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Temporal variability and coherence of euphotic
zone bacterial communities over a decade in
the Southern California Bight

Cheryl-Emiliane T Chow, Rohan Sachdeva, Jacob A Cram, Joshua A Steele,
David M Needham, Anand Patel, Alma E Parada and Jed A Fuhrman
Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA

Time-series are critical to understanding long-term natural variability in the oceans. Bacterial
communities in the euphotic zone were investigated for over a decade at the San Pedro Ocean
Time-series station (SPOT) off southern California. Community composition was assessed by
Automated Ribosomal Intergenic Spacer Analysis (ARISA) and coupled with measurements of
oceanographic parameters for the surface ocean (0–5m) and deep chlorophyll maximum
(DCM, average depth B30m). SAR11 and cyanobacterial ecotypes comprised typically more than
one-third of the measured community; diversity within both was temporally variable, although a few
operational taxonomic units (OTUs) were consistently more abundant. Persistent OTUs, mostly
Alphaproteobacteria (SAR11 clade), Actinobacteria and Flavobacteria, tended to be abundant, in
contrast to many rarer yet intermittent and ephemeral OTUs. Association networks revealed
potential niches for key OTUs from SAR11, cyanobacteria, SAR86 and other common clades on the
basis of robust correlations. Resilience was evident by the average communities drifting only
slightly as years passed. Average Bray-Curtis similarity between any pair of dates was B40%, with a
slight decrease over the decade and obvious near-surface seasonality; communities 8–10 years
apart were slightly more different than those 1–4 years apart with the highest rate of change at 0–5m
between communities o4 years apart. The surface exhibited more pronounced seasonality than the
DCM. Inter-depth Bray-Curtis similarities repeatedly decreased as the water column stratified each
summer. Environmental factors were better predictors of shifts in community composition than
months or elapsed time alone; yet, the best predictor was community composition at the other depth
(that is, 0–5m versus DCM).
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Introduction

Investigations into temporal dynamics of marine
microbial communities have revealed remarkable
similarities and dissimilarities between ocean
basins and have provided insight into the complex
ecology of microbes (as reviewed in Ducklow et al.
(2009); Fuhrman (2009); Giovannoni and Vergin
(2012)). A holistic understanding of microbes in
the ocean requires knowledge of the following:
which microbes are present, when they occur, how
much they contribute to the community and what
environmental factors facilitate their distribution.

Knowledge of each parameter will improve models
of the microbial loop and microbial roles in the sea.

Seasonal and monthly patterns of variation have
been observed using molecular methods at multiple
aquatic time-series sites, which suggest that envir-
onmental change elicits a biological response; many,
but not all, have also shown recurrence (Acinas
et al., 1997; Li, 1998; Morris et al., 2005; Fuhrman
et al., 2006; Alonso Sáez et al., 2007; Kan et al.,
2007; Treusch et al., 2009; Campbell et al., 2011;
Eiler et al., 2011; Gilbert et al., 2012; Robidart et al.,
2012). For example, seasonality in Synechococcus
ecotypes was observed in the Southern California
Bight, primarily for clades I and IV (Tai and Palenik,
2009), and in the Chesapeake Bay (Cai et al., 2010).
Distribution of Prochlorococcus ecotypes at the
Hawaii Ocean Time-series (HOT) and Bermuda
Atlantic Time-series Study (BATS) was similar
except during annual deep water column mixing
events at BATS (Morris et al., 2005; Treusch et al.,
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2009; Malmstrom et al., 2010; Eiler et al., 2011).
SAR11 ecotypes were also dominant yet variable
over time at BATS and HOT (Morris et al., 2002;
Carlson et al., 2009; Eiler et al., 2009; Giovannoni
and Vergin, 2012). Seasonal patterns were also seen
using next-generation sequencing (for example,
Andersson et al., 2010; Fortunato et al., 2012;
Gilbert et al., 2012).

In this study, we examined bacterial community
structure in light of traditional ecological metrics for
community composition, membership, phylogeny,
persistence and connectivity (recently reviewed in
Shade and Handelsman (2012)). Prior research at the
San Pedro Ocean Time-series (SPOT) has focused on
determining the temporal variability of bacterial,
archaeal and protistan taxa and the development of
ecological networks that link these communities
(Countway and Caron, 2006; Fuhrman et al., 2006;
Beman et al., 2010; Countway et al., 2010; Beman
et al., 2011; Steele et al., 2011). Here, we assessed
inter-annual, seasonal and monthly variability and
resilience of bacterial communities in the surface
water and deep chlorophyll maximum (DCM), as
revealed by Automated Ribosomal Intergenic Spacer
Analysis (ARISA), over a full decade. ARISA
allowed for repeated detection of the same microbes
over time and their relative abundance within the
bacterial community; OTUs (operational taxonomic
units) were identified by their unique fragment
lengths, and each was assigned an identity through
the coupling of 16S-ITS sequences from SPOT and
elsewhere to an observed (or predicted) ARISA
fragment length. We discuss the roles of specific
bacterial taxa using correlated partners from net-
work analysis and as members of a newly defined
core microbiome at SPOT, as well as the diversity
within key bacterial groups, and temporal patterns
in relative abundances of taxonomically related
OTUs. We also determine which of the measured
environmental parameters best explain the observed
community structure.

Materials and methods

Sample Collection
Seawater was collected approximately monthly
from August 2000 to January 2011 at 0–5m and
the DCM (average 28.2m, range 7–45m), as deter-
mined from in situ fluorescence, at SPOT (331330N,
1181240W). After losses due to weather conditions or
due to equipment failure, 103 months were sampled
at 0–5m and 89 months at DCM over 126 months.
DNA was extracted by phenol-chloroform from
B10 l of seawater serially filtered through a
142mm Type A/E glass-fiber filter (Pall Life
Sciences; Ann Arbor, MI, USA) and a 0.22 mm
Durapore GVWP (Millipore, Billerica, MA, USA).
Results shown here are from the 0.22 mm filters,
representing free-living bacteria and some picoeu-
karyotes (the largest and attached bacteria and most

eukaryotes were removed by the A/E). Bacterial
production was measured in triplicate 10ml sea-
water samples by [3H]thymidine and [3H]leucine
incorporation with a conversion factor of
2� 1018 cellsmol�1 of thymidine and 1.5�
1017 cellsmol�1 of leucine (Fuhrman et al., 2006).
Bacterial and viral abundances were enumerated by
epifluorescence microscopy from 2ml formalin-
fixed samples (Noble and Fuhrman, 1998; Patel
et al., 2007). Environmental parameters were deter-
mined using standard oceanographic methods
(Brown et al., 2005; Fuhrman et al., 2006; Beman
et al., 2010; Steele et al., 2011). Estimates for
chlorophyll-a concentrations and primary produc-
tion were downloaded for the grid area surrounding
SPOT from NOAA Coastwatch: (a) SeaWiFS,
0.04167 degrees, West US science quality for
chlorophyll-a; and (b) SeaWiFS and Pathfinder,
0.1 degrees, global, experimental data sets for
primary productivity (Hooker and McClain, 2000).

Bacterial Community Fingerprinting

ARISA. Amplification for ARISA (Fisher and
Triplett, 1999) was modified from that performed
in the study by Brown et al (2005) as follows
(final volume of 50 ml): 2 ng DNA, 1� buffer, 2.5mM

MgCl2, 0.2mM each DNTP, 0.2mgml�1 BSA
(Sigma-Aldrich, St Louis, MO, USA; A7030), 0.8mM each
of universal 16S primer (1392F: (50-[C/T]ACAC
ACCGCCCGT-30)) and bacterial 23S primer (125R:
50-[TET]GGGTT[C/G/T]CCCCATTC(A/G)G-30)), and
5 units AmpliTaq Gold (Life Technologies, Grand
Island, NY, USA). PCR was initiated with 10min at
95 1C (hot-start), followed by 30 cycles
of 95 1C for 40 s, 56 1C for 40 s and 72 1C for 90 s,
with a final 7-min extension at 72 1C. All samples
before 2008 were re-amplified for this study to
improve fragment resolution from 1bp to 0.1 bp;
samples from 2008–2011 were analyzed as col-
lected. PCR products were verified by agarose gel
electrophoresis, concentrated to 10 ml with Zymo
Research’s Clean & Concentrator-5 (Irvine, CA, USA)
as per the manufacturer’s instructions and quanti-
fied by Picogreen (Life Technologies). Fragments,
with a 0.1-bp (apparent size) resolution, were
detected by slab gel electrophoresis (Chow and
Fuhrman 2012; Needham et al., 2013); 10ng ml�1

was loaded in duplicate on non-adjacent lanes.
Fragments, with minimum 0.01% area, were dyna-
mically binned with maximum bin sizes of 1 bp
(390–450bp), 2 bp (450–650 bp), 3 bp (650–900 bp)
and 5bp (900–1200 bp) (Fuhrman et al., 2006; Ruan
et al., 2006b; Steele et al., 2011). Bins o0.1 bp were
manually merged with the adjacent bin.

Peak Identification. Each ARISA bin was
identified where possible using 16S-ITS sequences
(Brown et al., 2005; Needham et al., 2013). Our
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identities were based on 16S-ITS ARISA clones from
SPOT, the Atlantic river plume and the Pacific
Ocean, which were analyzed similar to environ-
mental samples to determine an observed length;
Genbank accession numbers for new 16S-ITS clone
sequences included in this study are: KF227401–
KF227794. Calculated lengths were determined for
additional published sequences from two linear
regressions (400–800, 800–1200bp) of observed
lengths versus empirical lengths of base pair counts
(Needham et al., 2013). Sequences were searched
using BLAST (word size, 7) against Greengenes
(McDonald et al., 2011), the Ribosomal Database
Project (RDP, (Cole et al., 2009)) and the SILVA108
truncated SSU database (Pruesse et al., 2007)
to construct a hybrid taxonomy using the top hit
(by e-value with minimum alignment length
200 bp and percentage identity 97%). For each
sequence, we determined the following: (1) explicit
taxonomic ranks from Greengenes; (2) SILVA
identifier from the lowest identified rank,
excluding ‘uncultured’ or ‘unidentified’; (3) SAR11
clades from RDP release 10; and (4) cyanobacteria
ecotype from ITS sequences, designation of known
isolates (Rocap et al., 2002; Brown and Fuhrman
2005) or phylogenetic placement of 16S rDNA
sequences.

Identities were assigned by matching environ-
mental lengths to 16S-ITS sequences, with priority
to SPOT and/or surface waters, in the following
order: (1) observed ARISA length of SPOT clones
from 5m across the seasons (see Brown et al., 2005);
(2) published cyanobacterial ITS sequences as noted
above; (3) in silico amplification of marine isolate
genomes (from megx.net EnvO-Lite annotations
(Kottmann et al., 2009), photic zone); (4) observed
ARISA lengths of 16S-ITS clones from the (a) central
Pacific and (b) tropical Atlantic Oceans; (5) observed
ARISA lengths from 16S-ITS clones from surface
waters of the Indian Ocean: 0.8–3.0mm and
3.0–20 mm size fractions (A. Allen, pers. comm);
(6) observed ARISA length of SPOT clones from
150m and 890m; and (7) in silico amplification of
marine isolate genomes originating below the euphotic
zone. Dual identifications were retained if an ARISA
OTU matched multiple sequences with divergent
taxonomy; however, the top hit only was used if one
sequence was more numerous than a second at 2:1
or higher. See Supplementary Table S4 for addi-
tional taxonomic information on ARISA OTUs
presented in this study.

Data Analysis

Statistics. Community composition data were nor-
malized by total peak area per month for each depth
to determine relative abundances (also referred to as
percentage contributions). The top 100 OTUs, by
average abundance, from each depth were assessed
for seasonality by fitting a linear model, lm()

function in R, with day length and rate of change
for day length as independent variables and logit-
transformed relative abundance data as dependent
variables (adjustment factor of 0.001, car package).
Only OTUs with Po0.05 were considered seasonal.
The following analyses were completed in PRIMER-E
v6 (Clarke 1993; Clarke and Gorley, 2006):
(1) Bray-Curtis similarity for bacterial communities
and Euclidean distance for environmental measure-
ments; (2) SIMPER: to determine an individual
OTU’s contribution to the overall (dis)similarity
between samples or within groups; (3) RELATE: to
compare Bray-Curtis and/or Euclidean (dis)similar-
ity matrices by a comparative nonparametric
Mantel-type test (Spearman, 999 permutations);
and (4) BIO-ENV: to identify which environmental
factors best described variations in bacterial com-
munity structure (Spearman, 99 permutations).
Environmental data were transformed as follows
before analyses in PRIMER-E: log(valueþ 0.01) for
NO2, NO3, PO4 and P*, bacterial production by
thymidine and leucine incorporation, calculated
turnover time, chlorophyll-a (bottle and satellite);
square-root for bacterial and viral abundance and
the virus:bacteria ratio; no transformation for sali-
nity, temperature, sea surface height differential,
primary production (satellite), day length and
monthly change in day length. Missing environ-
mental data were filled with the overall mean of the
transformed data. Discriminant function analyses
(DFA) and time-series plots were calculated in
Systat11 using the 50 most important OTUs, as
determined in PRIMER-E on the basis of relative
abundance and occurrence. Global correlations and
linear regressions of average Bray-Curtis similarities
per month lag and environmental parameters
(untransformed) were determined in Sigmaplot11
(San Jose, CA, USA).

Network Analysis. We used Local Similarity Ana-
lysis (eLSA) to identify intervals of correlation
between OTUs and environmental parameters: ana-
lysis settings included a minimum occurrence of 5
months, normalization of variables by ‘percentileZ’
method, use of pmix (determined theoretical P-value
followed by permutation testing (n¼ 2000) for any
P o0.1 to decrease computation time while main-
taining accuracy) and linear interpolation of missing
values (Ruan et al., 2006a; Xia et al., 2011, 2013).
eLSA correlations with P o0.05 and q o0.10 were
visualized in Cytoscape v2.8.2 (Shannon 2003;
Smoot et al., 2011); q-values were calculated to
determine a false-discovery rate (Storey 2002).
Network statistics and comparisons were determined
for undirected networks with Network Analyzer
(Assenov et al., 2008) and Advanced Network Merge
plugins, respectively. Random undirected networks
of equal nodes and edges were constructed by the
Erd+os–Rényi model using the Random Network
plugin (Steele et al., 2011). Modules were identified
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with the AllegroMCODE plugin using default
settings (AllegroViva, Santa Clara, CA, USA).

Results and Discussion

Seasonal environmental variability in the euphotic
zone at SPOT
SPOT displayed repeated seasonal stratification
(Figure 1) as demonstrated by increased sea surface
temperature from 14 1C in winter to 20 1C in late
summer and a deepening of the average DCM depth
in June (32m) through September (33.5m) while
remaining at B14 1C. The average DCM depth was
28.2m (range: 7–45m). Compared with other ocean
time-series locations, the mixed layer (and total
water column) at SPOT is much shallower than that
at HOT and BATS because of regional hydrography
and closeness of the location to the shore. During
winter mixing from December to March, the appar-
ent mixed layer depth was equal to or slightly below
the DCM and did not rise above the DCM until
April. Thus, the seasonal position of the mixed layer
depth relative to the DCM at SPOT lies between
trends observed at HOT and BATS (as reviewed in
Giovannoni and Vergin (2012)) – mixing was not
as pronounced as at BATS, nor was stratification as
pronounced as at HOT.

Regional upwelling near SPOT has been pre-
viously linked to local productivity and particle
export (Collins et al., 2011). Chlorophyll-a concen-
trations were the highest in the surface ocean during
winter and elevated in April and summer in the
DCM (Figure 1d). Bacterial abundance and produc-
tion peaked in April, whereas nutrient concentra-
tions increased through spring before declining
to a minimum by October (Figure 1). April
bacterial production rates (between 1.3� 105 to
5.5� 105 cellsml�1 per day) were double to 10-fold
higher than those during the rest of the year, with
the lowest rates during winter. Bacterial abundance
ranged from 1.2� 106 to 3� 106 cellsml� 1, with
annually repeated increases in spring. Viral abun-
dance varied within an order of magnitude (2� 107–
4� 107particles per ml) with little to no pattern.
This observation is in contrast to repeated seasonal
increases in viral abundance at BATS (Parsons et al.,
2012). In summary, onset of seasonal stratification
coincided in late spring with high bacterial produc-
tivity and abundance – activity likely due to water
column stabilization following increased nutrient
availability from winter to spring mixing events.

Individual bacterial OTUs revealed seasonality and
persistence
Some OTUs exhibited seasonal patterns (n¼ 22
(0–5m) and n¼ 20 (DCM), nine common to both
depths), whereas others were persistently abundant
(Figure 2). Over ten years, 414 OTUs were observed
over both depths (0–5m: 407; DCM: 396). On
average, 106±2 (±s.e.m.) OTUs were detected each

month (range: 0–5m, 54–174; DCM, 57–162).
Average relative abundance of all OTUs was
0.9%, although the distribution was highly skewed.
Seasonal OTUs collectively averaged 23.1%±
1.1 (s.e.m.) and 13.8%±0.8 of the community (range:
0–5m, 2.26–63.2%; DCM, 2.27–37.7%). Some OTUs
peaked in fall (August–October, Figures 2a-c)
or spring (March–May, Figures 2d-f) and others
(for example, SAR11_686.9 and Flavobacteria
NSb_726.4) peaked in summer (not shown).

The observed contributions of cyanobacteria and
SAR11 were also temporally variable, consistent
with previous studies (Morris et al., 2005; Kan et al.,
2007; Carlson et al., 2009; Tai and Palenik, 2009;
Cai et al., 2010; Malmstrom et al., 2010; Gilbert
et al., 2012). Cyanobacteria collectively comprised
4.7% (0–5m) and 2.2% (DCM) on average, and up to
31.8% (5m) and 18.5% (DCM) (Supplementary
Figure S1). In 0–5m, the relative abundance of
cyanobacterial OTUs increased as the DCM depth
deepened in late summer to fall. High-light
Prochlorococcus OTUs were the largest cyanobac-
terial contributors – one high-light Prochloroccus
OTU from clade I, Pro_HL(I)_828.8, dominated the
cyanobacteria at 0–5m and shared dominance in
the DCM with another high-light clade I ecotype,
Pro_HL(I)_831.8. A low-light Prochlorococcus OTU
(Pro_LL(I)_912.5) was a sporadically high contribu-
tor in the DCM, often in the latter half of 2003–2009.
Synechococcus OTUs were present year round, but
increased in spring following upwelling and times
of higher productivity in contrast to reported
decreases after upwelling events in Monterey Bay
(Paerl et al., 2012). The high proportion of Prochlor-
ococcus OTUs and limited presence of Synechococ-
cus are consistent with other observations that
SPOT is oligotrophic.

Cumulative SAR11 OTUs had high relative abun-
dance – 35.7% (0–5m) and 32.0% (DCM) on average
and up to 66.6% (0–5m) or 63.3% (DCM) in a single
month (Supplementary Figure S2), comparable
to the mean contribution of 38% in the photic zone
at HOT (Eiler et al., 2009). SAR11 Surface Clade 1
OTUs (666.4, 670.5 and 686.9) and SAR11 662
(clade undetermined) were dominant; SAR11
Surface clade 4 OTU (703.7) occurred as a consis-
tently minor contributor ato1% in 86 months and 72
months with a maximum of 7.3% and 3.8% in 0–5m
and DCM, respectively. Peaks in cumulative SAR11
relative abundances occurred in late summer similar
to BATS (Carlson et al., 2009) and opposite to winter
peaks at HOT and the Western English Channel (Eiler
et al., 2009; Gilbert et al., 2012; Giovannoni and
Vergin, 2012).

The five most abundant OTUs (Actinobacteria
OCS155_435.5 and 4 SAR11 OTUs) and the remain-
ing SAR11 and cyanobacterial OTUs together com-
prise B50% of the community (monthly average:
0–5m, 50.4%; DCM, 47.4%) and up to 77% and
81% in a single month, respectively (Supplementary
Figures S1-S3). Relative contributions of the top five

Bacterial variability over a decade at SPOT
C-ET Chow et al

4

The ISME Journal



OTUs at each depth were (1) significantly correlated
between depths (Po0.05, Supplementary Table S1),
(2) totaled B33% on average and (3) peaked
cumulatively at 63.8% (0–5m) and 76.7% (DCM)
in a single month (Figures 2g-i, Supplementary
Figure S3). These abundant OTUs were responsible
for over 50% of the observed intra-depth similarity
(by SIMPER: 52.1%, 0–5m; 55.4%, DCM) and as
such are key microbes of the euphotic zone.

Defining the microbial community by persistence
and rarity
In general, more OTUs were rare and infrequent,
yet cumulatively represented only a small fraction of
the photic zone community. The bacterial commu-
nity included persistent (475% of months), inter-
mittent (25–75%) and ephemeral (o25%) OTUs
(Figure 3): 60% (0–5m) and 58% (DCM) of OTUs
were ephemeral, 33.4% (0–5m) and 35% (DCM)

Figure 1 Environmental variability over 10 years in the euphotic zone at SPOT. Monthly averages are shown (X-axis¼ calendar month),
where error bars indicate standard error of the mean, for the following: (a) prokaryotic cellular abundance, (b) viral abundance,
(c) bacterial production by leucine (Leu) and thymidine (Tdr) incorporation, (d) chlorophyll-a concentration, (e) DCM sampling depth,
(f) seawater temperature, (g) salinity, (h) phosphate, (i) nitrite and (j) nitrate. Filled symbols are 0–5m; open symbols, DCM.
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were intermittent and only 6–7% were persistent.
Average abundance was o1.2% for ephemeral
and intermittent OTUs as compared with 410%
for persistent OTUs. Persistent OTUs exhibited the
highest average relative abundance, similar to
the Western English Channel, Station ALOHA and
a freshwater lake (Gilbert et al., 2009; Eiler et al.,
2011; Caporaso et al., 2012; Eiler et al., 2012).

The taxonomic distribution of OTUs as persistent,
intermittent or ephemeral was consistent at the
Class level between depths (Figure 3d); some
Classes were more prone to persistence, whereas
others were more fleeting over the 10 years we
observed. Persistent OTUs included members of the
Alphaproteobacteria, SAR406, Actinobacteria,
Flavobacteria, chloroplasts, Deltaproteobacteria,
Gammaproteobacteria and Synechococcophycideae
(Cyanobacteria). Betaproteobacteria, Oscillatorio-
phycideae and Sphingobacteria were only observed

as intermittent OTUs. Ephemeral OTUs also
included Verrucomicrobiae and Chlorobia. All these
taxonomic groups are known key factors of oceanic
microbial communities over space and time
(for example, Morris et al., 2002; Treusch et al.,
2009; Zinger et al., 2011; Gilbert et al., 2012; Morris
et al., 2012; Yilmaz et al., 2012). A smaller
percentage of ephemeral OTUs (40%) were identi-
fied compared with persistent OTUs (96.5%), as
expected, because clone libraries and sequence
databases used for identification are more likely to
include common organisms.

Ecological networks illustrate potential niches
Depth-specific association networks, constructed
using eLSA from OTU co-occurrence patterns,
uncovered complex interactions within bacterial
communities. Correlations (mathematical interactions)

Figure 2 Average monthly contribution of individual ARISA OTUs demonstrates seasonality (a-f) and persistence (g-i). Seasonal OTUs
included those that peak in late summer and fall (a-c) and in spring (d-f). Note that one seasonal OTU is a chloroplast from a
photosynthetic picoeukaryote (d). The three most abundant OTUs on average are observed consistently year round (g-i). Filled circles,
0–5m; open circles, DCM. Error bars indicate the standard error of the mean. Y-axis denotes percentage of the total community as
measured by ARISA.
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between bacterial taxa were more numerous com-
pared with environmental parameters, as seen
previously at SPOT and other locations (Steele
et al., 2011; Eiler et al., 2012; Gilbert et al., 2012).
The resulting networks were highly interconnected,
more so than by random chance alone
(Supplementary Table S2). Clustering coefficients
and the clustering coefficient ratio (Cl/Clr) were
higher than observed in the previous 4-year DCM
network and random networks of equal size; these
values align with previously observed ratios
from food webs and functional microbial networks

(as summarized in Steele et al., 2011). The higher
clustering coefficients, as compared with random
networks, and minimal distance (the shortest path)
between any two OTUs support our previous
argument for small-world properties in microbial
ecological networks (Watts and Strogatz 1998;
Montoya et al., 2006; Steele et al., 2011), such that
each OTU is closely linked to all other OTUs in
highly clustered cliques.

We characterized potential ecological niches by
identifying interconnected clusters (Figure 4) or
connections centered on specific taxa (Figure 5).
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For example, one interconnected cluster from the
0–5m network consisted of three bacterial clusters
(Clusters I-III, Figure 4) linked to biological mea-
surements (Cluster B). Cluster I was connected
primarily through negative delayed correlations,
Cluster II through positive correlations and Cluster
III through positive and positive delayed correla-
tions (see also Supplementary Tables S3 and S4).
Cluster I appears to precede Clusters II and III,
following the direction of time-delayed correlations
(shown by arrows). OTUs in Cluster III were
positively correlated with delays, such that
this cluster may reflect a succession of OTUs.
Roseobacter spp. have commonly been observed in
areas or at times of high productivity (Buchan and
Gonzalez, 2005; Morris et al., 2012); Roseobacter
OTU 987.8 (Cluster II) may represent a similar
observation here, as it was positively correlated
with bacterial productivity (directly) and abundance
(indirectly). Negative and delayed correlations
between clusters suggest that each component
within the larger network indicates a separate niche,
each with its own set of ecological relationships.

Despite the presence of almost all OTUs in each
depth, the unique nature of each depth’s association
network suggests that individual OTU–OTU

relationships differ, on the basis of abundance of
co-occurring microbes or environmental constraints.
Coherent associations were determined from an
intersection network of LS correlations observed in
both depths. Both value (positive or negative)
and direction (delayed or no delay) were considered
when determining whether an interaction was
unique or shared between depths. Only 12.4%
(0–5m) and 6.8% (DCM) of LS correlations were
shared (Supplementary Table S2). The top five
OTUs, however, did have consistent correlations
with many other bacteria in both depths (Figure 5).
Bacterial OTUs tended to be negatively correlated to
SAR11. Actino_OCS155_435.5 was positively corre-
lated to other Actinobacteria, SAR86 and SAR11
OTUs. Most correlated OTUs were uncommon, and
some are thought to be relatively copiotrophic. The
four most abundant SAR11 OTUs each clustered
separately, implying that their preferred conditions
may have different potential competitors or part-
ners, consistent with the distribution of SAR11
ecotypes in the ocean (Brown et al., 2012). Future
comparisons in phylogeny and relative abundances
of OTUs included in this network with other
long-term time-series sites may aid the definition
of truly global interactions covering time and space.
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Ten-year seasonal and annual trends in overall
community composition
We previously identified predictable seasonal
differences and annual recurrence of communities
by discriminant function analysis (DFA) from a
4.5-year survey of the surface ocean (Fuhrman et al.,
2006), and here our extended 10-year data set in
both the surface and DCM depths displayed annual
recurrence in 0–5m only, despite seasonality in both
depths (Supplementary Figure S4). DFA relies upon
selecting individual OTUs to optimally distinguish
months. Both communities were significantly posi-
tively autocorrelated at 1 month and negatively
autocorrelated at 4–6 months (‘opposite’ seasons).
Positive autocorrelation was statistically significant
in 0–5m at 10 ‘months’ (equivalent to 1 year due
to missing data) but not significant in the DCM.
Missing data for several months interspersed
throughout the time series, and the significant gap
in DCM observations (10/2006–2/2008) may limit
our interpretation; restricting analysis to 8/2000–9/
2006 in the DCM resulted in similar patterns
(Supplementary Figure S4 C-F).

Seasonality and annual recurrence in the bacterial
community structure were observed by long-term

trends in Bray-Curtis similarity over time in 0–5m,
although this was not as apparent in the DCM
despite an underlying seasonal trend by DFA
(Figure 6). Bray-Curtis similarity is weighted by
the relative abundance of each OTU and included
all OTUs unlike DFA. Bacterial communities were
on average 40.7±0.2% (Bray-Curtis similarity
±s.e.m.) and 40.9±0.2% similar in 0–5m and
DCM, respectively. The highest average Bray-Curtis
similarity occurred between communities 1 month
apart, 50.7% (0–5m) and 47.2% (DCM), consistent
with positive autocorrelation by DFA at 1 month.
Annual recurrence in 0–5m was also demonstrated
by identifying local maxima at yearly intervals (12,
24, 48, etc.; average 41.6%) and local minima for
opposing seasons (6, 18, 30, etc.; average 38.4%); the
difference in these two groups of averages was
statistically significant (the Mann–Whitney U-test,
P¼ 0.005). Comparison of each depth’s Bray-Curtis
similarity matrix with a distance matrix of elapsed
time (by absolute number of days) was significantly
correlated (RELATE: rho¼ 0.156 (0–5m), 0.123
(DCM), P¼ 0.01), but to a lesser extent than to the
Bray-Curtis similarity matrix of the other depth
(rho¼ 0.347, P¼ 0.01). Correlation of the complete
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Figure 5 Intersection network of LS correlations that occurred in both 0–5m and DCM for the top five ARISA OTUs. Primary
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abundant OTUs; circles represent other ARISA OTUs as labeled. Only direction and delay are shown for LS correlations, as the values
themselves differed between depths. Solid lines, positive LS; dashed lines, negative LS; arrow, 1-month delayed LS correlations that
point toward the lagging OTU.
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Bray-Curtis similarity matrices to a monthly dis-
tance model matrix (ignoring years) was low but
statistically significant in 0–5m (rho¼ 0.067,
Po0.05). Correlation for the DCM was not signifi-
cant and may be due to the large fluctuations at
4118-month time lags, perhaps stochastic (fewer
data points) or due to an El Niño. Winter 2009–2010
was exceptionally warm, whereas winter 2010–2011
was exceptionally cool as compared with winter
2000–2001 (Oceanic Niño Index, NOAA). DFA and
Bray-Curtis similarities suggest that adjacent
months are more similar to each other compared
with the same month from different years, but
communities in opposite seasons repeatedly dif-
fered the most in the surface. These observations
confirmed previously noted patterns on annual
recurrence in bacterial communities at SPOT in the
surface ocean (Fuhrman et al., 2006) and at BATS,
ALOHA and the Western English Channel (Treusch
et al., 2009; Eiler et al., 2011; Gilbert et al., 2012),
with the last also exhibiting recurrence (Gilbert
et al., 2012). The surface ocean thus exhibited more
pronounced and predictable seasonal patterns com-
pared with the DCM, perhaps due to the relative
isolation of the DCM from direct atmospheric
forcing, reduced annual temperature range or poten-
tial noise in the data due to the temporally variable
depth of the DCM.

Bray-Curtis comparisons also uncovered long-
term trends: average similarity between all pairs of
months changed relatively little irrespective of dates
(ignoring seasonality in 0–5m); yet there was a
discernible decrease over longer time lags (Figure 6).
In both depths, average similarity declined
B0.5–0.6% per year over 10 years (equations 3

and 4, Figure 6). The decline is about 1% per year
for communities o48 months apart in 0–5m
(equation 1), followed by almost no change in
communities 448 months apart (equation 2). This
slight decline with increasing lags does suggest that
community composition overall had measurably
changed over the course of this 10-year study.

Coupling Community Structure and Environmental
Changes
Coherence of euphotic zone depths, assessed by
Bray-Curtis similarities between co-occurring sur-
face and DCM communities, was negatively related
to the temperature difference between them
(Figure 7). Temperature is an established predictor
of variability in community structure on spatial
scales (Pommier et al., 2007; Fuhrman et al., 2008;
Yilmaz et al., 2012) and may be similarly predictive
for spatiotemporal variation. Between-depth Bray-
Curtis similarity was not correlated to bacterial
production, bacterial or viral abundance, or nutrient
concentrations from either depth. Our results thus
suggest that the two depths were relatively homo-
genized during periods of winter mixing; as the
euphotic zone warmed and stratified through the
summer, bacterial communities diverged under
different local conditions, only to be mixed together
again the following winter – a pattern also observed
at BATS (Carlson et al., 2009; Treusch et al., 2009).

Chlorophyll-a concentrations, bacterial produc-
tion rates and nutrient concentrations correlated
significantly with whole community shifts and for
subsets of persistent, intermittent and ephemeral
OTUs. Biological community variation was more

Figure 6 Seasonal and inter-annual patterns in Bray-Curtis community similarity. Average pairwise community similarity (Y-axis)
was calculated from all OTUs for all months in (a) 0–5m and (b) DCM. Time lag (X-axis) indicates the number of months between the
communities compared. Linear regressions were calculated from average similarities for the following: (1) 0–5m: from 1–48-month lags
(A, black circles and solid line); (2) 0–5m: 49–125-month lags (A, gray circles and dashed line); (3) 0–5m: 1–125-month lags (A, all circles
and no line shown); and (4) DCM: 1–118-month lags (B, black circles and solid line). Lags of 119–125 months in the DCM (B, white
circles) were excluded.
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related to measured environmental parameters
(RELATE, 0–5m: rho¼ 0.221, P¼ 0.01; DCM:
rho¼ 0.114, P¼ 0.03) than to distance by time in
elapsed days or months (rhoo0.16, Po0.05). The
environmental measurements that best explained
the Bray-Curtis similarity matrices for all OTUs or
persistent OTUs were identical at 0–5m and
included chlorophyll-a (satellite), bacterial produc-
tion rates (leucine and thymidine), nitrate and day
length change per month (BEST: all, rho¼ 0.267,
P¼ 0.01; persistent, rho¼ 0.257, P¼ 0.01). Intermit-
tent OTUs at 0–5m correlated with the above
parameters, except for nitrate, which was replaced
by chlorophyll-a (bottle) or phosphate (rho¼ 0.257,
P¼ 0.01); ephemeral OTUs correlated with nitrate,
P* and chlorophyll-a (bottle) (rho¼ 0.158, P¼ 0.02).
In the DCM, surface chlorophyll-a (satellite), bacter-
ial production rates (thymidine only), calculated
turnover time of leucine (bacterial production),
phosphate and sea surface height differential by
satellite provided the best fit for all OTUs (all:
rho¼ 0.268, P¼ 0.01), but no statistically significant
combination was observed for the DCM’s persistent
OTUs. DCM intermittent OTUs correlated with
surface chlorophyll-a (satellite), nitrite, bacterial
production rates (thymidine), calculated turnover
time (leucine) and day length change per month
(rho¼ 0.224, P¼ 0.02); ephemeral OTUs correlated
with calculated turnover time (leucine), salinity and
sea surface height differential.

Network analysis revealed individual OTUs asso-
ciated with key predictive environmental para-
meters – specifically for bacterial production rates
and abundance (Figure 4) and for salinity, tempera-
ture and nutrient concentrations (Figure 8). ARISA
OTUs – including SAR86, SAR11, Synechococcus
and Actinobacteria (OCS155) – were positively
correlated with few delays to salinity and tempera-
ture in the DCM. Most correlations between ARISA
OTUs and salinity or temperature at 0–5m were
negative or delayed, suggesting that the OTUs
shown were somewhat seasonal. Indeed, seasonality
for several OTUs shown (that is, SAR86_402.4both.
OCS155_419.5both, Owenwe_594.15m, SAR324_5195m,

OTU_632.6DCM, SAR11_676.95m, SAR11_682.45m,
SAR11_S2_716.85m, SAR11_S2_718.4DCM, OTU_
8085m) was independently determined (Figures 2
and 8). Almost all OTUs included here, with a few
SAR11 or Actinobacteria OTUs as exceptions,
were intermittent or ephemeral, suggesting that
these organisms are limited by nutrients or by other
factors essential for growth (such as vitamins
or trace metals).

Methodological Considerations
We recognize that ARISA, like all PCR-based
methods, has potential quantitative biases and other
drawbacks and also has relative strengths compared
with studies on short 16S rRNA sequences. Rare
taxa are not easily identified by ARISA (Figure 3d),
as identities are based primarily on clone libraries
and genomic sequences. ARISA primers do miss a
few known groups like Planctomycetes and
SAR202. Occasionally (o15% of identified OTUs),
unrelated taxa may be lumped into the same ARISA
OTU, which adds noise to interpreting correlations
and thus results in conservative conclusions. More
importantly for phylogenetic resolution, the ITS
region that leads to different observed ARISA
lengths has been widely used to differentiate
cyanobacterial (for example, Rocap et al., 2002;
Brown and Fuhrman, 2005) and SAR11 ecotypes
(Brown et al., 2012), which are difficult to resolve by
16S rRNA sequence alone. In silico analysis showed
that our original ARISA protocol, since improved,
had practical phylogenetic resolution similar to full-
length 16S rRNA sequences at 99% similarity level
(Brown and Fuhrman 2005). A direct comparison of
ARISA clone libraries from SPOT (containing nearly
full 16S, ITS and partial 23S rRNA sequences) found
that SAR11 sequences from 38 clones resolved to
six different SAR11 OTUs at 97% 16S sequence
similarity versus 15 ARISA OTUs. Sixteen cyano-
bacteria clones could be resolved to two OTUs at
97 or 98% similarity versus seven ARISA OTUs. The
impact of potential PCR biases (which can occur
with both ARISA and tag sequences) was greatly

Figure 7 Bray-Curtis similarities between 0–5m and DCM (Y-axis) communities in the same month are negatively correlated with
temperature difference between the depths (X-axis). Months are indicated by the shapes shown in the legend.
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reduced for the large majority of our quantitative
analysis by comparing increases and decreases of
individual OTUs – for example, as trends over time
or as rank correlations between OTUs. ARISA was
also previously shown to be an accurate estimator of
Prochlorococcus spp. abundance as compared with
counts by flow cytometry over time (Brown et al.,
2005). Overall, ARISA, as we have applied it (with
improved 0.1 bp fragment size, in duplicate, with
equal DNA concentration at each step, and backed
by 41000 16S-ITS clones from this location and
throughout the ocean at multiple time points
and depths), remains surprisingly appropriate for
detecting fine-resolution microbial patterns
especially for the moderately abundant to dominant
organisms.

Conclusion

Notwithstanding seasonal variation, a relatively
stable core microbial community persisted in

both depths such that an average B40% pairwise
date-to-date similarity was maintained over a dec-
ade (declining B0.6% per year). Results from both
Bray-Curtis similarity and DFA suggest that the
DCM community was less seasonal than 0–5m, but
monthly and long-term trends were apparent in
both. Our previous observation of recurrence in the
surface ocean remains true over a decade of
measurements, despite a discernible long-term shift
in community structure. Although community
membership was consistent between the surface
and DCM (as detected by ARISA), the interactions
between their constituents differed. This observa-
tion may be due to the higher seasonal variation
observed in 0–5m from changing environmental
conditions and due to separation from the DCM by
seasonal stratification of the water column, such
that microbe–microbe interactions are differentially
influenced by environmental characteristics or by
other biological controls. For example, the growth
and activity of cyanobacteria, as well as the activity
of phages and heterotrophic bacteria, have been
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shown to be dependent on light and nutrient
conditions (Sher et al., 2011; Weinbauer et al.,
2011). Our application of ARISA to this 10-year time
series at SPOT illustrates that this method continues
to be well suited for investigating complex ecologi-
cal patterns especially for moderately abundant to
dominant organisms and for addressing the effects
of diversity within key bacterial groups like SAR11
or cyanobacteria on their ecological role in the
ocean. Further exploration of microbe–microbe
interactions under varied environmental conditions
and co-occurring communities would aid in the
interpretation of ecological or association networks
developed from fingerprinting and sequencing data.
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Pinhassi J et al. (2007). Seasonality in bacterial
diversity in north-west Mediterranean coastal waters:
assessment through clone libraries, fingerprinting and
FISH. FEMS Microbiol Ecol 60: 98–112.

Andersson AF, Riemann L, Bertilsson S. (2010). Pyrose-
quencing reveals contrasting seasonal dynamics of
taxa within Baltic Sea bacterioplankton communities.
ISME J 4: 171–181.

Assenov Y, Ramı́rez F, Schelhorn S, Lengauer T,
Albrecht M. (2008). Computing topological
parameters of biological networks. Bioinformatics 24:
282–284.

Beman JM, Sachdeva R, Fuhrman JA. (2010). Population
ecology of nitrifying Archaea and Bacteria in the
Southern California Bight. Environ Microbiol 12:
1282–1292.

Beman JM, Steele JA, Fuhrman JA. (2011). Co-occurrence
patterns for abundant marine archaeal and bacterial

lineages in the deep chlorophyll maximum of coastal
California. ISME J 5: 1077–1085.

Brown MV, Fuhrman JA. (2005). Marine bacterial
microdiversity as revealed by internal transcribed
spacer analysis. Aquat Microb Ecol 41: 15–23.

Brown MV, Lauro FM, DeMaere MZ, Muir L, Wilkins D,
Thomas T et al. (2012). Global biogeography of SAR11
marine bacteria. Mol Syst Biol 8: 595.

Brown MV, Schwalbach MS, Hewson I, Fuhrman JA.
(2005). Coupling 16S-ITS rDNA clone libraries and
automated ribosomal intergenic spacer analysis to
show marine microbial diversity: development and
application to a time series. Environ Microbiol 7:
1466–1479.

Buchan A, Gonzalez J. (2005). Overview of the Marine
Roseobacter Lineage. Appl Environ Microbiol 71:
5665–5677.

Cai H, Wang K, Huang S, Jiao N, Chen F. (2010). Distinct
Patterns of Picocyanobacterial Communities in Winter
and Summer in the Chesapeake Bay. Appl. Environ.
Microbiol 76: 2955–2960.

Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. (2011).
Activity of abundant and rare bacteria in a coastal
ocean. Proc Natl Acad Sci USA 108: 12776.

Caporaso JG, Paszkiewicz K, Field D, Knight R,
Gilbert JA. (2012). The Western English Channel
contains a persistent microbial seed bank. ISME J 6:
1089–1093.

Carlson CA, Morris R, Parsons R, Treusch AH, Giovannoni
SJ, Vergin KL. (2009). Seasonal dynamics of SAR11
populations in the euphotic and mesopelagic zones of
the northwestern Sargasso Sea. ISME J 3: 283–295.

Chow C-ET, Fuhrman JA. (2012). Seasonality and monthly
dynamics of marine myovirus communities. Environ
Microbiol 14: 2171–2183.

Clarke KR. (1993). Non-parametric multivariate analyses
of changes in community structure. Aust J Ecol 18:
117–143.

Clarke KR, Gorley R. (2006). PRIMER v6: User Manual/
Tutorial. PRIMER-E: Plymouth: UK.

Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ et al.
(2009). The Ribosomal Database Project: improved
alignments and new tools for rRNA analysis. Nucleic
Acids Res 37: D141–D145.

Collins LE, Berelson WM, Hammond DE, Knapp A,
Schwartz R, Capone DG. (2011). Particle fluxes in
San Pedro Basin, California A four-year record
of sedimentation and physical forcing. Deep-Sea Res.
(1 Oceanogr Res Pap) 58: 898–914.

Countway PD, Caron DA. (2006). Abundance and dis-
tribution of Ostreococcus sp. in the San Pedro
Channel, California, as revealed by quantitative PCR.
Appl Environ Microbiol 72: 2496–2506.

Countway PD, Vigil PD, Schnetzer A, Moorthi SD, Caron
DA. (2010). Seasonal analysis of protistan community
structure and diversity at the USC Microbial Observa-
tory (San Pedro Channel, North Pacific Ocean). Limnol
Oceanogr 55: 2381–2396.

Ducklow HW, Doney SC, Steinberg DK. (2009). Contribu-
tions of Long-Term Research and Time-Series Obser-
vations to Marine Ecology and Biogeochemistry. Annu
Rev Marine Sci 1: 279–302.

Eiler A, Hayakawa DH, Church MJ, Karl DM, Rappé MS.
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