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In decision making, dorsal and ventral medial prefrontal cortex show a sensitivity to key decision variables, such as reward prediction

errors. It is unclear whether these signals reflect parallel processing of a common synchronous input to both regions, for example from

mesocortical dopamine, or separate and consecutive stages in reward processing. These two perspectives make distinct predictions about

the relative timing of feedback-related activity in each of these regions, a question we address here. To reconstruct the unique temporal

contribution of dorsomedial (dmPFC) and ventromedial prefrontal cortex (vmPFC) to simultaneously measured EEG activity in human

subjects, we developed a novel trialwise fMRI-informed EEG analysis that allows dissociating correlated and overlapping sources. We

show that vmPFC uniquely contributes a sustained activation profile shortly after outcome presentation, whereas dmPFC contributes a

later and more peaked activation pattern. This temporal dissociation is expressed mainly in the alpha band for a vmPFC signal, which

contrasts with a theta based dmPFC signal. Thus, our data show reward-related vmPFC and dmPFC responses have distinct time courses

and unique spectral profiles, findings that support distinct functional roles in a reward-processing network.
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Introduction
The medial prefrontal wall is important for reward-guided deci-
sion making, including learning and evaluating the incentive

value of cues and actions (Rushworth et al., 2007, 2011; Schoen-
baum et al., 2009; Wallis and Kennerley, 2010; Alexander and
Brown, 2011; O’Doherty, 2011). Two key subregions are a ventral
portion beneath the genu of the corpus callosum (vmPFC; in
particular medial area 10) and a dorsal portion that encompasses
dorsal anterior cingulate cortex (dmPFC; in particular area 24,
sometimes referred to as dACC; Ongür and Price, 2000; Rush-
worth and Behrens, 2008; Haber and Behrens, 2014). Evidence
that both regions are important in reward processing disguises
potential unique and temporally dissociable contributions to
reward-guided learning.
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Significance Statement

Multiple subregions of the medial prefrontal cortex are known to be involved in decision making and learning, and expose similar

response patterns in fMRI. Here, we used a novel approach to analyzing simultaneous EEG-fMRI that allows to dissociate the

individual time courses of brain regions. We find that vmPFC and dmPFC have distinguishable time courses and time-frequency

patterns.
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The anatomical connectivity and cytoarchitecture of these
two regions show a clear demarcation (Ongür and Price, 2000;
Haber and Behrens, 2014). However, unambiguous functional
dissociation is more problematic, with conflicting accounts pro-
posing overlapping functions (Rangel and Hare, 2010; Rush-
worth et al., 2011). In human functional MRI (fMRI) studies,
vmPFC and dmPFC are often coactivated, but show anticorre-
lated activation patterns (FitzGerald et al., 2009; Hare et al., 2011;
Nicolle et al., 2012; Boorman et al., 2013; Hauser et al., 2014a).
Indeed, the observation that coactivation of multiple areas is
common in reward processing (Vickery et al., 2011) renders it
difficult to ascribe a specific functional role to a single area.

Coactivated brain regions can emerge from two opposing
principles: Two brain regions may receive inputs from the same
source (such as dopaminergic midbrain), and synchronously
process the same information with similar temporal patterns.
Alternatively, coactivation of multiple regions in human neuro-
imaging studies may reflect a temporal sluggishness of an fMRI
signal. Resolving these possibilities would gain strength from a
refinement in methods with better temporal resolution, such as
EEG or MEG (Hunt et al., 2012, 2013; Hauser et al., 2014b). These
modalities are limited in detecting signals from deep sources,
especially where multiple areas respond to produce overlapping
signals (Fig. 1A). As a consequence, decision-making studies of-
ten restrict themselves to single event-related components, such
as the feedback-related negativity (FRN; Holroyd and Coles,
2002; Walsh and Anderson, 2012) or frontal midline theta (Co-
hen, 2011; Cavanagh and Frank, 2014; Cavanagh and Shackman,
2015), both traditionally associated with the dmPFC. Signals
from vmPFC, however, are only rarely reported using electro-
physiological techniques (Hunt et al., 2012, 2013; Harris et al.,
2013; Lipsman et al., 2014), and are more difficult to localize as
they can be obscured by more prominent signals arising in closer
spatial proximity to recording electrodes.

Here we exploit the trial-by-trial variability in simultaneously
recorded EEG and fMRI signal (Fig. 1B) to determine the unique
contributions of brain regions to the EEG signal, enabling us to
establish the time course of each region’s response profile. We
first show in a simulation how overlapping, correlated, sources
can be misattributed as a singular dorsal midline source. We then
show our technique can resolve time courses of visual and motor
areas. In our main analysis, we dissociate contributions from
vmPFC and dmPFC and show that the reward-locked activation
in vmPFC precedes that of dmPFC. Moreover, we find that dis-
tinct frequency bands are evoked in each region, specifically theta
oscillations within dmPFC and alpha within vmPFC.

Materials and Methods
Participants and task
Twenty-five healthy, right-handed humans (16 females, 29.9 � 7.4 years)
performed a probabilistic reversal learning task while simultaneous EEG-
fMRI was acquired. The study was approved by the local ethics commit-
tee, and all participants gave written informed consent. Data from 17 of
the subjects has been reported previously using different analysis meth-
ods (Hauser et al., 2014b, 2015). Subjects performed a probabilistic re-
versal learning task (Fig. 1C; Hauser et al., 2014a,b, 2015) with two
stimuli that were assigned either 80% or 20% win probability (50 Swiss
Centimes). After 6 –10 correct responses, the reward probabilities re-
versed (average number of reversals: 7.3 � 1.1). The task consisted of 120
trials and 40 null trials. Each trial lasted 9000 ms on average. The cue
stimuli were simultaneously presented for 2500 ms and participants
could respond within 1500 ms and the selected stimulus was then high-
lighted by a frame for at least 1000 ms. After a jittered interval (mean 2750
ms), feedback (framed or crossed coin indicating win or loss) was pre-

sented for 1000 ms, again followed by a jittered intertrial interval (mean
2750 ms, range 2000 – 4000 ms). Further details of the task are provided
by Hauser et al. (2014b).

Trialwise fMRI-informed EEG analysis
To understand the time course of regions activated in the fMRI, we
exploited trial-by-trial variability of the EEG and fMRI signal to test for
consistency in its covariation across modalities. With this approach, we
can determine at each peristimulus time point how much trial-by-trial
BOLD fluctuation within a given region covaries with the EEG signal.
This allows us to make inferences about the activation time course of a
specific brain region. Importantly, allowing multiple correlated sources
to compete for variance in explaining the EEG data renders it possible to
disaggregate the unique contribution of each region separately.

The analysis proceeded in several stages (Fig. 1B):
fMRI-ROI definition and single-trial response estimation. To under-

stand the temporal evolution of a given brain region, we first defined
a region-of-interest (ROI) using an ordinary fMRI analysis (cf. fMRI
acquisition and analysis, below). We first derived areas being acti-
vated for a specific contrast. For our initial visual and motor re-
sponses, we used a contrast for the presentation of the cues (GLM1, cf.
fMRI acquisition and analysis, below), and the button presses (GLM2,
cf. fMRI acquisition and analysis, below), respectively. For our main
analysis of dmPFC and vmPFC, we analyzed the reward-prediction
error signals during feedback (GLM1). This contrast activated
dmPFC, vmPFC, posterior cingulate cortex (PCC), and bilateral an-
terior insula (AI; Table 1; Fig. 1D). For each of these areas, we then
extracted the time series for the complete experiment. To do so, we
extracted the first eigenvector of the activation clusters as the time
series, a standard procedure within SPM (“volume-of-interest”
method), which removes nuisance regressors (here: pulse, movement,
slow drifts) from the time series. We then estimated a trial-by-trial
hemodynamic response function (HRF) of each region (detailed de-
scription below).

Multiple linear regression of single-trial fMRI responses onto EEG data.
The estimated HRF response was collapsed across every trial and ROI to
create a design matrix X fmri with dimensions: (nROIs � intercept) � ntrials

(cf. Results, Eq. 1). This was then used to predict the EEG-signal Ye
eeg

across all trials and time points (dimensions: ntimepoints � ntrials). This
was done for every electrode resulting in a contrast estimate Be

eeg for
every time point and electrode (dimensions: nROIs�1 � ntimepoints).
The analysis of the time-frequency data were performed similarly. The
time-frequency-analysis contained one additional dimension (size:
nfrequencies), but the principle of regression across trials was the same.
With this linear regression analysis, we only account for linear relation-
ships between an EEG and BOLD signal, as in previous EEG-informed
fMRI analyses (Debener et al., 2005; Eichele et al., 2005; Baumeister et al.,
2014; Becker et al., 2014; Boecker et al., 2014; Hauser et al., 2014a,b;
Iannaccone et al., 2015).

Group-level random-effects analysis of sensor-level data. Based on these
fixed-effects results for each subject (Eq. 1), we ran a random-effects
analysis calculating the consistency of these beta estimates (Be

eeg) across
subjects, analogous to the summary statistics approach standardly used
in fMRI analysis (Holmes and Friston, 1998). We therefore converted
each individuals’ beta estimates into three-dimensional SPM images (2
spatial dimensions, 1 time dimension) and smoothed the images (image
kernel: 10 mm � 10 mm � 20 ms; Kilner and Friston, 2010). We used
each subject’s individual electrode placement (as defined by the fiducials
FPz, PO9, PO10; cf. EEG acquisition and analysis, below) relative to the
head for optimal alignment across subjects. Random-effects analysis was
then run within SPM and familywise error (FWE) correction was used
for multiple-comparison correction.

Learning model
We used a Bayesian hierarchical learning model, the hierarchical Gauss-
ian filter model (HGF; Mathys et al., 2011, 2014), to fit subjects’ learning.
This model is a Bayesian variation of classical reinforcement learning
models (Rescorla and Wagner, 1972), which accounts for environmental
volatility and adapts a trialwise learning rate accordingly (Behrens et al.,
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Figure 1. Contributions of multiple brain areas to the EEG signal and their parcellation using fMRI-informed EEG. A, fMRI studies of reward processing show a multitude of areas responsive to

reward information, such as reward prediction errors (left). Hypothetically, each area has a specific time course and amplitude in response to a stimulus (middle). Electrical fields elicited by these

individual activation patterns sum spatially and a mixture of these signals defines event-related potentials measured at scalp electrodes, such as frontocentral electrode FCz (right). The contribution

of each area is governed by the strength of its activation and the spatial proximity to the electrode, such that the recorded signal is a weighted sum (Figure legend continues.)
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2007; Mathys et al., 2011). This model has been shown to outperform
standard reinforcement learning models in many instances (Iglesias et
al., 2013; Diaconescu et al., 2014; Hauser et al., 2014a; Vossel et al., 2014).
It is worth noting that the prediction error signals generated by this
model are closely correlated with those generated by more standard re-
inforcement learning models. Unsurprisingly, the cortical regions of in-
terest isolated by the HGF model-based analysis of prediction errors in
fMRI data (Fig. 1D) are similar to those identified using classic reinforce-
ment learning models as shown in previous studies (Gläscher et al., 2009;
Hauser et al., 2015).

EEG acquisition and analysis
EEG was recorded with a sampling rate 5 kHz using MR-compatible
DC-amplifiers (BrainProducts GmbH) with 63 channels and two ECG
electrodes for cardioballistic artifact removal. The scalp electrodes cov-
ered the 10-20-system plus these additional sites: FPz, AFz, AF2, FCz,
CPz, POz, Oz, Iz, F5/6, FC1/2/3/4/5/6, FT7/8/9/10, C1/2/5/6, CP1/2/3/4/
5/6, TP7/8/9/10, P5/6, PO1/2/9/10, OI1/2, and left and right eyes (later-
ally and below the eyes). For a more even coverage, O1�/2� and FP1�/2�

were located 15% more laterally to Oz/FPz. Fz was used as recording
reference. The EEG clock was synchronized with the MRI scanner clock
to ensure stable gradient artifacts for optimal MR artifact removal (Man-
delkow et al., 2006).

The electrode positions of each subject were manually determined
based on the T1 image, which was recorded while the participants were
wearing the EEG cap. The electrode positions of FPz, PO9, and PO10
were then used as fiducials to coregister the electrode positions to the
scalp.

Preprocessing was performed in Analyzer (v2.01, BrainProducts
GmbH). We performed MR-artifact removal using sliding average sub-
traction (Allen et al., 2000), and in-built cardioballistic artifact removal
with manual inspection. The data were resampled to 256 Hz and filtered
(0.1–30 Hz bandpass, 50 Hz notch). Ocular movement artifacts, remain-

ing MR and cardioballistic artifacts were removed using ICA. Trials
exceeding 120 �V were automatically excluded. Continuous EEG was
re-referenced to average reference and subsequently exported to MAT-
LAB (R2013B). Further analysis was performed using customized anal-
ysis scripts as well as fieldtrip (Oostenveld et al., 2011) and SPM M/EEG
(www.fil.ion.ucl.ac.uk; Litvak et al., 2011) routines.

In this paper, we do not focus on the task-evoked potentials (ERPs),
but on the effect of BOLD variability on the EEG signal. For complete-
ness, however, we show the event-related EEG components for rewards
and punishments in Figure 1F.

Time-frequency power-spectra analysis was performed in fieldtrip us-
ing “mtmconvol” with a Hanning taper between 0 and 1000 ms, and 2
and 20 Hz frequency range (5 cycles per time window). The initial trial-
wise segments consisted of 5000 ms long epochs (prefeedback 2000 ms to
postfeedback 3000 ms) to allow an adequate TF-decomposition also in
low frequencies. Power-spectra were baseline-corrected using a segment
1000 – 0 ms before feedback presentation. To correct for multiple com-
parisons in the power spectrum, we used a cluster-based permutation test
across the whole time-frequency spectrum using 1000 iterations and a
cluster forming threshold of t � �2 (cf. Hunt et al., 2013).

fMRI acquisition and analysis
fMRI was recorded in a Philips Achieva 3T scanner and a 32-channel
receive-only coil. The EPI sequence was optimized for minimal ventro-
medial signal dropout (TR: 1850 ms, TE: 20 ms, 15° rotation from AC-
PC; cf. Hauser et al., 2014b for further details). Additionally, a T1 whole-
brain structural image was acquired. fMRI processing and analysis was
performed in SPM 8 (www.fil.ion.ucl.ac.uk). Raw data were realigned to
mean EPI and coregistered to the individuals T1 image. Normalization
was performed using the new segmentation method and deformation
field normalization. Subsequently, the normalized data were spatial
smoothed with a 6 mm FWHM kernel. A more detailed description of the
preprocessing is provided by Hauser et al. (2014a).

The key aim of the fMRI analysis in this paper was not to test
specific novel hypotheses concerning RPE processing during reversal
learning, but instead to generate ROIs that would subsequently be
used to inform EEG analysis. We computed two separate GLMs to
extract our specific ROIs.

GLM1. This GLM served as the primary analysis and was used to
extract the reward prediction error (RPE)-related fMRI activations
for the main joint fMRI-EEG analysis, as well as extract visual areas
for the visual analysis. To isolate functional decision making ROIs, we
entered the trialwise RPEs (variable �1 from the HGF model, which
denotes the difference of the posterior and prior mean) as parametric
modulator at the onset of feedback presentation into the first-level
GLM. Additionally, we entered the following nuisance regressors to
improve model fit: movement parameters, choice value (variable �̂2

of chosen object; the prior mean of the chosen object, reflecting the chosen
value in standard reinforcement learning schemes) at onset of the cue stim-
ulus, and cardiac regressors (Glover et al., 2000; Kasper et al., 2009). The
visual ROI was derived from the cue stimulus presentation regressor in this
GLM.

GLM2. To investigate the hand motor area for our motor analysis,
we computed an additional GLM that contained a regressor for all
button presses and the following nuisance regressors: movement and
pulse. For motor analysis, we entered the temporal and spatial deriv-
atives. We derived the motor activity from an additional, separate
GLM, because the subjects were allowed to choose freely after cue
onset. Thus, the button press regressor was highly correlated with the
stimulus onset regressor, which rendered it difficult to obtain a clear
motor cortex activation.

For all fMRI-only analyses, we applied a peak-FWE threshold at
p � 0.05, k �20 to correct for multiple comparisons. The decision
making network (GLM1) thus consisted of vmPFC and PCC which
were positively associated with RPEs. Additionally, the dmPFC and
bilateral AI were negatively correlated with RPEs (Table 1). In the
analysis of the button presses (GLM2), we found the left handmotor
area to be significantly activated by the first temporal derivative of the
motor responses. This cluster then served as ROI for our motor anal-

4

(Figure legend continued.) (as indicated by hypothetical weights, w1–w5 ) that overweighs

sources close to the recording electrodes (here: dmPFC). B, Trial-by-trial fMRI-informed EEG

analysis disentangles unique contributions of brain areas to the EEG signal. Using the hemody-

namic response, we estimate fMRI activation of each brain region on every trial (left). Within a

multiple-regression analysis, we then determine the peristimulus time when trial-by-trial fMRI

activations best predict the EEG signal (middle). This enables us to recover the unique and

individual time courses of these brain regions (right). However, a caveat is that the approach

remains insensitive to temporal contributions that perfectly covary in the fMRI signal across

trials. C, Participants engage in a probabilistic reversal-learning task where they learn which of

two stimuli had the higher reward probability. One of the stimuli was assigned as the correct

stimulus with a reward probability of 80%. The other stimulus had a reward probability of 20%.

The reward was depicted by a framed 50 Swiss Centimes’ coin, whereas a punishment was

illustrated by a crossed coin. After 6 –10 correct responses, the reward probabilities reversed.

The participants were informed about potential reversals but were not instructed on the timing

of these reversals. D, fMRI activations for RPEs at feedback. Increasing RPEs were linked to

engagement of vmPFC and PCC, whereas decreasing RPEs engendered activation in dmPFC and

bilateral AI. E, Average absolute correlations between ROIs activated in the RPE-fMRI-contrast.

F, Event-related potentials elicited over electrode FCz, separated for rewards (black) and pun-

ishments (red). dmPFC, Dorsomedial prefrontal cortex; lAI, left anterior insula; PCC, posterior

cingulate cortex; rAI, right anterior insula; vmPFC, ventromedial prefrontal cortex.

Table 1. RPE effects in the fMRI-analysis

Contrast Region Hemisphere Cluster size x y z Z-score

RPE vmPFC Bilateral 186 �5 44 �12 6.50

156 �2 57 �5 6.14

PCC Bilateral 184 �2 �52 19 5.89

�RPE AI Right 172 36 18 0 6.25

dmPFC Bilateral 358 6 20 48 6.23

AI Left 27 �30 23 �3 5.92

RPE significantly (de-)activated vmPFC, dmPFC, PCC, and the AI. All these areas were entered into the fMRI-informed

EEG analysis to determine the unique time courses of vmPFC and dmPFC. All coordinates are reported in MNI space.

Areas reported at p � 0.05 FWE-correction, k � 20. RPE, Areas that increase activity with increasing RPEs; �RPE,

areas that increase activity with decreasing RPEs.
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ysis. In the visual analysis (GLM1), we found (in addition to primary
visual areas) an occipitotemporal area containing fusiform gyrus to
be highly active.

To estimate the trial-by-trial response of a given ROI, we first extracted
the BOLD time-series (first eigenvector of the ROI, standard procedure
in SPM “volume of interest” extraction) across the whole experiment.
Nuisance artifacts as captured by our regressors-of-no-interest plus slow
drifts (�128 s) and mean session amplitudes were removed from the
time series.

To estimate the single-trial response amplitude, we up-sampled the
data by factor 10 to a TR of 185 ms (using cubic spline interpolation) and
then time-locked the signals from 0 to 8 s poststimulus. The up-sampling
enabled us to fit the canonical SPM hemodynamic response function
(and its first derivative) to the single-trial up-sampled data using linear

regression. Using this method, we could esti-
mate the amplitude of the HRF on each trial for
each ROI without any overlap with the next
trial (mean trial duration 9 s; compare Fig. 1C),
despite the sparse sampling of the fMRI signal
(TR 	 1850 ms). It is worth noting that a valid
alternative method (particularly important for
experiments with shorter trial durations and
overlapping hemodynamic events) would be to
model all trials in a single general linear model
with HRF-convolved stick functions for each
trial. In practice for our experiment, this pro-
duced very similar parameter estimates to the
approach outlined above.

Dipole simulations
We sought to test (via simulation) whether
equally strong sources placed in vmPFC and
dmPFC would lead to both sources being visi-
ble in a conventional EEG analysis. Dipole sim-
ulations (Fig. 2) were performed using dipole
simulation methods in fieldtrip. We used the
standard template provided in SPM to generate
the conductor tissue. We then used the peaks of
our vmPFC and dmPFC ROIs as the MNI co-
ordinates of our dipoles. The dipole momen-
tum was set to [0 0 1] for dmPFC and [0 0 �1]
for vmPFC. For both separate dipole analyses
(Fig. 2 A, B), we used a fixed, equally strong sig-
nal and added 5% of noise. The same proce-
dure was applied when simulating the two
dipoles together (common simulation; Fig.
2C). For fitting the dipole in the common sim-
ulation (Fig. 2C, right), we used the dipole fit-
ting method in fieldtrip using the same head
model as for the dipole simulation. To fit the
dipole, we fitted one dipole and performed a
linear grid search across the whole volume and
report the best fitting source. We found (Fig.
2C, right) that the common topography for the
mixed simulated dipoles was in fact estimated
to originate solely from dmPFC. Similar results
were obtained when both simulated sources
were assigned with the same dipole momen-
tum (data not shown). Such a localization
method has frequently been used in conven-
tional EEG studies, e.g., in studies investigating
feedback-related negativity (cf. Walsh and An-
derson, 2012). It thus shows the difficulty of
detecting different sources with correlated and
overlapping activation time courses.

Proof of principle: activation time course of
visual and motor areas
To test the validity of our method, we applied it

to a robust activation in left occipitotemporal

cortex (Fig. 3A; containing fusiform gyrus, peak at MNI: x 	 �36, y 	

�61, z 	 �2, t(24) 	 19.02). This area showed strong fMRI activation in

response to the presentation of visual stimuli using a standard fMRI

analysis of stimulus presentation. Our fMRI-informed EEG analysis re-

vealed that the EEG signal was strongly related to the fMRI data extracted

from this visual ROI 
190 ms after stimulus presentation (Fig. 3A, mid-

dle; t(24) 	 4.94, peak-FWE corrected; p 	 0.040 for time window 0 –300

ms poststimulus), with a distinct topography showing its main effect over

occipitotemporal electrodes. This finding is in agreement with a large

body of previous EEG studies which found a distinct event-related signal,

the N1 or N170, active 
170 –200 ms after object presentation (Bentin et

al., 1996; Thorpe et al., 1996; Rossion et al., 2000; Johnson and Ol-

shausen, 2003). Source localization of the N1 to occipitotemporal areas

Figure 2. Overlapping activations of multiple brain areas bias inference and source localization in noninvasive neurophysiol-

ogy. A simulated dipole from the dmPFC (A, right) shows a typical midfrontal topography (left), whereas a simulated vmPFC dipole

(B, right) displays a similar and overlapping topography (left), albeit with a broader spatial distribution reflecting its greater

distance from the sensors. C, The simulation of two, equally strong dipoles in vmPFC and dmPFC (same origins as A and B) result in

a topography, which is strongly dominated by the dmPFC signal (left). Source estimation of this topography, thus, falsely locates a

single dipole in the dmPFC (C, right) and is unable to capture a contribution of the vmPFC.
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in proximity of our functional ROI is widely reported (Hillyard and
Anllo-Vento, 1998; Brem et al., 2006). In addition, the evoked topogra-
phy showed a marked left-lateralization (Fig. 3A), confirming an as-
sumption that the left-lateralized aspects of ordinary N1-topographies
are generated within a left-hemispheric area. It is important to note that
no prior spatial information was entered into our fMRI-informed EEG
analysis and that this EEG scalp topography emerged naturally from the
data. Based on this resulting topography, we then performed a prior-
informed source-localization (cf. Informed source localizations, below)
and found the peak source probability to relocalize within the original
functional ROI (Fig. 3A, right; peak MNI: x 	 �22, y 	 �86, z 	 12).

As further confirmation for our method, we reconstructed the time
course of the motor activity from the handmotor area. Here, we analyzed
the fMRI activation at button press and derived a functional ROI which
included the prominent “� sign” (Yousry et al., 1997), which defines
handmotor area (Fig. 3B; peak activation at MNI: x 	 �36, y 	 �30, z 	

58; z 	 7.08; pFWE � 0.001) and we determined its activity around the
time of button presses in the task. We found that BOLD activation in this
area significantly predicted EEG data between 
 80 ms before and 100 ms
after button press (Fig. 3B, middle; cluster-extent FWE correction p �

0.001 for time window �500 to 500 ms peristimulus; voxel height thresh-
old: t 	 3; peak at 20 ms, t(24) 	 7.70). The topography showed a clear
midcentral distribution in proximity of the handmotor area. Source lo-
calization, again, confirmed the reasonability of our resulting topogra-
phy (Fig. 3B, right; peak MNI: x 	 �34, y 	 �30, z 	 52).

Informed source localizations
To examine the face validity of our analysis, we also localized the topog-
raphies which we received from our fMRI-EEG integration. Importantly,
no spatial information entered into fMRI-informed EEG analysis, and
therefore the method was completely uninformed about the spatial to-
pography that might emerge in sensor-level EEG analysis.

For the source localization of our results, we used the group-level
random effects topographies from our fMRI-informed EEG analysis. For
each ROI, we ran an informed source localization in SPM. We used the
time window that was found to be significant in the main analysis for
the given ROI. The group topographies of the t values during this time
were then inverted. To generate the forward model, we used the mean of
the normalized T1 images of all subjects. As group electrode positions, we
used the mean of the subjects’ individual fiducial positions which was

then coregistered to the mean T1. The model inversion (minimum norm
in combination with a smooth source covariance as provided in SPM:
COH; PST Hanning window; bandpass filter 0 – 48 Hz; Friston et al.,
2008) was performed using a spatially informed, but unrestricted source
localization using the fMRI-ROI as a prior. The prior we entered was the
original ROI cluster, which was initially used for the fMRI-informed EEG
analysis. This prior was adopted because we had strong assumptions on
the origin of the topography and we wanted to evaluate whether the
topography of our analysis confirmed or rejected our initial source local-
ization. This approach leads to a relaxation of the shrinkage priors in this
area, but does not restrict the source to be estimated at any area in the
brain, i.e., it is less restrictive in the predefined region but allows for
whole-brain sources. A striking example of this can be seen in Figure 4D,
where the source localization for vmPFC also picks up a contribution
from PCC, which is known to commonly coactivate with vmPFC in
many studies of reward-guided learning and decision making (Clithero
and Rangel, 2014).

Results
Determining activation time courses of brain regions
Simultaneous acquisition of EEG and fMRI provides a means to
concurrently gather temporal and spatial information related to
cognitive processing (Rosa et al., 2010; Huster et al., 2012). Most
analysis methods rely on trial-by-trial variability of EEG data to
localize the source of ERPs (Debener et al., 2005; Eichele et al.,
2005; Baumeister et al., 2014; Becker et al., 2014; Boecker et al.,
2014; Hauser et al., 2014a,b; Iannaccone et al., 2015). Here, we
exploit a trial-by-trial variability in a local fMRI signal to deter-
mine the temporal activation and oscillatory pattern of specific,
predefined, brain regions in recorded EEG tracings. Underlying
all simultaneous EEG-fMRI analyses is an established assump-
tion that electrical potentials as recorded by EEG, and brain ac-
tivity as measured by the BOLD signal, show an approximately
linear relationship (for review, see Rosa et al., 2010). If a brain
region has an increased fMRI signal at a given trial, its electrical
field potential will therefore also be increased, and vice versa.

Unlike traditional EEG-informed fMRI analyses or EEG
source analyses, the analysis we implement is not meant to reveal

Figure 3. Validation of method in visual and motor areas. A, Left occipitotemporal region showed stimulus-related activations (left). Activity in this region was successfully associated with an EEG

signal between 170 and 220 ms (shaded area depicts cluster-corrected significance) at occipitotemporal electrodes (middle), confirming the sensitivity of our approach (red indicates electrode used

for time plot). Informed source localization confirmed sensitivity of topography (right). B, Second validation of method. Right-handed button presses elicited activation of the left handmotor area

(left), which was found to be active around the time of the button press with a typical midcentral topography (middle). Informed source localization localized again into the motor area (right).
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where in the brain specific EEG signals originate from. Instead,
our fMRI-informed EEG analysis asks which features of the EEG
data are linearly dependent upon trial-to-trial variability in
BOLD responses. By including multiple brain regions simultane-
ously in the same regression model, we can ask a novel set of
questions including whether certain EEG features are better ex-
plained by some region’s activity than others.

We ran a mass-univariate (multiple) regression analysis (Fig.
1B) on EEG data from 25 healthy adults who performed a prob-
abilistic reversal learning task (Fig. 1C) while fMRI was recorded
simultaneously. First, we extracted the fMRI activation of a given
ROI on every trial by deconvolving the local fMRI signal with the
hemodynamic response function. Together with a constant term,
these estimates formed the design matrix derived from the fMRI
data, termed X fmri dimensions: (nROIs � intercept) � ntrials. ROIs
were determined based on conventional fMRI contrasts from
previously designed analyses (cf. Hauser et al., 2014a; visual, mo-
tor, reward prediction errors). Then, for each EEG electrode e, we
ran a separate (multiple) linear regression analysis:

Ye
eeg � Be

eegXfmri � Ee
eeg. (1)

Ye
eeg (dimensions: ntimepoints � ntrials) denotes the preprocessed

EEG data for a given electrode e. The effect sizes Be
eeg (dimensions:

nROIs�1 � ntimepoints) and their errors Ee
eeg (dimensions: ntimepoints

� ntrials) were estimated for each electrode separately using ordi-
nary least-squares regression. The design matrix X fmri remained
constant in the regression on each sensor.

The key idea is that at each EEG sensor, the estimated B matrix
reflects the time course of the electrical contribution from each
region of interest. Crucially, the approach controls for the elec-
trical contributions of other regions of interest to the sensor, as all
regions of interest compete for explained variance in the multiple
linear regression. The trial-to-trial activation of correlated
sources, such as the ones elicited by RPE processing (Fig. 1E), are
sufficiently decorrelated to discern unique contributions to the
EEG signal. However, it is important to bear in mind that this
method is insensitive to common contributions from multiple

regions that have identical temporal and trial-by-trial fMRI pro-
files. EEG parameter estimates were calculated at the first level by
performing the regression separately for each subject. At the sec-
ond level, we calculated the group time course for each ROI by
entering each participant’s beta estimates into one-sampled t
tests, to test for significant deflections from zero across the pop-
ulation. We corrected for multiple comparisons using FWE
correction.

To test the validity of our method, we applied it to two brain
areas which elicit unique and characteristic temporal and topo-
graphical EEG signals, namely visual elicited activation from oc-
cipitotemporal cortex (including fusiform area) and motor
activation from handmotor area (see Materials and methods for
details). The occipitotemporal cortex elicited a strong negative
deflection at left occipitotemporal electrodes, peaking at 190 ms
after stimulus onset (Fig. 3A, middle). This is well in line with the
visual N1/N170 component, often associated with activation in
occipitotemporal regions (Hillyard and Anllo-Vento, 1998; Brem
et al., 2006; Friston et al., 2008). The handmotor area showed a
significant activation at the time of button press with a midcen-
tral topography in proximity of the central sulcus (Fig. 3B). It is
important to note that no information about the timing or to-
pography is provided in our method. The specific time course
and topography thus emerged from the data itself, by identifying
which features of EEG activity covaried with trial-by-trial fluctu-
ations in fMRI activity.

Dissociating medial prefrontal cortex activations: time
courses of vmPFC and dmPFC
Having established the sensitivity of our method, we addressed
our main question of interest, namely the temporal response pro-
file of vmPFC and dmPFC during reward processing.

Participants played a probabilistic reversal learning task (Fig.
1C) where they had to learn reward probabilities based on the
feedback. vmPFC and dmPFC were identified from a RPE con-
trast during feedback in a conventional fMRI analysis (Fig. 1D;
Table 1). vmPFC activity increased with increasing RPEs,

Figure 4. Unique temporal contributions of vmPFC and dmPFC to EEG signal. vmPFC cluster (A) revealed a temporally elongated activity (B) becoming active at 
250 ms after feedback (shaded

area depicts cluster-corrected significance) and uniquely processing information until 
400 ms after feedback with a midcentral topography (C; red indicates electrodes Fz and FCz used for time plot

B). D, Source estimation localized center of topography into vmPFC again (peak at MNI: x 	�8, y 	 40, z 	�14). E, Time-frequency decomposition revealed that vmPFC mainly operates in the

alpha band, from 8 to 12 Hz (thick black line; p � 0.05 using cluster permutation test). The colors indicate the effect of single-trial fMRI responses on the EEG power rather than pure EEG power

signals. dmPFC (F) shows a short, but marked unique activation between 360 and 400 ms after feedback (G). Its topography is typical for dorsofrontal midline areas (H; green indicates electrode FCz).

I, Informed source localization projects topography back to dmPFC (peak at MNI x 	 10, y 	 22, z 	 44). Time-frequency analysis shows that dmPFC elicits a significant activation in the theta band,

from 5 to 8 Hz (J).
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whereas dmPFC showed increased activation to decreasing RPEs.
This confirms the antagonistic activation pattern of these areas,
similar to previous studies (FitzGerald et al., 2009; Hare et al.,
2011; Nicolle et al., 2012; Boorman et al., 2013). Moreover, we
found coactivation of the PCC with the vmPFC, both of them
known to frequently coactivate and as the core of the default
mode network (Raichle et al., 2001). The dmPFC showed coacti-
vations with bilateral AI, again known to coactivate as nodes of
the saliency network (Seeley et al., 2007). To reliably determine
the unique contributions of vmPFC and dmPFC (compare Fig.
1E), we controlled for the joint activation with PCC and AI by
adding them to the EEG multiple regression model as covariates.

We found an unique contribution of vmPFC (Fig. 4A–C) that
extended across a prolonged period postfeedback presentation,
starting as early as 250 ms after feedback onset and remaining
active until 
400 ms poststimulus, peaking at 262 ms (cluster-
FWE corrected: p 	 0.017; voxel-height threshold: t 	 3; correc-
tion time window: 0 – 800 ms). The topography attributed to the
vmPFC had a midcentral distribution and is similar to a simu-
lated topography from the given area (Fig. 2B). This was also
confirmed using an informed source localization, which localized
the topography within the same area (Fig. 4D).

An activation uniquely attributed to dmPFC (Fig. 4F–H)
showed an onset at 
360 ms postfeedback onset, with a strong
peak at 390 ms. This activation terminated at 
400 ms (cluster-
FWE corrected: p 	 0.045; voxel-height threshold: t 	 3; time
window: 300 – 400 ms). The dmPFC showed a midcentral topog-
raphy, similar to our simulated response (Fig. 2A). The topogra-
phy, was successfully reallocated to the dmPFC in the informed
source localization (Fig. 4I).

To examine further for timing differences between vmPFC
and dmPFC, we ran a cross-correlation analysis between the
fMRI-informed EEG-signals for both regions. The cross-
correlation examines the time-shift that maximizes the correla-
tion between two signals and revealed that cross-correlation was
maximal at a lag of 50 ms at electrode AFz. This supports the
notion that the vmPFC precedes dmPFC in terms of activation.

It should be noted that our multiple-regression approach
identifies signals that can be explained over and above the con-
tribution of other brain regions and thus may be biased to pref-
erentially reveal differences rather than common activations. We
therefore conducted additional analyses which do not control for
shared variance (Fig. 5). In these analyses, activation in both
regions became stronger and more extended in time, implying a
common extended component between the regions that may be
masked by our multiple regression approach. vmPFC (Fig. 5A)
activity peaked at 260 ms after feedback remained active until

400 ms (t(24) 	 4.27, p 	 0.003, cluster-FWE corrected for
multiple comparisons; time window: 0 – 800 ms poststimulus).
dmPFC (Fig. 5B) showed a sustained activation from 
300 – 420
ms (t(24) 	 5.68, p 	 0.027, peak-FWE corrected for multiple
comparisons; time window: 0 – 800 ms poststimulus). Impor-
tantly, however a vmPFC response still preceded that seen in
dmPFC supporting the notion that these regions make distinct
temporal contributions to the reward learning process.

Time-frequency analysis of dmPFC and vmPFC activation
To further understand the neural dynamics of vmPFC and
dmPFC, we extended our method and performed our fMRI-
informed EEG analysis on the time-frequency decomposed EEG
signal. We repeated the same analysis as described in equation 1,
but the data vector Ye

eeg was extended by the frequency compo-
nent Ye,f

eeg; that is, regression is not only performed at every elec-

trode and every time bin as before, but also at every frequency
bin. We focus on the time-frequency induced effects of dmPFC
and vmPFC in a subset of midfrontal electrodes which corre-
spond to the electrodes that showed a strong effect of vmPFC, and
dmPFC activity respectively (electrodes Fz, FCz, Cz, C1, C2, FC1,
FC2 for dmPFC, electrodes AFz, Fz, FCz, FC1, FC2, Cz for
vmPFC; Fig. 4E, J, compare bottom right).

Oscillatory correlates of the dmPFC have extensively been in-
vestigated in various cognitive domains with dmPFC often asso-
ciated with theta activation over midfrontal electrodes
(Cavanagh et al., 2011; Cohen, 2011; Cavanagh and Frank, 2014;
Cavanagh and Shackman, 2015; Frank et al., 2015). There is by
comparison little knowledge regarding vmPFC, though first
studies indicate it processes information mainly in alpha and
lower beta bands (Oya et al., 2005; Hunt et al., 2013; Lipsman et
al., 2014).

At the time when dmPFC showed marked activation in the
time domain (360 – 400 ms), we found increased synchronization
in the theta band (Fig. 4J; p 	 0.046, corrected for multiple com-
parisons using cluster permutation). The vmPFC showed a clear
and marked desynchronization mainly in the alpha band (Fig. 4E;
p 	 0.029, corrected for multiple comparisons using cluster per-
mutation) extending around the same time as the unique activa-
tion of vmPFC was apparent.

Discussion
vmPFC and dmPFC form two key regions implicated in decision
making and reward learning. vmPFC is consistently activated in
functional MRI studies of reward processing and decision-
making (Levy and Glimcher, 2012; Bartra et al., 2013; Clithero
and Rangel, 2014). Lesions to this region elicit alterations in

Figure 5. Time course of vmPFC and dmPFC uncorrected for other areas. In our main analy-

sis, we investigated the unique contributions of dmPFC and vmPFC. To investigate the effect of

dmPFC and vmPFC when not controlling for the contributions of the related areas, we analyzed

the vmPFC and dmPFC separately. We found that both signals show sustained activations after

feedback with a similar topography as in our main analysis. This supports an assumption that

activation signals recorded during this time consist of a mixture of dmPFC and vmPFC signals

and are not differentiable by using common EEG/MEG analyses. dmPFC (B) showed a sustained

activation from 
300 to 420 ms (shaded area depicts cluster-corrected significance) and

vmPFC (A) activity peaked at 260 ms after feedback and showed a long lasting activity again

until 
400 ms.
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subjects’ decision making behavior as well as in learning from
reinforcement (Fellows and Farah, 2003, 2007). Single-unit re-
cordings also provide evidence suggestive of a role in motivation
and choice (Bouret and Richmond, 2010; Strait et al., 2014).
dmPFC is likewise activated in fMRI studies of reinforcement
learning and action selection (Behrens et al., 2007; Botvinick,
2007; Hare et al., 2011; Vickery et al., 2011; Kolling et al., 2012;
Boorman et al., 2013; Economides et al., 2014). Combined with
evidence from single-unit recording and lesion studies (Kenner-
ley et al., 2006; Seo and Lee, 2009; Sheth et al., 2012), this has led
to the idea that dmPFC subserves a role in learning from out-
comes, as well as in deploying learnt values in action selection
(Alexander and Brown, 2011; Rushworth et al., 2011). Despite
partially different functional connotations of vmPFC and
dmPFC, both areas consistently tend to coactivate in fMRI stud-
ies of human decision making (FitzGerald et al., 2009; Hare et al.,
2011; Nicolle et al., 2012; Boorman et al., 2013), which has ren-
dered it difficult to understand the relation between these two
regions within the decision making network.

Here in our fMRI analysis we replicated a common finding of
anticorrelated activation profiles of dmPFC and vmPFC, and also
found unique temporal activation profiles for each area. vmPFC
became active as early as 250 ms following a reward outcome and
maintained its activation until 400 ms, an activation also reflected
in a marked alpha desynchronization in the time-frequency do-
main. The dmPFC, on the other hand, showed a much shorter,
but temporally overlapping activity between 360 and 400 ms after
feedback, an activation profile reflected in the theta band.

The medial prefrontal wall as a whole is densely innervated by
mesencephalic dopamine inputs (Lindvall et al., 1974; Bates and
Goldman-Rakic, 1993) rendering it plausible both areas process
the same dopaminergic information, such as prediction errors
(Holroyd and Coles, 2002; Schultz, 2002), based on this common
input with (potentially) a similar time course. A different view-
point assumes vmPFC and dmPFC makes distinct contributions
to decision making (Schoenbaum et al., 2009; Grabenhorst and
Rolls, 2011; Hare et al., 2011; O’Doherty, 2011). This is supported
by evidence that vmPFC calculates option values (Hare et al.,
2011) or stores value expectations (Schoenbaum et al., 2009)
which are then transmitted to other regions including dmPFC
(potentially via a dopaminergic relay; Schoenbaum et al., 2009).
Such a decision-making hierarchy entails vmPFC and dmPFC
should show temporally distinct activation patterns, with vmPFC
activated at an earlier stage than dmPFC. Our findings lend sup-
port to this idea of a preceding vmPFC response that provides a
value signal, which may then be propagated to dmPFC, which in
turn integrates this information into action values for subsequent
action selection.

Our findings demonstrate that vmPFC and dmPFC process
unique information which is functionally dissociable from one
another as well as other coactivated areas. Although we find co-
activation of these regions in conventional fMRI analyses, it is
nevertheless the case that the responsivity of these regions is dis-
sociable in time. Both vmPFC and dmPFC process information
separately, over and above any simultaneous processing of infor-
mation that our method may be less sensitive too. This temporal
separation speaks against the idea that these areas simultaneously
process information purely as predicted by accounts where
reward-related activation is driven by a common input. Rather, it
supports the idea that there is a processing hierarchy instantiated
within the medial prefrontal cortex itself whereby an earlier acti-
vation of vmPFC might be propagated forward to the dmPFC for
further evaluation. However, it will be important to replicate

these findings in animal studies with multisite recordings.
Therein, one can measure region-specific neural activity directly
without having to control for coactivated brain areas. We would
therefore expect to see similar, but temporally extended activa-
tion patterns, as our approach ignores variance shared by multi-
ple ROIs.

Previous EEG studies focused on the FRN (Miltner et al.,
1997; Holroyd and Coles, 2002; Talmi et al., 2013; Sambrook and
Goslin, 2014) as a component which reflects feedback processing
in the dmPFC (Walsh and Anderson, 2012). Interestingly, the
FRN often shows a different temporal activation pattern to our
observed dmPFC signal, as it occurs between 250 and 350 ms after
feedback. This discrepancy may be resolved when we understand
that such ERP components are likely to represent a mixture signal
caused by several areas which are active at approximately the
same time (compare Fig. 1A). It is also likely that the FRN reflects
a mixture of active areas, potentially even a combination of
vmPFC and dmPFC activation. Given our finding that vmPFC is
active at 
250 ms, a mixture of vmPFC and dmPFC activity
would explain the earlier occurrence of the FRN compared with
our dmPFC activation. Moreover, it also explains why previous
source localizations often report more anterior and ventral FRN
origins, even localizing it in proximity of the vmPFC (cf. Walsh
and Anderson, 2012), rendering it likely that a mixture of vmPFC
and dmPFC signal is located between the two sources. Evidence
for this assumption comes from our analysis in which we do not
control for the other regions where we showed a temporally more
elongated signal for the dmPFC, well within the range of the FRN
(Fig. 5). Given that this signal does not emerge when controlling
for other areas, it is clear that this time course does not reflect
activity from dmPFC alone. This also highlights that common
EEG source and scalp analyses often struggle to differentiate tem-
porally related signals. Critically, EEG analyses are less sensitive
to deep sources such as the vmPFC, especially if such signals are
superimposed upon by stronger signals from regions closer to the
scalp. The key advantage of our approach is that we have a signal
that we know originates from vmPFC, rather than inferring on
the signal using an inverse solution. This enables us to clearly
delineate the signals from vmPFC and dmPFC and therefore to
define unique temporal contributions of these areas.

The finding that the dmPFC operates in the theta frequency
band fits with a broad corpus of literature which posits frontal
midline theta as being related to decision making and cognitive
control (Cavanagh and Frank, 2014). One of the difficulties of the
frontal midline theta, however, has been a lack of spatial specific-
ity. Our results show that the dmPFC elicits feedback-related
theta activity, even when controlling for coactivated areas such as
the insular cortex or vmPFC. Much less is known about the tem-
poral and oscillatory aspects of the vmPFC as these signals are
often obscured by other signals with sources closer to the scalp
electrodes. By controlling for the activity of the coactivated re-
gions, we recovered a vmPFC signal that operates mainly in the
alpha band. We note that the few studies that have investigated
vmPFC activity using MEG and intracortical recordings (Oya et
al., 2005; Hunt et al., 2012, 2013; Harris et al., 2013; Lipsman et
al., 2014) have reported similar frequency bands as reported in
our results.

In this study, we show that our fMRI-informed EEG approach
can be of great value for answering questions about the timing of
specific brain regions, and that it is robust against correlated
sources and complementary scalp distributions. Our approach
assumes a linear relationship between amplitude/power and
BOLD signal strength. Although animal studies have suggested
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that the relation between BOLD and local field potentials is partly
nonlinear and frequency-dependent (for review, see Rosa et al.,
2010), a broad corpus of simultaneous EEG-fMRI studies dem-
onstrate that despite simplifying assumptions, linear associations
provide for sensitive and reliable results (Debener et al., 2006;
Rosa et al., 2010). However, it should be noted that a direction-
ality in coupling between EEG frequencies and BOLD is nontriv-
ial (Scheeringa et al., 2011). This may explain why we observed a
negative relationship between EEG alpha power and BOLD in the
vmPFC, similar to previous EEG-fMRI reports ( Lüchinger et al.,
2011; Scheeringa et al., 2011), but opposite to invasive recording
findings (Oya et al., 2005). Moreover, it is noteworthy that our
approach requires a relatively strong trial-by-trial variability of
EEG- and fMRI-signals to determine the specific time courses. In
our main analysis, we analyzed reward and punishment trials
together. A separate analysis of rewards and punishments results
in similar (albeit slightly weaker; data not shown) results for re-
wards, whereas punishment-only trials lack in power to show the
same patterns. An increase in trial number of either kind would
thus be beneficial for future studies.

In summary, we provide evidence for dissociable temporal
patterns of the frontal midline areas dmPFC and vmPFC. Both
areas express dissociable temporal signals with vmPFC preceding
a dmPFC activation. This pattern supports the assumption of a
functional architecture in the medial prefrontal cortex whereby
vmPFC (operating in alpha bands) is involved primarily in valu-
ation and value comparison and precedes dmPFC (operating in
theta), which then uses this information in subsequent trials to
select the most valuable actions.
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