
TemporalGAT: Attention-Based Dynamic
Graph Representation Learning

Ahmed Fathy and Kan Li(B)

School of Computer Science and Technology, Beijing Institute of Technology,
Beijing 10081, China

{ahmedfathy,likan}@bit.edu.cn

Abstract. Learning representations for dynamic graphs is fundamental
as it supports numerous graph analytic tasks such as dynamic link predic-
tion, node classification, and visualization. Real-world dynamic graphs
are continuously evolved where new nodes and edges are introduced or
removed during graph evolution. Most existing dynamic graph represen-
tation learning methods focus on modeling dynamic graphs with fixed
nodes due to the complexity of modeling dynamic graphs, and therefore,
cannot efficiently learn the evolutionary patterns of real-world evolv-
ing graphs. Moreover, existing methods generally model the structural
information of evolving graphs separately from temporal information.
This leads to the loss of important structural and temporal informa-
tion that could cause the degradation of predictive performance of the
model. By employing an innovative neural network architecture based
on graph attention networks and temporal convolutions, our framework
jointly learns graph representations contemplating evolving graph struc-
ture and temporal patterns. We propose a deep attention model to learn
low-dimensional feature representations which preserves the graph struc-
ture and features among series of graph snapshots over time. Experimen-
tal results on multiple real-world dynamic graph datasets show that, our
proposed method is competitive against various state-of-the-art methods.

Keywords: Dynamic graph representation learning · Graph attention
networks · Temporal convolutional networks

1 Introduction

Many appealing real-world applications involve data streams that cannot be
well represented in a planar structure, but exist in irregular domain. This case
applies to knowledge bases [35], 3D models [18], social media [22], and biological
networks [7] which are usually represented by graphs.

In graph representation learning, the key challenge is to learn a low-
dimensional representation of the data that is most informative to preserve the
structural information among the nodes in graphs. Through graph embedding,
we can represent the nodes in a low-dimensional vector form. This paves the way
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to apply machine learning in graph analysis and data mining tasks easily and
efficiently such as node classification [11,22], link prediction [7], clustering [4],
and visualization [30].

Recently, there has been significant interest in graph representation learning
mainly focuses on static graphs [5,7,8,11,22,29] which attracted the attention
of researchers due to its extensive usage in numerous real-world applications.
However, a wide range of real-world applications are intrinsically dynamic and
the underlying graph structure evolves over time and are usually represented as
a sequence of graph snapshots over time [14].

Learning dynamic graph representations is challenging due to the time-
varying nature of graph structures, where the graph nodes and edges are in
continues evolution. New nodes and edges can be introduced or removed in each
time step. Consequently, this requires the learned representations not only to
preserve structural information of the graphs, but also to efficiently capture the
temporal variations over time.

Recently, novel methods for learning dynamic graph representations have
been proposed in literature. Some recent work attempts to learn dynamic graph
representation such as [10,15,36,37], where they mainly apply a temporally reg-
ularized weights to enforce the smoothness of node representations from different
adjacent time steps. However, these methods generally fail to learn effective rep-
resentations when graph nodes exhibit substantially distinct evolutionary behav-
iors over time [24].

Trivedi et al. [27] handle temporal reasoning problem in multi-relational
knowledge graphs through employing a recurrent neural network. However, their
learned temporal representations are limited to modeling first-order proximity
between nodes, while ignoring the higher-order proximities among neighborhoods
which are essential for preventing the graph structure as explained in [25,34].

Recently, the authors in [24] propose dynamic graph embedding approach
that leverage self-attention networks to learn node representations. This method
focus on learning representations that capture structural properties and tem-
poral evolutionary patterns over time. However, this method cannot effectively
capture the structural evolution information over time, since it employs structure
attention layers to each time step separately and generate node representations,
which is followed by temporal attention layers to capture the variations in gen-
erated representations.

Recently, attention mechanisms have achieved great success in NLP and
sequential learning tasks [1,31]. Attention mechanisms learn a function that
aggregates a variable-sized inputs while focusing on the most relevant sequences
of the input to make decisions, which makes them unique. An attention mecha-
nism is commonly referred to as self-attention, when it computes the represen-
tation of a single sequence.

Veličković et al. [29] extend the self-attention mechanism and apply it on
static graphs by enabling each node to attend over its neighbors. In this paper, we
specifically focus on applying graph attention networks (GATs) [29] because of
its effectiveness in addressing the shortcomings of prior methods based on graph
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convolutions such as [8,11]. GATs allow for assigning different weights to nodes
of the same neighborhood by applying multi-head self-attention layers, which
enables a leap in model capacity. Additionally, the self-attention mechanism is
applied to all graph edges, and thus, it does not depend on direct access to
the graph structure or its nodes, which was a limitation of many prior dynamic
graph representation learning techniques.

Inspired by this recent work, we present a temporal self-attention neural net-
work architecture to learn node representations on dynamic graphs. Specifically,
we apply self-attention along structural neighborhoods over temporal dynam-
ics through leveraging temporal convolutional network (TCN) [2,20]. We learn
dynamic node representation by considering the neighborhood in each time step
during graph evolution by applying a self-attention strategy without violating
the ordering of the graph snapshots.

Overall our paper makes the following contributions:

– We present a novel neural architecture named (TemporalGAT) to learn rep-
resentations on dynamic graphs through integrating GAT, TCN, and a sta-
tistical loss function.

– We conduct extensive experiments on real-world dynamic graph datasets and
compare with state-of-the-art approaches which validate our method.

2 Problem Formulation

In this work, we aim to solve the problem of dynamic graph representation
learning. We represent dynamic graph G as a sequence of graph snapshots,
G1, G2, . . . , GT , from timestamps 1 to T . A graph at specific time t is repre-
sented by Gt = (Vt, Et, Ft) where Vt, Et and Ft represent the nodes, edges and
features of the graph respectively. The goal of dynamic graph representation
learning is to learn effective latent representations for each node in the graph
v ∈ V at each time step t = 1, 2, . . . , T . The learned node representations should
efficiently preserve the graph structure for all node v ∈ V at any time step t.

3 TemporalGAT Framework

In this section, we present our proposed TemporalGAT framework, as illustrated
in Fig. 1. We propose a novel model architecture to learn representations for
dynamic graphs through utilizing GATs and TCNs networks to promote the
model ability in capturing temporal evolutionary patterns in a dynamic graph.
We employ multi-head graph attentions and TCNs as a special recurrent struc-
ture to improve model efficiency. TCNs has proven to be stable and powerful
for modeling long-range dependencies as discussed in previous studies [2,20]. In
addition, this architecture can take a sequence of any length and map it to an
output sequence of specific length which can be very effective in dynamic graphs
due to varying size of adjacency and feature matrices.
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Fig. 1. The framework of TemporalGAT.

The input graph snapshot is applied to GAT layer which has dilated causal
convolutions to ensure no information leakage from future to past graph snap-
shots. Formally, for an input vector x ∈ R

n and a filter f : {0, . . . , k − 1} → R,
the dilated convolution operation Cd on element u of the vector x is defined as:

Convd(u) = (x ∗d f)(u) =
k−1∑

i=0

f(i) · xu−d·i (1)

where d is the dilation factor, k is the filter size, and u − d · i makes up for
the direction of the past information. When using a large dilation factors, the
output at the highest level can represent a wider range of inputs, thus effectively
expanding the receptive field [32] of convolution networks. For instance, through
applying dilated convolution operations, it is possible to aggregate the input
features from previous snapshots towards final snapshot.

The inputs to a single GAT layer are graph snapshots (adjacency matrix) and
graph feature or 1-hot encoded vectors for each node. The output is node rep-
resentations across time that capture both local structural and temporal prop-
erties. The self-attention layer in GAT attends over the immediate neighbors
of each node by employing self-attention over the node features. The proposed
GAT layer is a variant of GAT [29], with dilated convolutions applied on each
graph snapshot:

hu = σ

(
∑

v∈Nu

αvuWdxv

)
(2)

where hu is the learned hidden representations of node u, σ is a non-linear
activation function, Nu represents the immediate neighbors of u, Wd is the shared
transformation weight of dilated convolutions, xv is the input representation
vector of node v, and αvu is the coefficient learned by the attention mechanism
defined as:

αvu =
exp

(
σ

(
Avu · aT [Wdxv‖Wdxu]

))
∑

w∈Nu
exp (σ (Awu · aT [Wdxw‖Wdxu]))

(3)
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where Avu is the edge weight of the adjacency matrix between u and v, aT is a
weight vector parameter of the attention function implemented as feed-forward
layer and ‖ is the concatenation operator. αvu is based on softmax function over
the neighborhood of each node. This is to indicate the importance of node v to
node v at the current snapshot. We use residual connections between GAT layers
to avoid vanishing gradients and ensure smooth learning of the deep architecture.

Following, we adopt binary cross-entropy loss function to predict the exis-
tence of an edge between a pair of nodes using the learned node representations
similar to [24]. The binary cross-entropy loss function for certain node v can be
defined as:

Lv =
T∑

t=1

∑

u∈post

− log(σ(ztu · ztv)) − Wneg ·
∑

g∈negt

log(1 − σ(ztv · ztg)) (4)

where T is the number of training snapshots, post is the set of nodes connected
with edges to v at snapshot t, negt is the negative sampling distribution for
snapshot t, Wneg is the negative sampling parameter, σ is the sigmoid func-
tion and the dot operator represents the inner product operation between the
representations of node pair.

4 Experiments

In this section, we conduct extensive experiments to evaluate the performance
of our method via link prediction task. We present experiential results of our
proposed method against several baselines.

4.1 Datasets

We use real-world dynamic graph datasets for analysis and performance evalu-
ation. An outline of the datasets we use in our experiments is given in Table 1.

Table 1. Dynamic graph datasets used for performance evaluation.

Dataset # Nodes # Edges # Time steps Category

Enron 143 2,347 10 Communication

UCI 1,809 16,822 13

Yelp 6,569 95,361 12 Rating

The detailed dataset descriptions are listed as follows:

– Enron [12] and UCI [21] are online communication network datasets. Enron
dataset is constructed by email interactions between employees where the
employees represent the nodes and the email communications represent the
edges. UCI dataset is an online social network where the messages sent
between users represent the edges.
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– Yelp1 is a rating network (Round 11 of the Yelp Dataset Challenge) where
the ratings of users and businesses are collected over specific time.

The datasets have multiple graph time steps and were created based on specific
interactions in fixed time windows. For more details on the dataset collection
and statistics see [24].

4.2 Experimental Setup

We evaluate the performance of different baselines by conducting link predic-
tion experiment. We learn dynamic graph representations on snapshots S =
{1, 2, . . . , t − 1} and use the links of t − 1 to predict the links at t graph snap-
shot. We follow the experiment design by [24] and classify each node pair into
linked and non-linked nodes, and use sampling approach to achieve positive and
negative node pairs where we randomly sample 25% of each snapshot nodes for
training and use the remaining 75% for testing.

4.3 Parameter Settings

For our method, we train the model using Adam optimizer and adopt dropout
regularization to avoid model over-fitting. We trained the model for a maximum
of 300 epochs and the best performing model on the validation set, is chosen for
link perdition evaluation. For the datasets, we use a 4 TCN blocks, with each
GAT layer comprising attention heads computing 32 features, and we concate-
nate the output features. The output low-dimensional embedding size of the last
fully-connected layer is set to 128.

4.4 Baseline Algorithms

We evaluate our method against the several baseline algorithms including static
graph representation approaches such as: GAT [29], Node2Vec [7], GraphSAGE
[8], graph autoencoders [9], GCN-AE and GAT-AE as autoencoders for link
prediction [38]. Dynamic graph representation learning including Know-Evolve
[27], DynamicTriad [36], DynGEM [10] and DySAT [24].

4.5 Link Prediction

The task of link prediction is to leverage structural and temporal information
up to time step t and predict the existence of an edge between a pair of vertices
(u, v) at time t + 1.

To evaluate the link prediction performance of each baseline model, we train a
logistic regression classifier similar to [36]. We use Hadmard operator to compute
element-wise product of feature representation for an edge using the connected

1 https://www.yelp.com/dataset/challenge.

https://www.yelp.com/dataset/challenge
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Table 2. Link prediction results on Enron, UCI and Yelp datasets.

Algorithm Enron UCI Yelp

Micro Macro Micro Macro Micro Macro

Node2Vec 83.7± 0.7 83.1± 1.2 80.0± 0.4 80.5± 0.6 67.9± 0.2 65.34± 0.2

G-SAGE 82.5± 0.6 81.9± 0.5 79.2± 0.4 82.9 ± 0.2 61.0± 0.1 58.56± 0.2

G-SAGE + GAT 72.5± 0.4 73.3± 0.6 74.0± 0.4 79.8± 0.2 66.2± 0.1 65.1± 0.2

GCN-AE 81.6± 1.5 81.7± 1.5 80.5± 0.3 83.5± 0.5 66.7± 0.2 65.8± 0.2

GAT-AE 75.7± 1.1 76.0± 1.4 80.0± 0.2 81.9± 0.3 65.9± 0.1 65.4± 0.1

DynamicTriad 80.3± 0.8 79.0± 0.9 77.6± 0.6 80.3± 0.5 63.5± 0.3 62.7± 0.3

Know-Evolve 61.6± 1.1 62.3± 1.5 71.2± 0.5 80.9± 0.2 56.9± 0.2 59.7± 0.2

DynGEM 67.8± 0.6 69.7± 1.3 77.5± 0.3 79.8± 0.5 66.0± 0.2 66.0± 0.2

DySAT 85.7± 0.3 86.6± 0.2 81.0± 0.2 85.8±0.1 70.2± 0.1 69.9± 0.1

TemporalGAT 86.4±0.4 86.8±0.3 82.7±0.2 85.2± 0.2 71.9±0.3 70.3±0.2

pair of nodes as suggested by [7]. We repeat the experiment for 10 times and
report the average of Area Under the ROC Curve (AUC) score.

We evaluate each baseline at each time step t separately, by training the
models up to snapshot t and evaluate the performance at t+1 for each snapshot
up to T snapshots. We report the averaged micro and macro AUC scores over
all time steps for the methods in Table 2 (given in paper [24]).

From the results, we observe that TemporalGAT outperforms state-of-the-
art methods in micro and macro AUC scores. Moreover, the results suggest that
GAT using TCN architecture with minimal tuning outperforms graph represen-
tation methods, which validates the efficient of TCN in capturing the temporal
and structural properties of dynamic graph snapshots.

5 Related Work

5.1 Static Graph Representation Learning

Static graph embedding can be observed as dimensionality reduction approach
that maps each node into a low dimensional vector space which preserves the
vertex neighborhood proximities. Earlier research work for linear (e.g., PCA) and
non-linear (e.g., IsoMap) dimensionality reduction methods have been studied
extensively in the literature [3,23,26].

To improve large-scale graph embedding scalability, several approaches have
been proposed such as [6,7,22], which adopt random walks and skip-gram proce-
dure to learn network representations. Tang et al. [25] designed two loss functions
to capture the local and global graph structure.

More recently, network embedding approaches design models that rely on
convolutions to achieve good generalizations such as [8,11,19,29]. These meth-
ods usually provide performance gains on network analytic tasks such as node
classification and link prediction. However, these approaches are unable to effi-
ciency learn representations for dynamic graphs due to evolving nature.
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5.2 Dynamic Graph Representation Learning

Methods for dynamic graphs representation learning are often an extension of
static methods with an additional component to model the temporal variation.
For instance, in matrix factorization approaches such as [3,26] the purpose is to
learn node representations that come from eigenvectors of the graph Laplacian
matrix decomposition. DANE [16] is based on this idea to update the eigenvec-
tors of graph Laplacian matrix over time series.

For the methods based on random walk such as [7,22], the aim is to model the
node transition probabilities of random walks as the normalized inner products of
the corresponding node representations. In [33], the authors learn representations
through observing the graph changes and incrementally re-sample a few walks
in the successive time step.

Another line of works for dynamic graph representation employ temporal reg-
ularization that acts as smoothness factor to enforce embedding stability across
time steps [36,37]. Recent works learn incremental node representations across
time steps [10], where the authors apply an autoencoder approach that mini-
mizes the reconstruction loss with a distance metric between connected nodes
in the embedding space. However, this may not guarantee the ability of model
to capture long-term proximities.

Another category of dynamic graph representation learning is point processes
that are continuous in time [13,17,28]. These approaches model the edge occur-
rence as a point process and parameterize the intensity function by applying the
learned node representations as an input to a neural network.

More recently, [24] proposed an approach that leverage the most relevant
historical contexts through self-attention layers to preserve graph structure and
temporal evolution patterns. Unlike this approach, our framework captures the
most relevant historical information through applying a temporal self-attention
architecture using TCN and GAT layers to learn dynamic representations for
real-world data.

6 Conclusion

In this paper, we introduce a novel end-to-end dynamic graph representation
learning framework named TemporalGAT. Our framework architecture is based
on graph attention networks and temporal convolutional network and operates
on dynamic graph-structured data through leveraging self-attention layers over
time. Our experiments on various real-world dynamic graph datasets show that
the proposed framework is superior to existing graph embedding methods as
it achieves significant performance gains over several state-of-the-art static and
dynamic graph embedding baselines.

There are several challenges for future work. For instance, learning repre-
sentations for multi-layer dynamic graphs while incorporating structural and
feature information is a promising direction.
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