
J Math Imaging Vis (2017) 57:225–238
DOI 10.1007/s10851-016-0677-1

Temporally Consistent Tone Mapping of Images and Video Using

Optimal K-means Clustering

Magnus Oskarsson1

Received: 15 March 2016 / Accepted: 7 July 2016 / Published online: 21 July 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract The field of high dynamic range imaging
addresses the problem of capturing and displaying the large
range of luminance levels found in the world, using devices
with limited dynamic range. In this paper we present a novel
tone mapping algorithm that is based on K-means clustering.
Using dynamic programming we are able to not only solve
the clustering problem efficiently, but also find the global
optimum. Our algorithm runs in O(N 2 K ) for an image with
N input luminance levels and K output levels. We show
that our algorithm gives comparable results to state-of-the-
art tone mapping algorithms, but with the additional large
benefit of a minimum of parameters. We show how to extend
the method to handle video input. We test our algorithm on
a number of standard high dynamic range images and video
sequences and give qualitative and quantitative comparisons
to a number of state-of-the-art tone mapping algorithms.

Keywords High dynamic range images · High dynamic
range video · Clustering · Dynamic programming

1 Introduction

The human visual system can handle massively different lev-
els in input brightness. This is necessary to cope with the
large range of luminance levels that appear around us—for
us to be able to navigate and operate in dim night light as
well as in bright sun light. The field of high dynamic range
(HDR) imaging tries to address the problem of capturing and
displaying these large ranges using devices (cameras and dis-
plays) with limited dynamic range. During the last years, the

B Magnus Oskarsson
magnuso@maths.lth.se

1 Lund University, PO Box 118, 221 00 Lund, Sweden

HDR field has grown, and today, many camera devices have
built in functionality for acquiring HDR images. This can
be done in hardware using sensors with pixels that can cap-
ture very large differences in dynamic range. It can also be
done by taking several low dynamic range (LDR) images
at different exposures and then combining them using soft-
ware [10,19,45]. Recently the capability of recording HDR
video data has arisen. One important part when working with
HDR data is the ability to visualize it on LDR displays. The
process of transferring an HDR image to an LDR image is
known as tone mapping. Depending on the application the
role of the tone mapping operator (TMO) can be different,
but in most applications the ability to capture both detail in
darker areas and very bright ones is important. Tone mapping
can also be an important component in image enhancement
for, e.g., images taken under poor lighting [34,59].

In [15] a number of criteria that an ideal TMO should
exhibit are listed, namely

1. Temporal model free from artifacts such as flickering,
ghosting and disturbing (too noticeable) temporal color
changes.

2. Local processing to achieve sufficient dynamic range
compression in all circumstances while maintaining a
good level of detail and contrast.

3. Efficient algorithms, since large amount of data need
processing, and turnaround times should be kept as short
as possible.

4. No need for parameter tuning.
5. Calibration of input data should be kept to a minimum,

e.g., without the need of considering scaling of data.
6. Capability of generating high-quality results for a wide

range of video inputs with highly different characteris-
tics.

7. Explicit treatment of noise and color.
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We will in this paper present a new framework for doing
automatic tone mapping of HDR image and video data. Our
procedure addresses all criteria except 2 above. Our approach
is spatially global but temporally local, to ensure temporal
consistency. Even though we do not do any local processing
in the image domain, we believe that our approach gives
a high level of contrast. Depending on how the HDR data
were constructed or recorded, there may be a need for noise
reduction of the data. We do not consider this aspect in this
paper, but concentrate solely on the tone mapping.

We will look at the tone mapping problem as a clustering
problem. If we are given an input image with large dynamic
range, i.e., with a large range of intensity values, we want
to map these intensity values to a much smaller range. We
can describe this problem as a clustering of the input inten-
sity levels into a smaller set of output levels. In our setting
we are looking at an HDR input with a very large input dis-
cretization, and performing clustering in three dimensions is
not tractable. Iterative local algorithms will inevitably lead
to local minima. Instead we work with only the luminance
channel, and we show how we can find the global optimum
using dynamic programming. This leads to a very efficient
and stable tone mapping algorithm. We call our algorithm
democratic tone mapping since all input pixels get to vote on
which output levels we should use. The method has a very
natural extension to handle HDR video input. The material
presented here is partly based on the conference paper [38].

1.1 Related Work

A large number of tone mapping algorithms have been pro-
posed over the years. Some of the first work include [53,58].
One can divide the tone mapping algorithms into global
algorithms, that apply a global transformation on the pixel
intensities, and local algorithms, where the transformation
also depends on the spatial structure in the image. For a
discussion on the differences see [60]. The global algo-
rithms include simply applying some fixed function such as
a logarithm or a power function. In [12] the authors present
a method that adapts a logarithmic function to mimic the
human visual system’s response to HDR input. In [27] the
image histogram is used and a variant of histogram equaliza-
tion is applied but with additional properties based on ideas
from human perception. Using histogram equalization will
often lead to not efficiently using the colorspace, due to dis-
cretization effects.

The local algorithms usually apply some form of local
filtering to be able to increase contrast locally. This often
comes at the cost of higher computational complexity and
can lead to strange artifacts. In [13] the authors use bilateral
filtering to steer the local tone mapping. In [37] a perceptual
model is used to steer the contrast mapping, which is per-
formed in the gradient domain. In [35] the authors address

the problem of designing display-dependent tone mappings.
In [44] the authors propose an automatic version of the zone
system developed by Ansel Adams for conventional pho-
tographic printing. The method also includes local filtering
based on the photographic procedure of dodging and burn-
ing. The global part of their method is in spirit similar to our
approach. In [29] they use K-means to cluster the image into
regions and then apply individual gamma correction to each
segment. For general overview of tone mapping we refer to
the book [43].

Tone mapping is not only important for images, but also
for HDR video. This field has received increasing inter-
est during the last years, much due to the fact that HDR
video data are gaining popularity [22,25,40,52]. Some of
the earliest extensions to video simply apply TMOs image
wise, adding temporal filtering to avoid flickering [22,35,41].
These simple operators can be targeted at real-time process-
ing [23]. A number of operators are based on ideas mimicking
the human visual system, some of which are global, e.g.,
[16,21,39,55] and some local, e.g., [5,28]. Some recent
methods use more involved local processing and filtering
schemes to achieve high local contrast and also reduce noise
[2,4,6,7,14]. For overview and evaluation of video tone map-
ping operators see [15,40].

In this paper, we address the problem of tone mapping as
a clustering problem. This is not an entirely new idea in the
realm of quantization of images. The idea of clustering color
values was popular during the 1980s and 1990s, when the
displays had very low dynamic range, and the object was to
take an ordinary 24-bit color image and map it to a smaller
palette of colors that could be displayed on the screen. In this
case there have been a number of algorithms that use variants
of K -means clustering, see [8,47,48]. Here the clustering
was done on three-dimensional input, i.e., color values. The
algorithms used variants of the standard K -means [31] to
avoid local minima. The number of input points was quite
small, and the number of output classes, i.e., the palette, was
relatively small so these methods worked well, but (as shown
in Sect. 6.2) they are prone to get stuck in local minima, when
the size of the problem increases.

2 Problem Formulation

We will begin by formulating our clustering problem for a
luminance input image. Then, we will describe how this can
be applied to RGB images and video inputs in the following
sections. Let us consider the following problem. We are given
an input gray value image, I (x, y), with a large number (N )

intensity levels. We would like to find an approximate image
Î (x, y) with a smaller number (K ) intensity levels, i.e., we
would like to solve

123



J Math Imaging Vis (2017) 57:225–238 227

min
c1,c2,...,cK

||I − Î ||2, (1)

where

I (x, y) ∈ {u1, u2, . . . , uN } (2)

and

Î (x, y) ∈ {c1, c2, . . . , cK }. (3)

If we calculate the histogram corresponding to the input
image’s distribution, we can reformulate the problem as:

Problem 1 (K -means clustering tone mapping) Given K ∈

Z
+ and a number of gray values ui ∈ R with a corresponding

distribution histogram h(i), i = 1, . . . , N , the K -means tone
mapping problem is finding the K points cl ∈ R that solve:

D(N , K ) = min
c1,c2,...,cK

N
∑

i=0

h(i)d(ui , c1, . . . , cK )2, (4)

where

d(ui , c1, . . . , cK ) = min
l

|ui − cl |. (5)

This is a weighted K -means clustering problem. One usually
solves it using some form of iterative scheme that converges
to a local minimum. A classic way of solving it is alternating
between estimating the cluster centers cl and the assignment
of points ui to clusters. If we have assigned n points ui to a
cluster l, then the best estimate of cl is the weighted mean

c{1,...,n} =

∑n
i=1 h(i)ui

∑n
i=1 h(i)

. (6)

For ease of notation we will henceforth use the notation cl

for cluster number l or c{1,...,n} for the cluster corresponding
to points {u1, . . . , un}. The contribution of this cluster to the
error function (4) is then equal to:

f (u1, . . . , un) =

n
∑

i=1

h(i)(ui − c{1,...,n})
2. (7)

The assignment that minimizes (4) given the cluster centers
cl is simply taking the nearest cl for each point ui . One can
keep on iteratively alternating between assigning points to
clusters and updating the cluster centers according to (6). It
can easily be shown that this alternating scheme converges
to a local minimum, but there are no guarantees that this is
a global minimum. In fact for most problems, it is highly
dependent on the initialization. There are numerous ways

of initializing. See [50] for an extensive review of K -means
clustering methods.

The K -means clustering problem is in general NP-hard,
for most dimensions, sizes of input and number of clusters,
see [1,9,33,57] for details. However, since the points we
are working with are one-dimensional, i.e., ui ∈ R , we can
actually find the global minimum of problem 1 using dynamic
programming. This is what makes our method tractable. In
the next section we will describe the details of our approach.
We will in Sect. 4 describe how we use our solver to construct
a tone mapping method for color images, and in Sect. 5 how
we extend it to video input.

3 A Dynamic Programming Scheme

Problem 1 is a weighted K -means clustering problem, with
data points in R. We will now show how we can devise a
dynamic programming scheme that accurately and quickly
gives the minimum solution to our problem. For details on
dynamic programming see, e.g., [24].

We use an approach similar to [3,57] and modify it to
fit our weighted K -means problem. We will now show the
recurrence relation for our problem:

Theorem 1 For any n > 1 and k > 1 we have

D(n, k) = min
k≤i≤n

(D(i − 1, k − 1) + f (ui , . . . , un)). (8)

Proof Since our data points are one-dimensional, we can
sort them in ascending order. Assume that we have obtained
a solution D(n, k) to (4) and let ui be the smallest point that
belongs to cluster k. Then it is clear that D(i − 1, k − 1) is
the optimal solution for the first i − 1 points clustered into
k − 1 sets. ⊓⊔

Equation (8) defines the Bellman equation for our dynamic
programming scheme and gives us our tools to solve prob-
lem 1. We iteratively solve D(n, k) using (8) and store the
results in an N × K matrix. The initial values for n = 1 or
k = 1 are given by the trivial solutions. We can read out the
optimal solution to our original problem at position (N , K ) in
the matrix. The clustering and the cluster centers of the opti-
mal solution are then found by backtracking in the matrix. In
order to efficiently calculate D(n, k) we need to be able to
iteratively update the function f from (7). We start by cal-
culating the cumulative distribution H(i) of h(i), given by

H(i) =

i
∑

j=1

h( j), i = 1, . . . , N . (9)
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Algorithm 1 K -means clustering using dynamic program-
ming
1: Given input points {u1, . . . , uN }, a distribution h(i), i = 1, . . . , N

and K .
2: Iteratively solve D(n, k) using (8) and (12) for n = 2, . . . , N and

k = 2, . . . , K .
3: Find the centers cl , l = 1, . . . , K and the clustering by backtracking

from the optimal solution D(N , K ).

Theorem 2 For a point set {u1, . . . , un} the error contribu-

tion of those points can be updated by

f (u1, . . . , un) =

n
∑

i=1

h(i)(ui − c{1,...,n})
2 (10)

=

n−1
∑

i=1

h(i)(ui − c{1,...,n−1})
2 (11)

+
h(n)H(n − 1)

H(n)
(un − c{1,...,n−1})

2,

(12)

where the weighted mean of the point set {u1, . . . , un} is

updated by:

c{1,...,n} =
h(n)un + H(n − 1) · c{1,...,n−1}

H(n)
. (13)

Proof We can, without loss of generality, assume that we
have transformed the coordinates so that c{1,...,n−1} = 0 and
hence

∑n−1
i=1 h(i)ui = 0. This gives according to (13):

c{1,...,n} = h(n)un/H(n), (14)

giving us

f (n) =

n
∑

i=1

h(i)(ui − c{1,...,n})
2 (15)

=

n
∑

i=1

h(i)

(

ui−
h(n)un

H(n)

)2

. (16)

We can write this as

f (n) = f (n − 1) + h(n)

(

un −
h(n)un

H(n)

)2

(17)

= f (n − 1) + h(n)u2
n

H(n − 1)2

H(n)2 . (18)

The first part can be simplified as

f (n − 1) =

n−1
∑

i=1

h(i)

(

ui −
h(n)un

H(n)

)2

(19)

=

n−1
∑

i=1

h(i)

(

u2
i − 2ui

h(n)un

H(n)
+

h(n)2u2
n

H(n)2

)

(20)

=

n−1
∑

i=1

h(i)u2
i +

H(n − 1)h(n)2u2
n

H(n)2 . (21)

Combining (17) and (19) then yields

f (n) =

n−1
∑

i=1

h(i)u2
i +

H(n − 1)h(n)2u2
n+h(n)u2

n H(n − 1)2

H(n)2

(22)

=

n−1
∑

i=1

h(i)u2
i +

H(n − 1)h(n)u2
n

H(n)

(h(n) + H(n − 1))

H(n)

(23)

=

n−1
∑

i=1

h(i)u2
i +

h(n)H(n − 1)

H(n)
u2

n . (24)

⊓⊔

Without using (12) each entry D(n, k) would take n2 iter-
ations to calculate, and the total complexity would become
N · K · N 2 = N 3 K . However using (12) we can compute
f (u1, . . . , un) in constant time, and this gives a total com-
plexity of N 2 K .

4 Tone Mapping of HDR Color Images

The discussion in the previous section was concerned with
grayscale images. In this section we will describe the whole
algorithm for an HDR color input image. We assume an RGB
input image. Algorithm 1 is based on that the input points ui

are one-dimensional. There are a number of ways in which
one could apply the clustering on a color image, including
working in numerous different color space representations.
We will here describe two fast, efficient and color-preserving
methods. They are both based on running Algorithm 1 on the
luminance channel.

We start by estimating the intensity channel Igr from
the RGB image. One could use several estimates of the
intensity, such as estimating the luminance using a standard
weighted average. We have found however that our method
performs best when we use the maximum of the three chan-
nels as our intensity. We then do a preprocessing step by
taking the logarithm of Igr, giving us Ilog. We can then run
Algorithm 1. When we have clustered the intensity channel
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into the desired K levels, we calculate our transfer function
F(s) : {u1, . . . , uN } → {1, . . . , K } by finding the nearest
neighbor of each input level s:

F(s) = arg min
l

|cl − s|. (25)

The output image Iout is then constructed in one of two ways,

I ch
out = F

(

I ch
log

)

, (26)

or

I ch
out =

I ch

Igr
· F(Igr), (27)

where ch denotes the color channel, i.e. , R, G or B. Equa-
tion (26) simply applies the function F on the whole RGB
image pixel-wise, whereas (27) applies the function F on
the intensity channel, and then each color channel is given
by multiplying with the color weight of each pixel. Using
(27) corresponds to the way that was proposed in [49]. The
different steps are summarized in Algorithm 2. Using equa-
tion (26) usually gives very good results, but can in some
cases give somewhat subdued colors. Using equation (27)
on the other hand will in general give more saturated colors,
but can in some cases give exaggerated colors. This has been
noted before, and in [54], the suggestion was to instead use

I ch
out =

(

I ch

Igr

)q

· F(Igr), (28)

where q controls color saturation. It can actually be shown
that (26) actually corresponds closely to (28) for a special
choice of q, [36].

Algorithm 2 Democratic Tone Mapping (DTM)
1: Given a high bit color input image: Iin

2: Calculate the intensity channel Igr of Iin .
3: Take the log to get Ilog = log Igr
4: Calculate the histogram h(s) of Ilog .
5: Find the centers cl using Algorithm 1.
6: Estimate F(s) : ui → cl using nearest neighbors.

7: I ch
out = F

(

I ch
log

)

or I ch
out = I ch

Igr
· F(Igr).

In Fig. 1 the two extreme cases are exemplified for two
test images. The top shows the result of running Algorithm 2
using (26), and the middle row shows the result of using
(27). For the left image the colors are better reproduced in
the middle image, but for the right image the top row is better.
A simple way of controlling the color is taking a weighted
average of the two outputs. This is shown in the bottom of
Fig. 1. For the example images that we have tested, we have

Fig. 1 The figure shows the different color outputs for two example
images. Top shows the result of running Algorithm 2 using (26), the
middle shows the result of using (27), and the bottom row shows the
output using a linear combination of the two (in this case 0.7·(26)+0.3·

(27)). For the left image the colors are better reproduced in the middle

row, but the right image is better in the top row. The bottom row shows
the linear combination, which gives a very good compromise for the
example images that we have tested

found that this gives a good trade-off. In [36] a different
choice of color correction model was suggested, namely

I ch
out =

((

I ch

Igr
− 1

)

q + 1

)

· F(Igr), (29)

where again q controls the color saturation. They further sug-
gest choosing q as a certain sigmoid function of the contrast
factor of the tone mapping function. We have tried various
versions of this, but found that they give over-saturated col-
ors for our tone mapping function. In Fig. 2 example outputs
are shown. Here the luminance preserving sigmoid func-
tion was chosen, and the slope of the tone mapping function
was used as contrast factor (see [36] for details). Since our
tone mapping function is piece-wise constant, the slope is
zero everywhere. But a natural choice of slope is to use
the derivative of a continuous piece-wise linear function as
approximation.

5 Tone Mapping of HDR Video

The tone mapping procedure described in the previous sec-
tions can easily be extended to efficiently handle video input.
The most basic approach is to run Algorithm 2 on every
frame. We will modify this approach in two ways, to give an
efficient and temporally coherent output. First of all one can
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Fig. 2 The figure shows the different color outputs for two example
images using the color model (29). The luminance preserving sigmoid
function was chosen, and the slope of the tone mapping function was
used as contrast factor (see [36] for details). The right image suffers
from over-saturation of colors

notice that the most time-consuming step of Algorithm 2 is
running the dynamic programming. The complexity of this
depends on the number of input bins and output bins, but
not on the image size since it uses the distribution of gray
values. This means that it would be just as costly to run the
dynamic programming on one frame as it would be to run it
on the whole sequence. Running it on only one frame will
in many cases lead to unrobust behavior. Using it on the
whole sequence will on the other hand lead to not using the
maximum range for individual frames. We suggest using the
distribution of a small number of neighboring frames for each
frame.

For most scenes the gray value distribution will not change
dramatically within a couple of frames. If running times are
a priority, we propose the use of key frames, where the tone
mapping function is estimated for each key frame using the
dynamic programming scheme, and for intermediate frames
the tone mapping function is interpolated linearly between
the two nearest key frames.

Key frames can be chosen either with fixed intervals or
when the gray value distributions differ significantly. A suit-
able metric for determining the difference is the Wasserstein
metric or the Earth mover’s distance (EMD), see [30,56]. For
two finite discrete one-dimensional distributions, represented
by their histograms h1 and h2, the EMD distance d can be
calculated in closed form. If H1 and H2 are the cumulative
distributions of h1 and h2, then

d =

N
∑

i=1

|H1(i) − H2(i)|, (30)

where N is the number of bins in the histograms.
The different steps are summarized in Algorithm 3. Note

that Algorithm 3 is described for an offline scenario, but it
could just as easily be run as an online algorithm for a real-
time application, where the key frames are estimated online.
In the experiments in the paper, we used a fixed distance of
∆t = 20 frames between key frames. We further used n = 1
(i.e. , the key frame histogram is based on three frames). We
need to estimate the two neighboring key frames to linearly

Algorithm 3 Democratic Tone Mapping of Video (DTMV)
1: Given a high bit color input video: Iin(x, y, t)

2: Determine a number of key frames at times t = ak (either with fixed
difference ak+1 − ak = ∆t or using the EMD distance (30).

3: For each key frame calculate the transfer function Fk(s) using Algo-
rithm 2, based on the gray value distribution of a set of 2n + 1
neighboring frames {Iin(x, y, ak − n), . . . , {Iin(x, y, ak + n)}.

4: For each frame Iout(x, y, t), linearly interpolate the transfer function
Ft (s) using the two nearest key frames, k and k + 1,

Ft (s) = wk Fk(s) + wk+1 Fk+1,

with wk = (t − ak)/(ak+1 − ak) and wk+1 = 1 − wk .
5: The output frame is computed in the same way as in Algorithm 2,

I ch
out = Ft (I ch

log) or I ch
out = I ch ·

exp(Ft (Igr))

exp(Igr))
.

interpolate between them. This means that we get a lag of
20 + 1 = 21 frames, which for many applications is not a
problem.

6 Results

We have implemented our tone mapping algorithm and con-
ducted a number of tests. First we show in Sect. 6.1 that our
method gives a substantially better optimum compared to
standard K-means clustering. In Sect. 6.2 we study the time
complexity of our algorithm, and then in Sect. 6.3, we show
results on a set of standard HDR images and compare with a
number of different tone mapping algorithms. We have con-
sistently used K = 256 in our experiments, corresponding to
8-bit output, but this could be set to any output quantization
you like. In Sect. 6.4 we test our algorithms on HDR video
input.

6.1 Comparison with Standard Iterative K -means

A standard iterative K -means algorithm will converge to a
local minimum. Algorithm 1 will converge to the global min-
imum, but one may ask how often the local iterative scheme
gets stuck in a local minimum, and how far this is from the
global optimum. In order to investigate this we did some
simple qualitative experiments where we ran Algorithm 1
on an input image (with 5000 gray levels). Our hypothesis
is that for larger K the ordinary K -means will get stuck in
local optima. To check this, we then ran the standard iterative
K -means clustering and compared the resulting solution to
the global optimum. We repeated this for a large number of
runs with random initialization. We tried this for a smaller
K (= 5) and a larger K (= 256). In Fig. 3 the results are
shown. It shows at the top, histograms over the l2 differences
between the local solution for the cluster centers and the true
solution. The center points were of course sorted before the
norm was taken. Also shown are plots of the resulting error
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energy (4) for the different runs, with the global optimum also
plotted. The figures clearly show that in this case K -means
finds the global optimum for the smaller K , but there was
a large difference between the local solutions and the true
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Fig. 3 Comparison between standard K -means and our optimal
approach using K = 5 clusters (Left) and K = 256 clusters (Right).
Top shows histograms over the l2-norms of the differences between the
global optimum and local optimums (based on 200 random initializa-
tions of standard K -means.) Bottom shows the final energy of the 200
solutions, with also the global optimum depicted in solid green. One
can see that for K = 5 we get very similar results, and the local opti-
mization leads to solutions close to the global one in most cases. For
K = 256 on the other hand, the local optimization gives solutions far
from the optimum, both in terms of the actual solution and the final
error

solution for the large K , and in no case was the true opti-
mum found using the local iterative method (right of Fig. 3).
To further investigate the solutions we constructed silhouette
plots [46] that can be seen in Fig. 4. For the small K there
is little difference, but for the large K the optimal solution
has a more even silhouette than the example run, based on
standard K -means. For visibility purposes only five random
clusters out of the 256 are shown. In Table 1, statistics from
the silhouettes are shown. The table shows the mean and
standard deviation of the silhouettes, for the optimal method
compared to three runs of standard K -means. Again one can
see that there is little difference for K = 5, but for K = 256,
the optimal algorithm achieves less spread than standard
K -means.

Table 1 Statistics from the silhouette plots

Method K = 5 K = 256
Mean Std Mean Std

Optimal 0.584 0.0694 0.579 0.0601

Standard K -means #1 0.584 0.0708 0.576 0.1297

Standard K -means #2 0.584 0.0708 0.570 0.1063

Standard K -means #3 0.584 0.0708 0.572 0.1147

The table shows the mean and standard deviation of the silhouettes,
for the optimal method compared to three runs of standard K -means.
For K = 256, the optimal algorithm achieves less spread than standard
K -means

Fig. 4 Silhouette plots from
the different clustering
examples. Left shows the five
clusters, when K = 5. Top

shows one run of standard
K -means, and bottom shows our
optimal method. In this case
both methods give very similar
results, and both show balanced
clustering silhouettes. Right

shows the clustering when
K = 256. Top is again one run
of standard K -means, and
bottom is our method. For
visualization purposes, only a
random five of the 256 clusters
are shown. One can see that in
this case, our method gives more
balanced silhouettes than
standard K -means
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Fig. 5 Left shows execution time for running the complete Algorithm 2
as a function of the output discretization K . Right shows the execution
time as a function of the square of the input discretization N . The plots
follow the predicted behavior of the algorithm, i.e. , linear in the number
of output bins K and quadratic in the number of input bins N

As a final check we calculated Fleiss’ kappa index [17].
This measures how well a set of different clusterings agree,
on a scale where a value that is negative or close to zero
indicates low agreement, and a value close to one indicates
high agreement. In this case we got 0.96 for K = 5, which
means that all the clusterings from the different runs (includ-
ing the optimal solution) agree to a very high extent. For
K = 256 the Fleiss’ kappa index was equal to 0.05, with
little agreement. All the different measures point in the same
direction that for the high-dimensional case that we are inter-
ested in, the optimal dynamic programming gives a much
better solution than standard K -means. For our tone map-
ping application, the choice of K = 256 is a natural one, but
one could still ask whether the number of clusters could be
chosen by other means. One way of selecting K is by inves-
tigating the so-called gap statistic [51]. For the images that
we have tested, we get a much lower value than 256 if we
look at the gap statistic, typically around 5. This probably
reflects more of the global modality of the distribution, than
the smaller characteristics of the distribution that we want to
capture. It does suggest that if speed is of very high priority,
a smaller K could be chosen, and then some simpler inter-
polation scheme could be used in between the clusters. We
have however not investigated this further.

6.2 Algorithm Complexity and Stability

Next we wanted to check whether the total algorithm fol-
lowed the expected complexity. In order to do this we ran
Algorithm 2 on a randomly generated input image and var-
ied the number of input gray levels N and the number of
output gray levels K . Our implementation was done in MAT-
LAB, with the most time-consuming step, i.e., the dynamic
programming part, done using compiled mex-functions. The
MATLAB and mex files can be downloaded from [11]. All
tests were conducted on a desktop computer running Ubuntu,
with an Intel Core i7 3.6 GHz processor. The results are
shown in Fig. 5, where the respective dependences on K and
N are shown. Here we set K = 256 when N varied, and

Fig. 6 The figure shows cutouts from the results on (top to bottom)
NancyChurch3, Rosette and NancyChurch1. HDR radiance maps cour-
tesy of Mantiuk [20] and Debevec [42]. The figure shows from left to
right [35], [44] and our method. One can see that the compared methods
suffer from over-saturation, color artifacts and loss of detail. The results
are best viewed on screen

N = 2000 when K varied. The most time-consuming part
of the algorithm is the dynamic programming step, and this
is linear in K and quadratic in N which is validated in the
graph.

6.3 Results on HDR Images

We have tested our method on a number of HDR input images
and compared with a number of standard tone mapping algo-
rithms. The images were collected from R. Mantiuk [20] and
P. Debevec [42]. We used the HDR image tool [32] to do
the processing. It contains implementations of a number of
tone mapping algorithms. Throughout our tests, we have only
used the default parameter settings as supplied by Luminance

HDR. It is probably so that in some cases better results can
be found by tweaking the parameters manually, but since our
method does not contain any parameters and the goal for us
was to have an automatic system we opted for the default
parameters. We have compared our method to the methods
of [12,13,35,37,44]. Of these we found that [35] and [44]
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Fig. 7 The result of running our Algorithm 2 on a number of HDR
images. No parameters need to be set to produce the output. The results
are best viewed on screen. HDR radiance maps courtesy of Debevec [42]
and Mantiuk [20]

gave significantly better results over the set of test images.
Our method gave very similar results to these two methods.
In Fig. 6 we show magnified cutouts from three example
images. Here we can see that the two compared methods
(on the left) exhibit problems with over-saturation, loss of
detail resolution and color artifacts. In Fig. 7 the output of
our algorithm is shown for a number of different input HDR
images.

Throughout our tests we used a fixed discretization (N =

5000) for the input intensity distribution. We have experi-
mented with higher values of N but this does not give any
noticeable effects. Further more, in our algorithm, empty bins
are removed before the dynamic programming step, and the
complexity of the algorithm will only depend on the num-
ber of non-empty bins. Sampling the input distribution with
higher N will result in slightly finer modeling of the input
luminance distribution, but most added bins will be empty.
(So in this sense the complexity depends mostly on the actual
input distribution and not on the fixed value of 5000).

Table 2 The tested HDR sequences from [25,40]

Sequence Resolution Frames Time (s) Framerate (fps)

Window 720p 236 49.8 4.7

Hallway 720p 331 51.6 6.4

Hallway 2 720p 351 58.3 6.0

Students 720p 251 62.5 4.0

Driving 720p 151 55.8 2.7

Exhibition 720p 189 44.8 4.2

The table shows the processing time for the tone mapping and the result-
ing framerate

6.4 Results on HDR Video

We have run our algorithm on a number of test HDR videos
from [25,26,40], that were also used in the evaluation in [15].
An overview of the sequences can be seen in Table 2. We
used the same parameter settings for all input videos. The
number of input bins was fixed at N = 5000. We used seven
neighboring images to estimate the key frame gray value dis-
tributions, and we used a fixed distance of 20 frames between
key frames. We then ran Algorithm 3. In Fig. 9 the output
of two of the frames for a number of sequences is shown.
Even though the luminance greatly changes both spatially
and temporally, we achieve significant contrast overall. We
do not experience any flickering, color artifacts or ghost-
ing. The dynamic programming solver was the same as for
the still images, i.e. , a mex MATLAB implementation. The
rest of the steps in Algorithm 3 were implemented in MAT-
LAB. The total running times for our tone mapping on the
different test sequences are shown in Table 2. The result-
ing corresponding framerates are also shown. In order to
investigate the time dependence of our algorithm further, we
conducted the same experiment as described in [15]. In this
test, the output intensity for two spatial locations is plot-
ted as functions of time or frame number. We chose the
same sequence (the student sequence) and the same two
locations as in [15], corresponding to two points with dif-
ferent temporal behavior. Four frames from our output are
shown in Fig. 8 with the two points overlaid in red and
green, respectively. The intensities for the two points are
shown in Fig. 10. One can see that in this case there is no
apparent flickering, as well as no saturation or overshooting
issues.

We have also done comparisons to a number of state-of-
the-art HDR video tone mapping algorithms. We used four
sequences from the dataset of Froelich et al. [18], namely
Poker fullshot, Smith hammering, Cars fullshot and Showgirl

2.
We have compared our results with three state-of-the-

art video tone mapping algorithms, the zonal brightness
coherency method of Boitard et al. [7], the temporally coher-

123



234 J Math Imaging Vis (2017) 57:225–238

Fig. 8 Four frames from the output of Algorithm 3 with the student sequence as input. Also overlaid in red and green are the two locations whose
time dependence is shown in Fig. 10

Fig. 9 The figure shows two frames (left and right, respectively) of
the output from Algorithm 3, using (from top to bottom) the window

sequence, the hallway sequence, the hallway 2 sequence, the driving

sequence and the exhibition sequence. The results are best viewed on
screen

ent local tone mapping method of Aydin et al. [2] and the
real-time noise-aware tone mapping of Eilertsen et al. [14]. In
Fig. 11 some resulting output frames are shown, with magni-
fied cutouts. All methods generally give outputs with overall
good brightness and contrast, with little temporal flickering
and artifacts. Due to the local filtering of the compared meth-
ods, they exhibit stronger local contrast, but this can in some
cases lead to artificial details and cartoonishness. We have
also conducted a qualitative subjective comparison between
the different tone mapping operators. We follow the setup
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Fig. 10 The time dependence of the output intensity at the two points
shown in Fig. 8 (indicated by the red and green dots). The graph
shows the intensity that results from running Algorithm 3 on the stu-

dent sequence. One can see that there are no apparent problems with
flickering, overshooting or over-saturation for these points

in [14], where a number of persons evaluated the four test
sequences, with respect to artifacts and image quality. Specif-
ically the tone mapping operators were graded on overall
brightness, overall contrast, overall color saturation, tempo-
ral color consistency, temporal flickering, ghosting, excessive
noise and detail reproduction. We used a 32” 1920 × 1080
BenQ BL3200PT LCD monitor, with a peak luminance of
300 cd/m2. The sequences were shown double blind in ran-
dom order to ten persons, who graded them according to
the above scale. The results can be seen in Fig. 12, where
the results for the four tested tone mapping operators are
shown, from top to bottom our method, Aydin et al. [2],
Boitard et al. [7] and Eilertsen et al. [14]. One can see that
all methods introduce very little artifacts. There is slightly
more variation in the evaluation of the image characteristics,
which can be expected. One can see that our method com-
pares favorably with the other state-of-the-art methods. Note
that our method is the only global method of the four tested
algorithms.

7 Conclusion

We have in this paper presented a novel tone mapping algo-
rithm that is based on K -means clustering. We solve the
clustering problem using a dynamic programming approach.
This enables us to not only solve the clustering problem
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Fig. 11 Individual frames from the sequences in [18]. Top two rows

show the output from our method, with magnified sections. The next

two rows show the result of Eilertsen et al. [14], and the lower two

rows show the result of Aydin et al. [2]. The competing methods give
in some areas slightly higher local contrast, but also suffer from some
artifacts. In the highlights of the Cars fullshot sequence, both Aydin and

Eilertsen show color saturation artifacts. In the Showgirl 2 sequence,
the local contrast amplification of Aydin gives rise to the appearance of
facial scarring. In the challenging Smith hammering sequence, Aydin
again has problems with saturation and Eilertsen lacks medium-level
contrast at the cost of having high detail contrast. This gives the fire a
very artificial color appearance. The results are best viewed on screen
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Fig. 12 The result of the subjective evaluation of the four tested tone
mapping algorithms. The figure shows from top to bottom the result
using our method, Aydin et al. [2], Boitard et al. [7], and Eilertsen et al.

[14]. All methods give satisfactory results, with minor variations. Note
that our method is the only purely global method

efficiently but also find the global optimum. The clustering
algorithm runs in O(N 2 K ) for N input luminance lev-
els and K output levels. We have shown how this can be
used to tone map both HDR color image and video data.
Our algorithm gives comparable result to state-of-the-art
tone mapping algorithms and with the large benefit of min-
imal need for parameter setting. In some cases in HDR
imaging it is beneficial to be able to adjust the output
manually, and some of the compared local methods could
be tuned to get better effect in local color and contrast.
But in many cases a totally automatic procedure is highly
desirable.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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