar temporal textures: wavy water and steam. displaved in an
XVt volume,

deformations. Manyv temporal textures are of this form. However. textures <uch as
nrrbulent water and sases belong 1o the least restricted class of motions. called fludd
mntron,

The world i< full of motion. and there are numerons phenomena that do not fall
imto anv of the categories mentioned <o far. but can <till be treated as temporal
textures. One example is motion induced textures. Even a rigid landscape moving
with a <imple translational motion can ~eem like a textire when the observer i~ sitting
i train and gazing throngh the window. Alternativelv. walk throngh a forest and
look towards the skyv to see the elittering patterns of light findine their way thronels
the leal-work. Temporal textures can also be created simply by amassing objects:
flocks of geese. swarms of bees. and popeorn popping in the oven.

In todav’s modern urban “desert<™ and office landscapes. temporal textures are
less common than in nature. Perhaps 1t i< the lack of natural motion that explaims
their dull, Tifeless image?  Nevertheless. technology has enabled us 1o create new.
artilicial temporal textures such as fountains. Hags. fireworks and even indoor water-
fall<. Thiman heines are fond of motion patterns. as judged by video games and screen
~avers showine wandering ants. schools of fish. explosions. or the evolving populations
in Conwayv's game of life. Hopefuliv, tomorrow’s environment will contain even more

motion. more temporal textures, and be more stimulating to our perceptual svsten.
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1.2 Modeling temporal textures

Temporal textures are prevalent in nature. How would a bird survive unless it could
distinguish the wind-blown trees from an approaching predator? When we look out
on a stormy ocean on a foggy day, and a chaos of rapidly changing, blurry grey light
strikes our retina, what does the human visual system do? These questions have
not been extensively studied and remain unanswered. Despite the omnipresence of
temporal textures, most machine vision research regard them as “noise” that should
be avoided, since many algorithms do not consider such cases, and as a consequence,

fail miserably.

1.2.1 Objectives

In this thesis, the goal is to model temporal textures. We must find a representation
that can capture both the spatial and temporal aspects of the textures. The model
must be applicable for recognition tasks, such as identifying a given video sequence
as belonging to the wavy water class. It should also be useful for segmentation, in
other words, for partitioning a video sequence into homogeneous regions.

I believe that the spatio-temporal autoregressive model developed here is capable
of representing a wide range of temporal textures. It models each pixel as a linear
combination of neighboring pixels in space and time. It is a three-dimensional ex-
tension of autoregressive models that have been used with great success in one and
two dimensions. The quality of the modeling can be judged by examining synthetic

temporal textures produced by it.

1.3 Motivation

Motion and temporal textures are important from a perceptual point of view. Many
animals are blind to anything that does not move. Motion is typically the first thing
attended to in most perceptual systems. For some creatures certain motion patterns

trigger specific actions. For example, divergent flow activates a landing response in
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houseflies [29]. It is probably easier for human beings to recognize an image sequence
of a temporal texture, rather than to recognize a single still image of the same texture.
In fact, still images are totally artificial in that they either require an apparatus that
can capture light at an instant, or the interpretation of an artist. Thus, temporal
textures pose a problem in their own right, and cannot be subsumed under still-image
texture techniques.

From an applications point of view, the major motivation for working on temporal
textures is the advent of large video databases. Hundreds of thousands of hours of
video are available in digital form, and there are currently very few ways of retrieving
a sequence based on its visual contents. Models of temporal textures are necessary
for searching through such databases [33].

Nevertheless, there has been very little research on temporal textures in the con-
text of recognition and segmentation. The reason is that such research was impos-
sible only a few years ago, since video sequences contain orders of magnitude more
data than single images. As a result, sequences require orders of magnitude more
computational resources such as RAM memory, disk storage, processing power and
bandwidth.

Today, the resources are available, and there is a continent of uncharted territory
that is ripe for exploration. The texture field is very cross-disciplinary, drawing
ideas from time series analysis, system identification, machine learning and neural
networks, statistics, dynamical systems, image processing, machine vision and visual
perception. Many of these disciplines have seen a boom in recent years. Research
on the temporal texture field in particular will shed light on the closely related areas
of three-dimensional texture modeling (such as medical imagery) and also on regular

two-dimensional textures.

1.4 Applications

Applications of temporal texture research can be divided into the areas of recogni-

tion, segmentation and synthesis. Recognition tasks include the detection of specific
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textures, such as smoke or fire. Traditional smoke detectors are based on the physical
or chemical properties of smoke. However, to prevent forest fires, we would like to
monitor large areas remotely. With temporal texture models, we can detect smoke
and fire using purely optical means by placing a camera on top of a hill or in a
satellite. Another detection task can help to locate people in boat accidents, since it
is difficult for humans to spot survivors in the sea. Other surveillance applications
require that we ignore certain motions but attend to others. For example, waving
trees should not set off burglar alarms. The most general recognition application
is the video database query task mentioned previously. This task is difficult, since
the image sequences are unconstrained and contain many things other than temporal
textures. Some segmentation is required, and will be discussed next.

Segmentation can find the statistically similar regions in the video database query
task. A natural decomposition of video is the layered representation used by Wang
and Adelson [42]. The segmentation is based on clustering an affine flow field of the
scene. Unfortunately, the flow fields of most temporal textures are very complicated,
and will not cluster well. Instead of using the affine flow, we could handle such cases
by clustering the temporal texture features extracted by the model.

Segmentation is also very useful for three-dimensional textures found in medical
applications (note that temporal textures are three-dimensional textures with the
third dimension set to time). When cbtaining a computer tomography (CT) or mag-
netic resonance (MRI) scan of a brain, we would like to measure the volume cccupied
by different tissues or tumors. Another application is to measure the strength of
bones frem high-resolution CT scans to diagnose osteoporosis [11].

Apart from doing recognition and segmentation, we can also generate synthetic
temporal texture sequences based on the model. Currently, computer graphics re-
searchers spend great efforts on developing specialized models for particular textures
such as fire [30]. A synthetic temporal texture model is much easier to construct:
given a video clip of the desired texture, compute the texture parameiers, and syn-
thesize the result. A temporal texture model probably does not have as convenient

“control knobs” as does a well-designed computer graphics model, so that changing
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the appearance of a synthetic fire would require trial and error. Nevertheless, the
temporal texture model is perfect for applications such as data compression, where
we want to recreate a given arbitrary texture with as few parameters as possible.
Synthetic temporal textures would also be useful in design applications, such as for

customizable screen-savers.
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Chapter 2

Relevant Work

2.1 Introduction

Temporal texture research is based on ideas from many fields; perhaps the most
relevant ones are machine vision, image processing, time series analysis and computer
graphics. These fields have different approaches, goals and nomenclature. It is helpful
to classify them according to whether the main objective is recognition, representation

or synthesis of temporal textures.

® Recognition. This is often the goal in machine vision. The techniques are
based on features optimized for discrimination rather than for representation,
and they are usually insufficient for performing synthesis. Many techniques for

image database query fall into this class.

® Representation. Statistical models, such as Markov random fields, model the
interrelationships between pixels. Likewise, in time series analysis, the task is

to discover the structure of the series and to predict future values.

o Synthesis. In computer graphics, the objective is to generate a realistic image
sequence. The model need not be acquired automatically from video footage;
it can be designed by hand for a particular texture. It is important that the

model is intuitive to manipulate so that the desired look is obtained.
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The spatio-temporal autoregressive model developed in this thesis falls into the
representation category. Fortunately, there is significant overlap among the three
goals. For example, models which can represent a texture well can usually be used
to synthesize that texture. By virtue of preserving perceptually relevant information,
this representation can be used for anything we could do using the original texture.
Thus, recognition can be done either directly based on the parameters, or trivially by
first synthesizing the represented texture and then performing recognition.

Techniques that aim to do recognition must be benchmarked especially carefully.
Unless the data set is very large, the recognition algorithm may seem to perform
well, but in fact may be recognizing the wrong attributes. The problem is that the
algorithm is not grouping the textures according to perceptual qualities, but rather
according to some coincidental similarities. Techniques that can be used both for
recognition and synthesis (such as the autoregressive model) are less likely to fall into
this trap, since the synthesis will reveal whether the model has captured the relevant
perceptual qualities. Due to the current lack of large test sets of temporal textures
(my test set is of size 10, and is the largest test set used so far), perfect recognition
would be easy to achieve. A much more difficult goal is perceptually similar synthesis.
Therefore, the evaluation in this thesis is based on synthesis. I will still describe the

research done in the recognition aspects of temporal textures below.

2.2 Recognition of Motion and Temporal Tex-
tures

Researchers in machine vision have traditionally attempted to do object recognition
using low-level features such as edges, junctions or points of maximum curvature.
Temporal texture recognition is different from object recognition in that there may
be a large number of small, independently moving parts, or no discernible parts at
all. The low-level features used must be based on the statistics of a large number of
points, rather than on individual edges. This is the approach followed by many of
the methods below.

18



Another issue is the domain in which the features are extracted. Nelson and
Polana [29] compute features based on the normal component of optical flow. Thus,
their recognition is based solely on motion. They argue that visual signals contain
more information than is necessary for recognition, and that from a functional point
of view, as much information as possible should be discarded. This has the added
advantage that the remaining signal is invariant to irrelevant properties, such as il-
lumination or color. In the case of optical flow, the signal is also more directly
meaningful than the original gray level input, since a flow vector (e.g. “downward
motion”) is more informative than a grey level value by itself. The disadvantage of
basing the features on optical flow is that we may have discarded too much informa-
tion. The optical flow is also inaccurate for most temporal textures, as it is based on
the assumption of translating pixels that do not change in intensity, which is more
accurate for object motion.

Nelson and Polana use four features on the normal component of the optical flow.
The first feature measures the directional nonuniformity. A histogram describing
the magnitude of motion in eight directions is determined, then its deviation from
a uniform distribution is computed. The second feature measures the peakiness of
the velocity distribution, and is simply the average motion magnitude divided by its
standard deviation (also known as the inverse coefficient of variation). The third
feature describes the distribution of directions. First, a cooccurrence matrix of four
motion directions is computed, at a lag proportional to the average motion magnitude.
In each direction, the number of pixel pairs that have a motion direction that differs
by at most one is divided bv the number of pixels that have a motion direction
that differs by more than one. Four subfeatures are obtained. The fourth feature
is the average positive and negative curl and divergence. In a recognition task with
seven temporal textures, the third and fourth features achieve 100% discrimination
by themselves.

One important assumption made in the above discussion is that the image has
been segmented into homogeneous temporal texture regions. Segmentation becomes

even more important when we characterize the motion of objects with determinate
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spatial extent. Usually, it is also necessary to normalize the size of the object and to
normalize the time scale of the motion, so that matching with a model can proceed.
Segmentation and normalization can be based on static image cues and be done
independently of the motion characterization, but can also benefit from motion cues.

An example of segmentation and normalization using motion is given by Allmen
and Dyer [2]. They find spatio-temporal curves that are tangent to the optical flow
at each frame. Intuitively, these curves trace out the position of a specific point in
space-time. They can be computed directly from the optical flow using the Runge-
Kutta approximation method for differential equations. The points belonging to an
object have interdependent motions, so the spatio-temporal curves are related. The
slope and curvature is computed at each frame, and then curves with similar values
are clustered. Each cluster is likely to correspond to an object. After obtaining this
segmentation of the image, Allmen and Dyer propose to examine the curvature in
scale-space. They desire to distinguish between the relative and common motion
of the parts of an object. Unfortunately, only synthetic images were used in their
experiment. In practice, it is difficult to track points through an image sequence,
because of occlusion and noise.

Spatio-temporal curves can also be used to characterize periodic motions. Nelson
and Polana [35] track objects using the centroid of the moving pixels in the frame.
The size and the position of the object is normalized. The bounding box of the object
is divided into square cells and the motion magnitude in each cell is summed. The
idea is to use the motion magnitudes as features. If the motion is periodic, the motion
magnitude of a cell will have a periodic pattern. For each cell, Fourier analysis is used
to measure the degree of periodicity and the period of the motion. A feature vector
is constructed from the motion magnitudes of the cells for several frames of a cycle.
Different motions such as walking, running, and swinging can be recognized using a
nearest centroid classifier.

Seitz and Dyer [38] suggest that purely temporal information can be used for
the analysis of cyclic motion. The variation in the period can be characteristic for

a motion, and can be described by the shortest and the longest cycle times, cyclic
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acceleration and points of irregularity. Seitz and Dyer demonstrate how to determine
the instantaneous period, which is the interval from a given time ¢ until the cycle
reaches the same phase again. To determine whether the phase is the same in two
frames, the mean-squared pixel intensity difference can be used if the view-point is
fixed. This crude technique works for a sequence of X-rays of the heart. However, a
view-point invariant match function must be used when the camera is moving.
Several other low-level characterizations of motion exist in the literature. Inter-
esting motion events can be extracted from the spatio-temporal curves. For example,
discontinuities of the curves and its derivatives indicate that the motion changed

direction [8]. The spatio-temporal motion energy can be used as a feature [16, 3].

2.3 Representation

A multitude of statistical methods have been developed for spatial data; however,
only a few of them have been generalized to spatio-temporal data. Below, we will
review a few texture models including autoregressive models and a fractal model. For
a more extensive survey, see [41, 15, 44, 40].

Autoregressive models have been used extensively for spatial data, and the most
popular version is abbreviated SAR (simultaneous autoregression). Autoregressive
models express each data point as a linear combination of neighboring points plus a
white noise term. By allowing the noise to be correlated according to a linear com-
bination of other values, we obtain the more general mixed autoregressive moving
average model (ARMA). Mathematical definitions will be given in chapter 3. Here I
would like to mention a modern variant of these models. Mao and Jain [27] suggest
how to construct a rotationally invariant SAR model. Rotation invariance can be
achieved by associating each parameter with a neighborhood that is averaged around
a circle. They also construct a multi-scale model by estimating multiple SAR mod-
els. Each model has the same neighbor topology but the neighbors are at different
distances from the predicted location. Unfortunately, the parameter estimation tech-

nique used by the authors is biased; specifically the least-squares estimator is applied
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for noncausal neighborhoods, which yields biased estimates [9].

ARMA models have been generalized for spatio-temporal data [6]. The general-
ization amounts to using spatio-temporal neighborhoods. For example, Pfeifer and
Deutsch [32] model the number of arrests in 14 Boston police districts over 72 months.
Each district has a neighbor computed as the average of the adjacent districts at the
previous time step. The authors identify a spatio-temporal ARMA model by exam-
ining the autocorrelation and partial autocorrelation functions. Parameters are esti-
mated using the Marquardt nonlinear optimization algorithm with a locally linearized
least-squares cost function. In subsequent work [31], they study the autocorrelation
function patterns for a few low-order models. Throughout, the neighborhoods include
only elements from previous times; hence, there are no purely spatial neighbors. This
restriction is an easy way to ensure causality and to create spatially symmetric neigh-
borhoods. However, it is beneficial to include data from the same time step, since
this data is usually highly correlated. In both studies, the authors use very small
neighborhoods with only 1 or 2 parameters. This is perhaps adequate for prediction
in their 1008 point data set. However, the requirements are quite different for image
sequences with 10% to 107 pixels, and long distance correlations.

Heeger and Pentland [17] describe a fractal model for turbulent flow. Fractals are
characterized by self-similarity across scales, which determines the fractal dimension.
Turbulent phenomena such as clouds exhibit fractal scaling for ranges from .16 to 1000
km. The authors apply Gabor filters to determine the fractal scaling parameter (which
is simply related to the fractal dimension). If the scaling parameter is consistent
across different scales, then the region is likely to be a fractal. In this fashion, we can
recognize turbulent flow, such as the wake behind a boat. Synthesis is also possible
using Brownian fractals. Sequences of moving clouds, fluttering tree leaves and other

turbulent flows have been generated with fractal models.
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2.4 Synthesis

Fire and water are two temporal textures of great interest in computer graphics.
Their uses include realistic flight simulators and special effects for the movie industry.
General references are [43, 7].

Perry and Picard [30] present a modified particle system for fire synthesis. The
particles are polygons made up of triangles with a common vertex, arranged to
get a roughly elliptical shape. Each triangle is Gouraud shaded and can be semi-
transparent. A flame is constructed by integrating the light from a single particle
over a 25 step trajectory. The color, transparency and size of the triangles changes
along the path. To create realistic dynamics, the convection currents and an external
wind field are modeled. The synthetic fire model also incorporates material properties
and will spread in a physically-based way. Other gaseous phenomena such as smoke
and clouds can be simulated using particle systems as well [39, 5].

Kung and Richards [21] synthesize dynamic water. The water surface is modeled
as a sum of squared sine waves in two dimensions, with slowly varying wavelengths.
Motion is introduced by changing the phase of the sinusoids for different times. The
sun 1s not included in the model. Instead, the illumination comes entirely from the
sky, which is represented as a hemispheric light source. The reflectance function relies
mainly on the Fresnel reflectance term. The goal of the authors is not just to perform
synthesis, but also to understand how people infer water from an image. To this
end, they describe a characteristic feature for water: “a very elongated, horizontal
elliptical-like blob having cusped end-points at its extremal viewing positions.” (p.

233).

23



24



Chapter 3

The STAR model

3.1 Introduction

Autoregressive models have been successfully fit not only for time series, but also for
spatial data, such as images of textures. This thesis demonstrates that they can be
used for spatio-temporal modeling as well.

I propose to model image sequences of moving textures using spatio-temporal
autoregressive models (STAR). These models are three-dimensional versions of the
regular AR model. Every pixel is modeled as a linear combination of neighboring
pixels in time and space plus a noise term. Many techniques from one-dimensional
AR models are applicable to three-dimensional models as well.

Here, I examine only linear models. Nonlinear models can be obtained by regress-
ing each pixel on products of neighboring pixels. These nonlinear models can describe
a wider class of phenomena, but are often very expensive computationally. In any

case, it is good practice to try a linear model before proceeding to nonlinear models.

3.2 The Spatio-temporal Autoregressive Model

A linear autoregressive model (AR) has the form

s(x) = i dis(x + Ax;) + a(x).

=1
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Originally, AR models were used to describe time series signals, in which case
s(z) is a one-dimensional signal. They were later extended to two dimensions |46]. In
this context, s(x) is a two-dimensional signal where x = (z,y). This model is often
referred to as SAR, the simultaneous autoregressive model.

More recently, Chff and Ord [6] introduced the spatio-temporal autoregressive
model (STAR). This is simply the autoregressive model in space-time. For the STAR
model, x is a vector denoting a location in space-time, i.e. x = (z,y,t), and Ax =
(Az, Ay, At). The term a(x) denotes a white noise process, assumed to be Gaussian
for parameter estimation purposes. Expanding out the vector notation, the model

can be written

14
S(.’II, y’t) = Z (ﬁﬁ(.’lﬁ + A.'L'i,y + Ayiat + Att) + a(mv yat)

=1

The lags Az;, Ay; and At; specify the neighbor structure of the model.
AR models can predict a given pixel from its neighbors. The one-step ahead

forecast is given by

i(x) = zp: é:s(x + AX;).

i=1

3.3 Autoregressive Moving Average Models

A more general model than STAR is the mixed spatio-temporal autoregressive and

moving average model (STARMA). It is defined by

P g
s(x) =Y gis(x + Ax;) + )_ b;a(x + Ax;) + a(x).
=1 Jj=1
The ¢; are autoregressive parameters, and the §; are moving average parameters.
As a special case, when p = 0 the model has only moving average terms and is called a
spatio-temporal moving average process (STMA). Unfortunately, both the STMA and
the STARMA model are nonlinear in the moving average parameters #;. Parameter

estimation becomes difficult, especially considering that the number of parameters in
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Figure 3-1: A nonsymmetric half-space neighborhood

a STARMA model is generally larger than for ARMA models. Hence. I have used
the STAR model.

3.4 Properties of STAR

3.4.1 Causality

It is easier to synthesize and estimate parameters for causal models. For one-dimensional
models, causality requires that the conditioning neighborhoed consist only of data
from earlier time steps. In higher dimensions, there are more ways to make a model
causal. Causal STAR models have conditioning neighborhoods that are only a subset
of the spatio-temporal volume. The neighborhood must correspond to a recursively
computable filter. An example of a causal neighborhood is the nonsymmetric half-
space (NSHS), such as the (z,y,t) subset cefined by t <OV (t =0Ay <0)V (¢t =
0Ny =0A 2z <0) (Figure 3-1).

The main advantage of causal models is that parameter estimation is easy. The
conditional least squares method gives consistent estimates. In other words, the
variance of the estimates goes asymptotically to zero as the number of data points
increases. Unfortunately, least-squares does not have this property for non-causal
models. In fact. the least squares estimates may have a large systematic bias which
is several times greater than the 95% confidence interval of the estimates [9, p. 125].
Hence, other techniques must be used for estimating parameters, and these involve
nonlinear optimization, which is prohibitive computationally.

Another advantage of causal models is that synthesis is trivial, since the model is
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recursively computable. For noncausal models, synthesis requires solving a system of
equations, which can be done using Gauss-Seidel relaxation. Alternatively, synthesis
can be performed in the Fourier domain [18], or using Monte-Carlo techniques when
there is an equivalent Gibbs random field.

The disadvantage of the causality constraint is that it is somewhat unnatural
when used for spatial processes. It introduces an arbitrary directional bias, which
depends on the orientation of the nonsymmetric half-space neighborhood (or any other
causal neighborhood used). For spatio-temporal processes, the spatial asymmetry is
not as severe as for purely spatial process. The spatial asymmetry arises only from
restrictions for neighbors at ¢ = 0, whereas neighbors at ¢ < 0 can be symmetric.
In fact, the spatial asymmetry can be completely eliminated by conditioning only
on neighbors at ¢t < 0. Thus, we can trade off spatial asymmetry against temporal
asymmetry. Since time has a clear direction, and the physical world is believed to be
causal, temporal asymmetry is easily justified.

In my experiments, I have used subsets of the nonsymmetric half-space neigh-
borhood described above. While it has some directional bias, it exploits the strong
correlations of neighbors at ¢ = 0, which is especially important for temporal textures

with fast motion.

3.4.2 Correlation Structure

The autocorrelation function (ACF) and the partial autocorrelation function (PACF)

are useful tools for analyzing the correlation structure of autoregressive processes and

for model identification [45]. For a STAR model, the ACF is defined by:

SNep Az gAY SN S0y, )iz + A,y + Ay, t + At)
N, .
IR Y y=1 Yo 8(, g, 1)

p(:l:,y,t) =

where 5 = s — E(s), and N, Ny, N; are the (z,y,t) dimensions.
The PACF can also be extended to spatio-temporal processes, but is more compli-
cated and involves solving a system of equations that is computationally expensive.

Even the ACF takes a long time to calculate, because of the large number of data
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Table 3.1: Theoretical ACF and PACF patterns for STARMA models

Model Form ACF PACF
cuts off after Az qz,
STAR(Azmazs AYmazs Atmaz) tails off AYmazs Atmaz lags
in z,y,t
cuts off after Az,,,.,
STMA(Azmaz, AYmazy Atmaz) AYmaz, Atmar lags tails off
in z,y,t
STARMA(AzZmazs AYmazrs Atmaz) tails off tails off

points that have to be multiplied to obtain an autocorrelation coefficient. It is faster
to compute the ACF as the inverse Fourier transform of the power spectrum of the
signal (Section 3.8).

The patterns of the ACF and the PACF for the spatio-temporal process are similar
to their one-dimensional counterparts (Table 3.1, also see [31]). However, for a given
image sequence, we can only compute sample estimates of the ACF and PACF that

are noisy versions of the exact theoretical patterns.

3.5 Traditional Model Fitting for ARMA

The art of a time series analyst’s model identification is very much like

the method of an FBI agent’s criminal search. WILLIAM WEI

To fit an ARMA model, we must decide on two things before we can start: the
neighborhood size and its topology. Box and Jenkins [4] pioneered the following

approach in the context of time series analysis.

1. Model identification: AR(p), MA(q), or ARMA(p,q)? Select model order (p
and q).

2. Parameter estimation.
3. Model validation: is the model adequate?

To find a suitable model, the first step is always to plot the data. Since ARMA

models can model only stationary processes, the next step is to transform the data to
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make it stationary. To stabilize the variance, we can take the logarithm or the square
root of the series, or more generally apply the Box-Cox power transformation [45].
Then, to stabilize the mean, we (repeatedly) difference the series to produce a trans-
formed series s’(z) = s(z) — s(z — k). The value of k is often 1, and the differencing
then corresponds to a high-pass filter with magnitude response |H(e’*)| = |2sinw/2|.
This operation removes slowly varying components (e.g. linearly increasing trends)
from the data. For periodic sequences k is chosen to equal the period, which in
the frequency domain is the filter |H(e’*)| = |2sinkw/2|. Such a filter cancels the
periodic component of the signal.

There is another way to see why differencing stabilizes data with nonstationary
mean. An unstable system has poles on or close to the unit circle. Differencing
corresponds to multiplying the system by (1 — z7*), which introduces a zero that
cancels a pole on the unit circle.

To determine good values of p and ¢ in the ARMA(p,q) model, the autocorrelation
and partial autocorrelation functions are examined. When the data comes from a pure
moving average (p = 0) or a pure autoregressive (g = 0) this decision is relatively easy,
since the ACF or the PACF will have only one spike respectively. Unfortunately, when
the data comes from a mixed ARMA process, the patterns of the ACF and PACF are
complicated and the identification is unclear. In this case it is best to guess a model,
estimate parameters for it, and check how well it fits the data.

The next step, parameter estimation, can often be done using least squares and
is discussed more in section 3.7.

Finally, the model is checked by examining the residual errors, e(z) = s(z) — §(z),
where s(z) is the original series and 3(z) is the predicted series. If the residuals look

like white noise (examine the residual ACF and PACF), then the model is a good fit.

3.6 Model Fitting for STAR

The Box-Jenkins modeling methodology can be applied to identify STARMA models
as well (see [32]). However, the conditioning neighborhoods for STAR models are

30



much larger and can take on many shapes in space-time. Thus, the patterns of the
ACF and PACF are complex and can only give weak hints about the model. In this
section, I will first describe how to detect and remove nonstationarities. Next, I will

suggest how to select a good neighborhood for a STAR model.

3.6.1 Detecting and removing nonstationarity

Data whose mean and variance are not constant over the spatio-temporal volume is
called nonstationary. Many nonstationarities can be spotted by looking at the data.
Often, the lighting conditions are not uniform across the image. For example, there
can be an illumination gradient across the image, or certain surfaces may be tilted
and reflect more light. Slow periodicity that cannot be directly captured by the model
(e.g. periods much longer than the model neighborhood) can also be regarded as a
nonstationarity, since the mean usually varies significantly within the period.

The ACF can give us more quantitative information. It aids in determining
whether the data is stationary, and whether it is periodic. If the ACF falls off slowly
(e.g. decays linearly rather than exponentially), the data is nonstationary and should
be stabilized.

Unsharp masking is a useful technique to remove some nonstationarities [9]. One
approach is to median-filter the image and subtract the filter output from the image
(Figs. 3-2, 3-3). The ACF of the unfiltered river image falls off very slowly, indicating
nonstationarity. This is due to an intensity gradient in the image—the upper portion
of the image is brighter than the lower portion. To remove the nonstationarity,
the output of a 21 x 21 spatial median filter is subtracted from each image in the
sequence. This removes low-frequency illumination variations. The intensity gradient
disappears, and the ACF now rapidly goes to zero.

For one-dimensional signals, differencing the data is the most common technique
for removing nonstationarities. However, for spatio-temporal signals, differencing is
more complicated, since now there are several possibilities: s'(x) = s(x) — s(x — Ax)
where the direction of differencing Ax must be determined. The obvious choices are

differencing along the time axis, or the x or y axes. Unfortunately, differencing along
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Figure 3-2: First frame of river-far. Original (left) and with local medians

sub-
tracted off (right).
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Figure 3-3: Temporal ACEF of river-far. Original (left) and with local medians
subtracted off (right).



one axis may lead to overdifferencing along the other axes'. Moreover, since images
have mostly low-frequency content, differencing with |Ax| = 1 tends to remove too
much information and leave mostly high-frequency noise. Thus, we should filter the
signal more gently.

In fact, we need not difference the series ourselves; instead, we can let the param-
eter estimation routine handle the nonstationarity. A nonstationary signal has poles
on or close to the unit circle. The conditional least squares estimator will simply es-
timate an autoregressive spectrum that matches the spectrum of the signal, and if we
uce & large enough model, the poles at the unit circle will be well-represented. How-
ever, the exact maximum likelihood estimate cannot handle such poles and will give
nonsensical answers. In this case we must cancel the poles by introducing matching
zeros through differencing.

While differencing adjacent pixels (JAx| = 1) is not necessary, seasonal differenc-
ing (|Ax| > 1) may be useful. For example, the river ACF has peaks at time lags 32,
65 and 97, which is periodic except for some estimation error. Seasonal differencing
s'(z,y,t) = s(x,y,t)— s(z,y,t — 32) might be appropriate. The parameter estimation
algorithm could not exploit this periodicity, unless we used a very large neighborhood

including 32 time lags or a very different model.

3.6.2 Neighber pruning

For image sequence data, the sample ACF and PACF have complex patterns that
cannot be easily interpreted. The IACF (inverse autocorrelation function) and the
ESACF (extended sample autocorrelation function) [45] have the same problem.
Thus, we cannot rely on them for determining model order, or for selecting the neigh-
bors that should be included in the model.

Instead, we begin by fitting a very large model. We include all parameters that
could possibly be important. Many of the parameters of this model will turn out to

have values close to zero, and are not statistically significant. This is no cause for

IThis effect is due to cotntegration. Series at given (z, ) locations in the volume are individually
nonstationary, but some linear combination of them may be stationary [14].
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alarm, and the resulting model is already useful.

The model can be made more parsimonious by pruning insignificant parameters.
The fewer parameters the model has, the lower is the variance of the remaining pa-
rameter estimates. Large models also need to be trained on more data to avoid
overfitting, and require more computational resources. Grunkin [9] presents an al-
gorithm that iteratively discards the least significant parameters while ensuring that
the Schwartz’s Bayesian Criterion (SBC) decreases. The SBC is an approximation
to the Bayes’ information criterion (BIC), which in turn is an updated version of the
Akaike’s AIC. Let |©] be the data set size, p be the neighborhood size, and &2 be the

estimated innovation variance. Then

SBC = |Q|In &2 + pln |Q).

AIC = |0} In 62 + 2p.

The significance of a parameter is determined by the t-test (the parameter value
divided by its standard deviation). For static image textures, the pruning algorithm
typically reduces 80 parameter models to 50 parameters while maintaining the visual

quality of the simulated texture [9].

3.7 Parameter Estimation

There are three main ways to perform parameter estimation for ARMA models.

e Conditional maximum likelihood. For causal ARMA models, equals conditional

least squares (CLS).

o Unconditional maximum likelihood. For causal ARMA models, equals uncon-

ditional least squares (ULS).

e Exact maximum likelihood (ML).
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The ARMA model requires a neighborhood of pixels to predict a given pixel.
Near the boundaries, some neighbors are missing. The three methods differ in the as-
sumptions about the boundaries. The conditional technique assume a specific value
for the boundary (see Section 3.7.1). The unconditional method attempts to pre-
dict the missing values using backcasting. Backcasting involves applying the ARMA
model in the reverse direction [4]. Finally, the exact maximum likelihood makes no
assumptions about the boundary at all.

The exact maximum likelihood method is regarded to be the most accurate, but is
difficult to derive and has no closed form solution for the estimates. The unconditional
method is an approximation to the exact method, because it assumes that the missing
values can be predicted according to an ARMA model. The boundary effects are
insignificant if the data has large dimensions (such as 106 x 100 x 100) compared to
the model, and the data is not seasonal or close to being nonstationary. Most visual
textures are nearly nonstationary. Nevertheless, since I have plenty of data, I will
only use the conditional least squares method (CLS). This method is described below.

The least squares method attempts to minimize the total square prediction er-

ror E:

minE = min Y e(x)?
¢ xeQ

= rngn 3 (s(x) - ;&is(x + Axi)) 2. (3.1)

xef

To find the minimum, set the partial derivatives 8/9¢; of the last expression equal

to zero for : = 1,2,...,p. After simplification, we get the p normal equations
[R(1,1) R(1,2) --- R(L,p)][é] [R(O,1)]
R(1.72) R(2:72) R(Q',P) 4%2 _ 3(9’2) (3.2)
|R(1,p) R(2,p) : Rp]lé] [ROp)]

35



where

R(i,j) = Y s(x + Ax)s(x + Ax;).
xeQ

The parameters are now estimated by solving this linear system of equations.
Let A be the matrix on the left containing covariances. A is a covariance matrix,
and therefore symmetric positive semi-definite (we can safely assume it is positive
definite, since the probability that the determinant equals 0 is small). The system
can be solved efficiently using Cholesky decomposition A = QQT.

If the model is large, the system of equations is often ill-conditioned. There exist
methods called square-root algorithms that are numerically more stable. They avoid
forming products of the data and instead try to directly obtain a matrix Q such that
QQT = A (see Ljung [25, p. 275]).

The variance of the innovation sequence a(x) can be estimated from

P
1 -p
The |} is the number of data points used in the estimate. There is some debate
about whether or not the number of estimated parameters p should be subtracted off
in the denominator [4]. In the cases considered here, the difference is minimal since
1 > p.
The total mean square error can be efficiently calculated (without looping through

the data again) by

E=Y ex)?=)_ s(x)*— i&i ) s(x+ Ax;)s(x) = R(0,0) — i $:R(0,7).

XeN xefl =1 xe

Assuming that the underlying process is well-modeled by the autoregressive model,

then the approximate variance of the estimates is given by
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[R(1,1) R(1,2) --- R(1,p)]”"
COU(¢1,¢2)N5'Z R(I,Z) R(272) R(?,p) (33)
| R(1,p) R(2,p) : R(p,p)]

However, care must be taken with this expression. If we are uncertain whether the
data is well described by an autoregressive process, it may be better to estimate the
parameter covariance by dividing the data in subblocks, and estimate the parameters
of each subblock separately. The parameter covariance ran now be computed from

the set of subblock estimates.

3.7.1 Treatment of boundaries: correlation and covariance

methods

Several different assumptions can be made about the missing edge pixels when using
the conditional maximum likelihood estimator. Three of the most common methods

are:

e Correlation method: assume that the missing pixels have values equal to the

mean of the data (usually 0).

e Covariance method: use only the inner portion of the data, so that all neigh-

borhoods are contained in the data.

® Toroidal boundary assumption

In the previous section, we did not specify what the treatment of boundaries
was. In fact, the above equations are equally valid for both the correlation and
the covariance method. The two differ only in what region is used to minimize
parameters. For the correlation method, the minimization is done over all Euclidean
space, i.e. { = IR". At the locations where actual data is not available, we assume

s(x) = E[s(x)] = 0 (the data is always made zero-mean before estimation). The
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covariance method, on the other hand, only uses existing data. Thus, 2 is the inner
subset of the data such that the neighbors of every point in Q are known.

The covariance method is recommended as more robust by Box and Jenkins [4].
However, the correlation method offers a few computational advantages. Firstly, the
R(:,7) are scaled autocorrelations, which can be computed as the inverse Fourier
transform of the power spectrum of the data. This is much faster for models with
many parameters (see Section 3.8). Secondly, for one-dimensional processes with
contiguous neighborhoods R(z,;) depends only on the difference of : and 3, so we
can write R(¢,7) = R(|¢ — j|). In this case, the covariance matrix in eq. (3.2) is a
Toeplitz matrix. The system of equations can then be solved very efficiently using the

Durbin-Levinson recursion [25]. Unfortunately, in higher dimensions we have that

R(21,71) = R(122, j2) if and only if Axi1 - ijl = Axi2 - ijz'

For the matrix to be Toeplitz we require that Ax;, — Axj, = Axj, — AX;,
whenever i; — j; = i3 — j;. This condition is satisfied if and only if all the neighbor
offsets Ax; lie in a one-dimensional subspace. This is rarely the case and we must
solve the system of equations some other way.

The covariance method appears to give better results in practice. We can examine

the accuracy of a given procedure in the following manner:
1. Estimate parameters for a sequence.
2. Synthesize texture based on these parameters.

3. Estimate parameters for the synthesized volume. Compare with estimates from

step 1.

A good parameter estimation routine should yield the same parameter estimates in
steps 1 and 3. Table 3.7.1 shows the accuracy of the covariance and correlation
methods on the river sequence. The covariance method estimates have relative errors
of less than 1 percent for all but the smallest two parameters. The correlation method

gives errors that are several times larger. Even worse, these errors are many times
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Table 3.2: Accuracy of correlation and covariance method on sequence river.y.sub2
using an approximately third order causal neighborhood with 10 parameters.
Columns 2 and 3 show percent relative error = 100 x error/parameter value. Columns
4 and 5 show error divided by standard deviation of the parameter estimates.

Actual Covariance Correlation Covariance Correlation
parameters % rel. error % rel. error error/std error error/std error
0.1776 -0.3 7.9 -0.5 15.7
-0.0384 -0.5 1.6 -0.7 -2.0
1.0167 0.0 -2.2 0.0 -37.3
-0.2686 0.0 -8.1 0.0 43.6
-0.0766 0.7 14.1 -0.8 -18.0
-0.0071 -3.6 42.2 0.7 -5.0
0.3251 -0.4 7.8 -1.4 28.3
-0.0439 -0.2 -2.5 0.3 3.7
-0.1431 -0.3 13.4 0.8 -32.0
0.0296 2.7 -27.0 1.3 13.3

greater than the standard deviation of the estimates, as shown by the fourth column.
Thus, the correlation method is not recommended.

In addition to the boundary assumptions assumed by the covariance method and
the autocorrelation method, the toroidal boundary assumption is occasionally used.
The data is assumed to wrap around so that s(z,y,¢) = s(rmod N, ymod N, tmodN;)
where data has size N x N, x N,. This assumption is mostly useful for simplifying

the estimation of noncausal autoregressive models [19].

3.8 Practical Parameter Estimation

The most time consuming step of parameter estimation is the computation of correla-
tions. When large amounts of data are involved, correlations can be evaluated much
more efficiently in the Fourier domain than in the spatio-temporal domain. This is

done as follows:

1. Zero pad the data s(x) to double its dimensions, rounding up to the nearest

power of 2.

2. Fourier transform S(w) = FFT(s(x)).
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3. Power spectrum P(w) = |S(w)|%.

4. Inverse Fourier transform R(k) = IFFT(P(w)).

Now, the ACF is obtained by normalizing p(k) = R(k)/R(0). The correla-
tions are immediately ready for the autocorrelation method of parameter estima-
tion (Section 3.7.1), and the notations in the two sections are reconciled by letting
R(i,j) = R(AXx; — AX;).

The data is zero padded in order to get a Fourier transform of size 2N, x 2N, x 2N,
assuming the original data dimensions are N, x N, x N,;. Padding is necessary to
obtain a power spectrum whose inverse Fourier transform has N, x N, x N; distinct
values, so that we can obtain all correlations (the power spectrum is real, even, and
nonnegative, so that its inverse Fourier transform is purely real and even).

The efficiency of this method is due to the Fast Fourier Transform. For a one-
dimensional signal, the FFT requires only O(N log N) computations to compute all
correlations of an N point signal whereas a direct calculation would require O(N?)
time. However, this is only true if N is a power of 2, or has a lot of small prime
factors. It is usually advisable to round N up to the nearest power of 2 to get good
performance from the FFT algorithm.

For a spatio-temporal signal, we must calculate a three-dimensional FFT. The
FFT is a separable computation, so we simply take one-dimensional FFTs along
the x,y and t axes [22]. The run time is O(N N, N;log(N,N,N;)) which is a huge
improvement compared to the direct computation O(N2NZN?). In practice, all au-
tocorrelations of a 60 x 85 x 120 sequence can be computed in 15 minutes on a 100
MFLOP computer. However, the required 3D Fourier transform of this sequence is of
size 128 Mbytes (using double precision numbers), so it is necessary to have a large

amount of RAM and disk space available.
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3.9 Synthesis

Synthesis for causal STAR models is straightforward. First, the boundaries of the
volume are initialized. Here, Gaussian random noise is used, but almost anything
will do, since the initial conditions die off gradually. For the synthesis, each pixel
is predicted as a linear combination of its (already synthesized) neighbors and of
Gaussian randcm noise with the same variance as the innovation process a(x). Next,
the borders of the synthesized volume are cropped off to remove transients from the
initial values. It is enough to crop off twice the largest neighborhood offset in every
dimension.

At this point we have a synthesized floating point volume. To view the result,
the image must be quantized to match the 256 grey-levels of the screen. An au-
toregressive process with a zero-mean Gaussian innovation process always produces
volumes with zero-mean, Gaussian histograms. This is because a linear combination
of Gaussians is still Gaussian. Unfortunately, this does not always correspond well to
the histogram of the original sequence. We should also ensure that the synthesized
volume has mean and variance similar to the original. An elegant solution is to match
the histogram of the synthesized volume to the original. This step guarantees that
the mean and variance of the two volumes is the same. A remarkable improvement in
visual similarity is achieved for some textures such as steam (Figure 3-4) when this

histogram matching is done.
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Figure 3-4: Histogram matching improves the visual similarity between synthesized
and original texture. Synthesized texture (top), synthesized and histogram matched
texture (middle) and original (bottom), with corresponding histograms in the right
column.
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Chapter 4

Results

4.1 The Data

The data consists of commonly occurring temporal textures (Table 4.1). The particu-
lar sequences were selected to get interesting, every-day indoor and outdoor textures
with different motions. With a few exceptions, the chosen textures appear to be
wide sense stationary and amenable to statistical texture techniques. The data was
acquired by me to avoid copyright issues, and will be made available to other re-
searchers.

The image sequences of temporal textures were recorded using a Hi-8 video cam-
era. A tripod was used to avoid camera motion. The sequences were digitized at a
resolution of 720 x 487, Y-B-R (8-4-4 bit) color and 30 frames per second onto D1
digital format. Next, the sequences were cropped to only contain temporal textures,
then deinterlaced, low-pass filtered and subsampled. Only the luminance information
was used. The final resolution in all cases was about 170 x 115 and the length was 120
frames (corresponding to 4 seconds). Thus, each sequence contains about 2 million
data points.

A few special challenges are present in the data. Fluid surfaces are highly specu-
lar, and the characteristic highlights are difficult to predict without any representa-
tion of the surface geometry. Some textures extend towards the horizon, and show

perspective chirping. The swirling water motion in the toilet sequence is highly non-
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Table 4.1: Image sequences used

Name Contents Challenges

river-near | close-up of water large motion

river-far | wide-angle shot of water | specularity, perspective chirp
steam steam from manhole

boil-heavy | vigorously boiling water

boil-light | lightly boiling water specularity

plastic windblown plastic sheet

toilet swirling water in toilet | spiral motion

stationary. On the whole, none of the textures is perfectly wide-sense stationary. The
illumination and motion are always more or less nonuniform across space and time.
To reduce the illumination variations, the output of a 21 x 21 spatial median filter

was subtracted from the data sequences.

4.2 Autocorrelation functions

The spatio-temporal autocorrelation function for the river-near sequence is very
interesting (Figure 4-1). The x-t slice through the ACF shows periodicity through
time. For small x-offsets, the ACF has local maxima at time offsets 32, 65 and 97. I
believe that the periodicity is due to the recurring waves in the image sequence. A
time lag of 32 corresponds to an actual time of 1.1 seconds, which is a reasonable
wave period.

The y-t slice shows repeated diagonal streaks of correlation. In the image sequence,
the waves are moving from the top of the image towards the bottom (along the y-axis).
This motion explains the diagonal correlations in the y-t plane. After approximately
32 time lags, a new wave appears with strong correlations at y = 0.

Surprisingly, there is no visible periodicity in the purely spatial correlations (the
x-y slice). The correlations are strong along the horizontal x-axis, but decay rapidly
along the y-axis. This agrees with the fact that waves are approximately horizontal.
In the river-near sequence, only one period is visible at a time, and this explains

why we do not see any vertical periodicity in the x-y slice.
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Spaso-temporat ACF for rver

Figure 4-1: Autocorrelation function for river-near. An x-t slice (top two graphs).
an y-t slice (bottom left) and an x-y slice (bottom right). All slices are at 0 offset in
the fixed dimension.

For the river-far sequence we see similar behavior. Since the waves are smaller.
more periods are visible. and vertical periodicity in the purely spatial direction can
be seen.

Taken altogether. the autocorrelation functions show that the signals have struc-
ture both in the spatial and temporal dimensions simultaneously. Thus. full spatio-
temporz! -iodeling is necessary to capture all aspects of the signals. Purely spatial or
purely temporal modeling is not sufficient. Another observation is that the sequences
have long memory. in other words. that the correlations can be significant even for

large offsets in space and time.

4.3 Parameter estimates

The parameters were estimated in the following fashion. The least-squares estimator

using the covariance method (computed directly in the spatio-temporal domain with-
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Figure 4-2: Neighborhoods n10 (top; 10 parameters) and BS (bottom; i12 parame-
ters).

out FFTs) was used to construct the normal equations. The Cholesky decomposition
for symmetric positive definite matrices was applied to solve the system of normal
equations, and to invert them to obtain the covariance matrix of the estimates.

The causal neighborhoods used in the experiments are summarized in Table 4.2
and a few are depicted in Figure 4-2. Note that the number of neighbors is very
large compared to what is commonly used for one and two-dimensional autoregressive
models. There are hundreds, even more than a thousand parameters. However, recall
that the data sets used for parameter estimation have dimensions 170 x 115 x 120,
and contain more than 2 million data points. Thus, there are about 2000 data points
per parameter in the B11 model, reducing the risk for overfitting. The large number
of neighbors is simply the consequence of modeling all three dimensions, rather than
one or two. However, we must take precautions to ensure that all parameters can be

reliably estimated.

46



Table 4.2: Neighborhoods

Neighborhood | No. neighbors | Shape
ni0 10 | 10 closest pixels
c4 128 | half-sphere, radius 4
c7 709 | half-sphere, radius 7
Bi1 1270 | box, approx. 11 x 11 x 11
10° .
x o river:Iar'
a *  boil-heavy
o + steam

Inverse condition number
-
o

X+

10° 10
Number of parameters

10 10

Figure 4-3: Inverse condition numbers for normal equations matrix.

4.4 Estimation accuracy

When working with very large models, it is important to make sure that the algo-
rithms can accurately estimate the parameters. Unless the algorithms are numerically
stable, the results may be meaningless.

The parameter estimation involves solving the system of normal equations (eq. 3.2),
which becomes ill-conditioned as the number of parameters increases. Figure 4-3
shows the inverse condition numbers of the matrix for the normal equations. The
inverse condition number is on the order of 10~° for the B11 models. Fortunately,
this is well within the limits of double precision arithmetic which typically has 16
significant digits. However, single precision floating point arithmetic would not give

accurate results.
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Figure 4-4: Absolute relative error of the 440 significant parameters for B11 model
of river-far. The relative error is the ratio (actual-estimated) / actual value. The
rightmost bar includes all parameters that have relative errors 2 or larger.

Perhaps the best measurement of the estimation accuracy of the algorithm is to
run it on synthesized sequences with known parameters. Section 3.7.1 described such
a test for a 10 parameter model. The relative error of the covariance method estimates
was very good, less than 1% except for the two parameters with magnitudes close to
zero.

A similar test has been made for the B11 model with 1270 parameters. Only 440
of the 1270 parameters were statistically significant, in other words had magnitudes
at least two times larger than their standard deviations. For insignificant parameters,
the relative error can be large. However, the relative error for the majority of the
statistically significant parameters is less than 25% (Figure 4-4). The relative error
for the estimate of the innovation variance is 0.01%.

The algorithm computes not only the parameters themselves, but also the variance
and covariance of the parameters (equation 3.3). This information is very useful for
recognition applications, where we weight the parameters inversely to their errors
and take their covariance into account (Mahalanobis distance). Moreover, parameter

significance can be determined using a t-test, which is the ratio between the parameter
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Figure 4-5: Distributicn of parameter estimates for 64 subblocks of river-near us-
ing neighborhood n10. The parameters correspond to the first six parameters of
table 3.7.1.

value and its standard deviation. Thus, we desire that these covariances be accurate
as well.

For the 10 parameter model applied to river-near, all parameter values lay
within two standard deviations of the parameter estimates. The actual variance of the
parameter estimates can be computed by dividing the data set into subblocks. Such
an experiment shows that the parameter estimates have an approximately Gaussian
distribution (Figure 4-5). This is what we expect from linear regression theory for
stationary processes [32], and it suggests that the texture is approximately stationary.

The actual variance is very close to the variance predicted by the algorithm (Ta-
ble 4.3). The variance of the estimates is approximately inversely proportional to the
amount of data. So, if we divide the data into 64 subblocks, the parameter estimates
given by one subblock have 64 times larger variance than the estimates given by the

whole volume. Interestingly, the average of the 27 or the 64 subblock estimates is just
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Table 4.3: Actual and predicted standard error for parameter estimates for 27 sub-
blocks and 64 subblocks.

27 subblocks 64 subblocks
actual | estimated actual | estimated
std err std err std err std err

0.0049 0.0049 0.0083 0.0079
0.0014 0.0014 0.0024 0.0024
0.0038 0.0038 0.0051 0.0055
0.0034 0.0034 0.0047 0.0048
0.0031 0.0031 0.0052 0.0052
0.0033 0.0033 0.0053 0.0052
0.0051 0.0051 0.0072 0.0079
0.0026 0.0026 0.0026 0.0030
0.0038 0.0038 0.0050 0.0057
0.0036 0.0036 0.0056 0.0053

as accurate as the estimate obtained from the whole volume. This observation may
be useful for recognition applications, where we can quickly get approximate texture
parameters from a single subblock. Then, if the approximate texture parameters are
interesting we can obtain successively more accurate parameters by averaging more

subblocks.

4.5 Synthesized sequences

The synthesis results are presented in Figures 4-6 and 4-7. Large neighborhoods
(128-1270 parameters) have been used. The perceptual quality of some textures is
very good; especially steam and boil-heavy are very convincing, both in terms of
the motion and the spatial texture. The model cannot reproduce the bubbles in the
boiling water, however. The two river sequences are not quite as well modeled, but
are clearly recognizable as water. The difficulty is the specularity of fluids, which is
not captured by the model. As a result, the water looks too grainy. Moreover, the
original river-far has perspective chirp. The STAR model averages out the chirp
to produce a middle frequency.

The remaining sequences are more challenging. Lightly boiling water boil-1light

has extreme specularity. Successive frames have very different appearances, even
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though they are only separated by 1/30 of a second. The synthesized still frames look
very different from the originals, but when played back, the same shimmering is seen.
The windblown plastic sheet plastic shows the opposite behavior. In this case, the
texture of the still images is modeled well, but the occasional single back-and-forth
wave is synthesized as a sea of undulating wrinkles. Finally, the spiraling motion
in toilet cannot be represented at all by the autoregressive model, and instead
produces a texture that looks like blurred random noise.

The optical flow of the synthesized sequences is similar to the optical flow of the
originals (Fig. 4-8 and 4-9). However, the optical flow for temporal textures is not
very accurate, since it assumes constant brightness which is often violated due to
specularities. For example, the optical flow for the toilet sequence does not show

any spiraling motion.

4.6 Discussion

4.6.1 Why use STAR for temporal texture?

The spatio-temporal autoregressive model is one modeling technique out of many. In
this section, I will examine some advantages and disadvantages of using STAR and
autoregressive modeling in general and tor temporal textures in particular.

Perhaps the main advantage of the STAR model is its simplicity. Every pixel is
modeled as a linear combination of its neighbors plus white noise. Thus, the model
is easy to analyze, and not surprisingly, the properties of autoregressive models are
well understood. There is also a well-established procedure (Box-Jenkins modeling)
for identifying ARMA models, estimating parameters and validating the models. Ar-
guably, this procedure does not generalize to spatial or spatio-temporal processes, but
it still provides a helpful foundation.

The STAR model is computationally efficient, which is important considering
that each dataset consists of 10° to 107 points. The main steps involve computing

correlations and solving a system of linear equations. These computations could be
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Figure 1-6: Synthesis results. Originals (left column) and synihesized (right). The
sequences and neighborhoods are river-near (B11), river-far (B11l), steam
(B11), plastic (C7).



Figure 4-7: Synthesis results. Originals (left column) and synthesized (right). The
sequences and neighborhoods are boil-heavy, boil-light, toilet.
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Figure 4-8: Optical flow of real image sequences using the Lucas-Kanade algorithm
(left column) and synthesized sequences (right column). Sequences are river-near
(top), river-far, steam and plastic (bottom).
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Figure 4-9: Optical flow of real image sequences using the Lucas-Kanade algorithm
(left column) and synthesized sequences (right column). Sequences are boil-heavy
(top), boil-light and toilet (bottom).



easily implemented in hardware for additional speed.

More importantly, autoregressive models are widely applicable in practice. They
can obviously model signals with autoregressive spectra (spectra with poles, but
no zeros). They can also approximate general spectra containing zeros, although
a mixed autoregressive moving average model would be more parsimonious for this
case. Wold’s theorem states that any wide sense stationary, zero-mean process that
has no linearly deterministic component (a linear combination of past values) can be
represented by a moving average process (23, 24]. If the moving average process is
invertible (has all zeros inside the unit sphere) it can be expressed in an autoregressive
form. Of course, these are theoretical results that allow representations with infinitely
many terms.

A rule of thumb may be that autoregressive modeling is applicable anywhere a
Fourier transform would make sense. Just like the Fourier transform, the autoregres-
sive model is readily extended into an arbitrary number of dimensions, and many
types of data.

The power and convenience offered by autoregressive modeling has made it popular
in many contexts. Autoregressive models form the backbone of the fields of time-
series analysis [45] and system-identification [25]. They are routinely used for speech
modeling both for coding and recognition [37]. They have been used extensively
for texture modeling of static images [27]. In a recent comparison of recognition
performance on the Brodatz texture album [24], the best results were achieved by the

Wold decomposition, whose core is an autoregressive model.

4.6.2 Limitations of the STAR model

The assumption of linearity lies at the heart of the autoregressive models. It re-
duces the complexity of the parameter estimation and the amount of data needed for
modeling. Unfortunately, it fundamentally limits what this model can represent. If
the relationship between pixels is not approximately linear, then the STAR model
cannot capture it. Moreover, the autoregressive model can only represent wide-sense

stationary data. In the context of temporal texture, rotational motion and expan-
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sion/contraction are not stationary, and cannot directly be modeled by STAR. Em-
pirical evidence for this fact is given by the poor synthesis of the toilet sequence.
More generally, any form of acceleration cannot be represented by STAR, since it is
required that the velocity is the same everywhere (Fig. 4-10).

If an image sequence contains multiple textures, it is important to segment it
into stationary regions, since the autoregressive model has no concept of multimodal
distributions. It assumes that the texture is the same everywhere and will compute

an average across the region.

4.7 Conclusion

I have modeled temporal textures using the spatio-temporal autoregressive model.
This model offers several advantages over those used previously. Firstly, it can be
used both for recognition and synthesis. Compared to pure recognition techniques,
the model enables synthesis as a way to verify whether the data could be adequately
captured. Compared to most techniques used in computer graphics, the model can
be acquired automatically from video data.

The feasibility of using very large spatio-temporal neighborhoods (1000 parame-
ters or more) has been demonstrated. The estimation accuracy has been empirically
verified. Large neighborhoods are shown to be necessary to satisfactorily model the

behavior of many temporal textures.

4.8 Future Work

4.8.1 Recognition and segmentation

STAR coeflicients can be used for recognition of temporal textures. First, compute
the STAR coefficients and their covariances. It is beneficial to use several neighbor-
hoods at different scales, as in the multi-resolution SAR technique [27]. Collect all
these coeflicients in a feature vector. Next, the similarity of two textures can be

measured with the Mahalanobis metric. Note that this recognition technique is not
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STAR can model:

STAR cannot model:
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Figure 4-10: Six canonical motion patterns. The homogenous STAR can presently
model translation.
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invariant to the direction or speed of the motion. For example, water flowing slowly
to the left will be different from water flowing rapidly to the right. A certain degree of
motion invariance can be achieved by using neighborhoods based on spatio-temporal
averages, in the same way that rotation invariance is obtained in the circular sym-
metric autoregressive model [20]. Unfortunately, the model may become too invariant
and no longer be able to capture important differences.

Segmentation of temporal textures can be done by computing STAR feature vec-
tors for small, overlapping windows of the volume, and then clustering these vectors.
Segmentation is very expensive computationally, since parameters must be estimated
for all the windows. Some speed-up can be gained from exploiting the overlap of

windows.

4.8.2 Medeling other data types with the STARMA model

The STARMA model is a general three-dimensional ARMA model, and can be used
for data other than image sequences. By renaming the t-axis to be the z-axis, we
obtain a three-dimensional texture model. Such a model has a wealth of applications
in the medical field, where three-dim~asinnal data is widespread due to the success
of computer tomography, MRI and other imaging techniques.

Alternatively, we can use the three-dimensional model for representing color tex-
tures. A standard color texture has three channels, RGB. First, we transform the
texture to an appropriate colorspace, perhaps to decorrelate the color channels, or
to use a more perceptual color space such as MTM [28]. Next, let the STAR t-axis
become the channel axis. Each channel can now be modeled separately by regressing
on all the channels. Note that this is no longer an autoregressive model, since the re-
lationships between the channels are not symmetric. My initial experiments indicate
that this model has better recognition performance than autoregressive models that
only use the luminance information.

Instead of applying STAR to an image sequence, one can attempt to run STAR
on the optical flow of the sequence. Optical flow explicitly represents motion. It may

be easier to model motion directly based on optical flow, rather than indirectly based
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on luminance or color information.

Another straightforward extension is to model 4 dimensions instead of 3. During
medical treatment of schizophrenia, Alzheimer and other diseases, one may wish
to monitor the changes in the brain. Our data is four-dimensional, namely a time

sequence of three-dimensional volumes.

4.8.3 Nonlinear models

Nonlinear models can represent a wider class of signals than can linear models. They
may also require fewer parameters to describe some textures. We have initiated
temporal texture modeling with the cluster-based probability model [36]. This is a
powerful, nonlinear model capable of modeling high-dimensional probability distri-
butions. Due to the curse of dimensionality, the model cannot handle neighborhoods
of size more than 20. Fortunately, river water synthesized with only 10 parameters
already looks fairly realistic. To model larger structures, a hierarchical analysis and

synthesis technique will be used.
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Appendix A

List of Temporal Textures

Flock of sheep
School of fish
T~dpoles

Flies

Bees

Ants

Termites

Swarm of mosquitoes
Seagulls

Reindeer horns on herd of reindeer

A mingling crowd of people

A pack of bicyclists

Waves

Wake from a ship

Boiling water

Boiling stew

Food processor blending fruit
Coftee beans being ground

Nuts being crushed
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Rotating fan

Propellers

Rotating wheels

Rotating drum of washing machine
Sowing seeds

Blowing dust

Waterfalls
Fountains
Firehoses

Lawn sprinklers

Water rotating into drain

Fire

Smoke

Candles
Flickering lights

Flapping Sails
Flags

Laundry in the wind



Rain Boiling spaghetti

Hail Serving peas on a plate
Snow

Snow storms Motion of blood cells, sperms
Sand storms Hair on a windy day
Avalanches Drops falling into water
Tornadoes

Hurricanes Vibrating guitar string
Wind-tunnel experiments Piano clubs moving
Atom bomb clouds Pouring milk into water
Explosions Shower

Fireworks

Video games Dissolves in television

Ice crystals forming
Text scrolling on screen Glass shattering

Printing presses (big sheets of paper)

Motion induced textures
Landscape while driving a car

Driving by a fence

Noise on TV screen

Underwater weeds in the tide

Twinkling stars
Mirages
The corona of the sun

Northern lights (Aurora Borealis)
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