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Abstract

We introduce an effective and efficient method

that grounds (i.e., localizes) natural sentences

in long, untrimmed video sequences. Specif-

ically, a novel Temporal GroundNet (TGN)1

is proposed to temporally capture the evolv-

ing fine-grained frame-by-word interactions

between video and sentence. TGN sequen-

tially scores a set of temporal candidates ended

at each frame based on the exploited frame-

by-word interactions, and finally grounds the

segment corresponding to the sentence. Un-

like traditional methods treating the overlap-

ping segments separately in a sliding window

fashion, TGN aggregates the historical infor-

mation and generates the final grounding re-

sult in one single pass. We extensively evalu-

ate our proposed TGN on three public datasets

with significant improvements over the state-

of-the-arts. We further show the consistent ef-

fectiveness and efficiency of TGN through an

ablation study and a runtime test.

1 Introduction

We examine the task of Natural Sentence Ground-

ing in Video (NSGV). Given an untrimmed video

and a natural sentence, the goal is to determine

the start and end timestamps of the segment in

the video which corresponds to the given sen-

tence, as shown in Figure 1 (a). Comparing with

the other video researches, such as bidirectional

video-sentence retrieval (Xu et al., 2015b), video

attractiveness prediction (Chen et al., 2018, 2016),

and video captioning (Pasunuru and Bansal, 2017;

Wang et al., 2018a,b), NSGV needs to model not

only the characteristics of sentence and video but

also the fine-grained interactions between the two

modalities, which is even more challenging.

∗ Work done while Jingyuan Chen and Xinpeng Chen
were Research Interns with Tencent AI Lab.

1 The project homepage is https://

jingyuanchen.github.io/archive/tgn.html.
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Figure 1: (a) The Natural Sentence Grounding in Video

(NSGV) task. (b) A common space based matching

method performs in a sliding window fashion. (c)

Our proposed Temporal GroundNet (TGN) localizes

the candidate video segments at multiple scales in a

single processing pass. The frames in the video and

the words in the sentence interact attentively to perform

fine-grained frame-by-word matchings for grounding

sentence in video.

Recently, several related works (Gao et al.,

2017; Hendricks et al., 2017) leverage one tempo-

ral sliding window approach over video sequences

to generate video segment candidates, which are

then independently combined (Gao et al., 2017) or

compared (Hendricks et al., 2017) with the given

sentence to make the grounding prediction. Al-

though the existing works have achieved promis-

ing performances, they are still suffering from in-

ferior effectiveness and efficiency. First, existing

methods project the video segment and sentence

into one common space, as shown in Figure 1 (b),

https://jingyuanchen.github.io/archive/tgn.html
https://jingyuanchen.github.io/archive/tgn.html
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where the two generated embedding vectors are

used to perform the matching between video seg-

ment and sentence. Such a matching is only per-

formed in the global segment and sentence level

and thus not expressive enough, which ignores

the fine-grained matching relations between video

frames and the words in sentences. Second, in or-

der to handle the diverse temporal scales and loca-

tions of the candidate segments, exhaustive match-

ing between the large amount of overlapping seg-

ments and the sentence is required. As such, the

sliding window methods are very computationally

expensive.

In order to tackle the above two limitations,

we introduce a novel Temporal GroundNet (TGN)

model, the first dynamic single-stream deep archi-

tecture for the NSGV task that takes full advantage

of fine-grained interactions between video frames

and words in a sentence, as shown in Figure 1 (c).

TGN sequentially processes video frames, where

at each time step we rely on a novel multimodal in-

teractor to exploit the evolving fine-grained frame-

by-word interactions. Then, TGN works on the

yielded interaction status to simultaneously score

a set of temporal candidates of multiple scales and

finally localize the video segment that corresponds

to the sentence. More importantly, our proposed

TGN is able to analyze an untrimmed video frame

by frame without resorting to handling overlap-

ping temporal video segments.

2 Related Work

2.1 Grounding Natural Language in Image

Grounding natural language in image is also

known as natural language object retrieval. The

task is to localize an image region described by

natural language, which involves comprehend-

ing and modeling different spatial contexts, such

as spatial configurations (Hu et al., 2016), at-

tributes (Yu et al., 2018), and relationships be-

tween objects (Hu et al., 2017). Specifically, the

task is usually formulated as a ranking problem

over a set of candidate regions in a given image,

where candidate spatial locations come from re-

gion proposal methods (Uijlings et al., 2013; Jie

et al., 2016b,a; Ren et al., 2017) such as Edge-

Box (Zitnick and Dollár, 2014). Earlier stud-

ies (Mao et al., 2016; Rohrbach et al., 2016) score

the generated candidate regions according to their

appearances and spatial features along with fea-

tures of the entire image. However, these meth-

ods fail to incorporate the interactions between ob-

jects, because the scoring process of each region

proposal is isolated. More recent studies (Hu et al.,

2017; Nagaraja et al., 2016) improve the perfor-

mance with the aid of modeling relationships be-

tween objects.

2.2 Grounding Natural Language in Video

Analogous to spatial grounding in image, this

work studies a similar problem—temporal natural

language grounding in video. Earlier works (Yu

and Siskind, 2013; Lin et al., 2014) learn the se-

mantics of sentences, which are then matched to

visual concepts via exploiting object appearance,

motion and spatial relationships. However, they

are limited to a small set of objects. Recently,

larger datasets (Gao et al., 2017; Hendricks et al.,

2017) are constructed to support more flexible

groundings. The methods proposed in (Gao et al.,

2017; Hendricks et al., 2017) learn a common

embedding space shared by video segment fea-

tures and sentence representations, in which their

similarities are measured. Specifically, moment

context network (MCN) (Hendricks et al., 2017)

learns a shared embedding for video clip-level fea-

tures and language features. The video features

integrate local video features, global features, and

temporal endpoint features. Cross-modal tempo-

ral regression localizer (CTRL) (Gao et al., 2017)

contains four modules, specifically a visual en-

coder extracting clip-level features with context, a

sentence encoder yielding its embedding through

LSTM, a multimodal processing network generat-

ing the fused representations via element-wise op-

erations, and a temporal regression network pro-

ducing the alignment scores and location offsets.

One limitation of those common space matching

methods is that the video segment generation pro-

cess is computationally expensive, as they carry

out overlapping sliding window matching (Gao

et al., 2017) or exhaustive search (Hendricks et al.,

2017). Another weakness is that they exploit the

relationships between textual and visual modali-

ties by conducting a simple concatenation (Gao

et al., 2017) or measuring a squared distance

loss (Hendricks et al., 2017), which ignores the

evolving fine-grained video-sentence interactions.

In this paper, a novel model TGN is proposed to

deal with the aforementioned limitations for the

task of natural sentence grounding in video.
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3 Approach

Given a long and untrimmed video sequence V
and a natural sentence S, the NSGV task is to lo-

calize a video segment Vs = {ft}
te
t=tb

from V , be-

ginning at tb and ending at te, which corresponds

to and expresses the same semantic meaning as the

given sentence S. In order to perform the ground-

ing, each video is represented as V = {ft}
T
t=1,

where T is the total number of frames and ft de-

notes the feature representation of the t-th video

frame. Similarly, each sentence is represented as

S = {wn}
N
n=1, where wn is the embedding vector

of the n-th word in the sentence and N denotes the

total number of words.

We propose a novel model, namely Temporal

GroundNet (TGN), to tackle the NSGV problem.

As illustrated in Figure 2, TGN consists of three

modules. 1) Encoder: visual and textual encoders

are used to compose the video frame representa-

tions and word embeddings, respectively. 2) Inter-

actor: a multimodal interactor learns the frame-by-

word interactions between the video and sentence.

3) Grounder: a grounder generates the temporal

localization in one single pass. Please note that

these three modules are fully coupled together,

which can thus be trained in an end-to-end fash-

ion.

3.1 Encoder

With the obtained video frame features V =
{ft}

T
t=1 and word embeddings of the sentence

S = {wn}
N
n=1, we employ two long short-

term memory networks (LSTMs) (Hochreiter and

Schmidhuber, 1997) to sequentially process the

two different modalities, i.e., video and sentence,

independently. Specifically, one LSTM sequen-

tially models the video V , yielding the hidden

states {hv
t }

T
t=1, while the other LSTM processes

the sequential words in the sentence S, resulting in

its corresponding hidden states {hs
n}

N
n=1. Owing

to natural behaviors and characteristics of LSTMs,

both {hv
t }

T
t=1 and {hs

n}
N
n=1 can encode and ag-

gregate the contextual evidences (Wang and Jiang,

2016b) from the sequential video frame represen-

tations and word embeddings of the sentence, re-

spectively, meanwhile casting aside the irrelevant

information.

3.2 Interactor

Based on the hidden states of the video and sen-

tence yielded from the leveraged encoders, we de-

i-LSTM i-LSTMi-LSTM i-LSTM

K  grounding  candidates

δ
δ⋅2

δ⋅3

δ⋅K

...

...

...

...

A woman reels a

Encoder

Interactor

Grounder

...

...

...

...

confidence  scores

+

...

...

Figure 2: The architecture of our proposed TGN

model. TGN consists of three modules. The visual and

textural encoders aggregate the contextual evidences

from the sequential video frame representations and

word embeddings of the sentence, respectively. The

multimodal interactor learns the fine-grained frame-by-

word interactions between the video and sentence. The

grounder yields the temporal grounding of the sentence

in the video sequence via one single pass.

sign a multimodal interactor to perform the frame-

by-word interactions between the video and sen-

tence. First, the frame-specific sentence feature is

generated through summarizing the sentence hid-

den states by considering their relationships with

the specific video frame at each time step. Af-

terwards, an interaction LSTM, dubbed i-LSTM,

is performed to aggregate frame-by-word interac-

tions.

3.2.1 Frame-Specific Sentence Feature

Directly operating on the clip-level and sentence-

level features generated by the encoders cannot

well exploit the frame-by-word relationships be-

tween video and sentence that evolve over time.

Inspired by (Wang and Jiang, 2016a; Feng et al.,

2018), we introduce one novel frame-specific sen-

tence feature, which adaptively summarizes the

hidden states of the sentence {hs
n}

N
n=1 with re-

spect to the t-th video frame:

Hs
t =

N∑

n=1

αn
t h

s
n, (1)

where Hs
t denotes the summarized sentence rep-

resentation specified by the t-th video frame. At

each time step t, we utilize the hidden state hv
t to
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selectively attend the words and summarize them

accordingly. The attention weight αn
t encodes the

degree to which the n-th word in the sentence is

aligned with the t-th video frame. As the pro-

cessing of video frames proceeds, the attention

weights dynamically change regarding to the cur-

rent video frame. As such, the generated frame-

specific sentence features {Hs
t}

T
t=1 consider the

frame-by-word relationships between all the video

frames and all the words in the sentence.

As the generation of frame-specific sentence

feature is deeply coupled with the following inter-

action LSTM, we will explain the calculation of

the attention weight αn
t later.

3.2.2 Interaction LSTM (i-LSTM)

In order to accurately ground the sentence in a

video, the multimodal interation behaviors be-

tween the video and sentence need to be com-

prehensively modeled. Previous approaches on

multimodal interactions were limited to concate-

nation (Zhu et al., 2016), element-wise product or

sum (Gao et al., 2017), and bilinear pooling (Fukui

et al., 2016). These methods are not expressive

enough since they ignore the evolving fine-grained

interactions across video and sentence, particu-

larly the frame-by-word interactions. In this paper,

we propose a novel multimodal interaction model,

which is realized by LSTM. We term it interaction

LSTM (i-LSTM), which sequentially processes

the video sequence frame by frame, holding deep

interactions with the words in the sentence.

In order to well capture the complicated tempo-

ral interactions between the video and sentence, at

each time step t, the input of the i-LSTM is formed

by concatenating the t-th video hidden state hv
t

and the t-th frame-specific sentence feature Hs
t as:

rt = hv
t ‖ Hs

t . rt is then fed into the i-LSTM unit

to yield the t-th intermediate interaction status be-

tween the video and sentence:

hr
t = i-LSTM(rt,h

r
t−1), (2)

where hr
t is the yielded hidden state, encoding

the fine-grained interactions between the word and

video frame. hr
t will be further used to perform the

grounding process. Due to the inherent properties

and characteristics of LSTMs, important cues re-

garding to grounding up to the current stage will

be “remembered”, while non-essential ones will

be “forgotten”.

Now we go back to the generation of attention

weight αn
t in Eq. (1), based on the obtained vi-

sual hidden states hvt and textual hidden state hsn
as well as the yielded interaction status hrt−1 in

the previous step. The widely used soft-attention

mechanism (Xu et al., 2015a; Chen et al., 2017) is

used to generate the attention weights in a frame-

by-word manner. As aforementioned, the i-LSTM

models the evolving frame-by-word interactions

between the sentence and video. Therefore, the at-

tention weight between the n-th word hs
n and the

t-th video frame hv
t is determined by not only the

content of the video and sentence but also their in-

teraction status. Thus, we design one network to

compute the relevance score of one video frame

with respect to each word:

β
n

t = w
⊺ tanh(WS

h
s

n+W
V
h
v

t +W
R
h
r

t−1+b)+c, (3)

where vector w, matrices W∗, bias vector b, and

bias c are the network parameters to be learned.

hr
t−1 is the hidden state of the i-LSTM at t − 1

time step. The final word-level attention weights

are obtained by:

αn
t =

exp(βn
t )∑N

j=1 exp(β
j
t )
. (4)

The obtained attention weight αn
t is thereafter to

generate the frame-specific sentence feature as in

Eq. (1).

3.3 Grounder

In this section, we introduce the grounder, which

works on the yielded interaction status hr
t from

i-LSTM, to localize the video segment that cor-

responds to the sentence. Our proposed grounder

works in one single pass without introducing over-

lapping sliding windows, which thus results in

a fast runtime. As shown in Figure 2, at each

time step t, the grounder efficiently scores a set of

K grounding candidates by considering multiple

time scales (Buch et al., 2017) that end at time step

t. Specifically, we use different K for different

datasets, which is determined by the distribution

of the lengths of all ground-truth groundings in a

certain dataset. To simplify the following discus-

sions, the lengths of K time scales are assumed to

be an arithmetic sequence with the common differ-

ence δ and all the temporal candidates are sorted

by increasing lengths. In other words, the length

of the k-th candidate is kδ. Note that all grounding

candidates considered at time t have a fixed ending

boundary.
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Specifically, at each time step t, the grounder

will classify each temporal candidate in consid-

eration as a positive grounding or a negative one

with respect to the given sentence. Considering

multiple time scales, the grounder will generate

the confidence scores Ct = (c1t , c
2
t , ..., c

K
t ) that

correspond to the set of K visual grounding can-

didates, all ending at time step t. The hidden

state hr
t generated by i-LSTM at time t, repre-

senting the interaction status between the sentence

and video sequence up to the current position,

is naturally suited to yield the confidence scores

for the different time scales ending at time step

t. In this paper, the confidence scores, indicating

the sentence grounding, are generated by a fully-

connected layer with sigmoid nonlinearity:

Ct = σ(WKhr
t + br

t ), (5)

where WK and br
t are the corresponding parame-

ters, and σ denotes the nonlinear sigmoid function.

3.4 Training

The training samples collected in X for NSGV are

video-sentence pairs. Specifically, each video V
is temporally associated with a set of sentence an-

notations: A = {(Si, t
b
i , t

e
i )}

M
i=1, where M is the

number of annotated sentences of the video, and

Si is a sentence description of a video clip, with

tbi and tei indicating the beginning and ending time

in the video. Each training sample corresponds to

a ground-truth matrix y ∈ R
T×K with binary en-

tries. We use ykt to denote the (t, k)-th entry of the

ground-truth matrix. ykt is interpreted as whether

the k-th grounding candidate at time step t corre-

sponds to the given natural sentence. Concretely,

the entry ykt is set as 1, indicating that the corre-

sponding video segment (ends at time step t with

length kδ) has a temporal Intersection-over-Union

(IoU) with (tb, te) larger than a threshold θ. Oth-

erwise ykt is set as 0.

For a training pair (V, S) ∈ X , the objective

at time step t is given by a weighted binary cross

entropy loss L(t, V, S):

−

K∑

k=1

wk
0y

k
t log c

k
t +wk

1(1−ykt ) log(1− ckt ), (6)

where the weights wk
0 and wk

1 are calculated ac-

cording to the frequencies of positive and negative

samples in the training set with length kδ. ykt is

the ground-truth value and ckt denotes the predic-

tion results by our proposed model.

Our TGN backpropagates at every time step t to

learn all the parameters of the fully-coupled three

modules: encoder, interactor, and grounder. The

objective of all training video-sentence pairs X is

defined as:

LX =
∑

(V,S)∈X

T∑

t=1

L(t, V, S). (7)

3.5 Inference

During the inference stage, given a testing video

V and a sentence S, the textual and visual en-

coders first generate hidden states for each word

and video frame, respectively. Then, the interac-

tor sequentially goes through the video frame by

frame to yield the frame-by-word interaction sta-

tus. At each position t, a K-dimensional score

vector Ct is generated by the grounder. There-

fore, after processing the last frame in the video,

a T × K score matrix is obtained for the whole

video, with the (t, k)-th entry in the matrix indicat-

ing the probability that the video segment ended at

position t with length kδ in video V corresponds

to sentence S. Eventually, the evaluation is re-

duced to a ranking problem over all the grounding

candidates based on the generated scores.

4 Experiments

In this section, we evaluate the effectiveness of

our proposed TGN on the NSGV task. We be-

gin by describing the datasets used for evaluation,

followed by the introduction of the experimental

settings including the baselines, configurations, as

well as the evaluation metrics. Afterwards, we

demonstrate the effectiveness of TGN by compar-

ing with the state-of-the-art approaches and effi-

ciency through a runtime test.

4.1 Datasets

We experiment on three publicly accessible

datasets: DiDeMo (Hendricks et al., 2017),

TACoS (Regneri et al., 2013), and ActivityNet

Captions (Fabian Caba Heilbron and Niebles,

2015). These datasets consist of videos as well as

their associated temporally annotated sentences.

DiDeMo2 consists of 10464 25-50 second long

videos. The same split provided by (Hendricks

et al., 2017) is used for a fair comparison, with

33008, 4180, and 4022 video-sentence pairs for

training, validation, and testing, respectively.

2https://goo.gl/JpbAhg.

https://goo.gl/JpbAhg
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TACoS3 consists of 127 videos selected from the

MPII Cooking Composite Activities video cor-

pus (Rohrbach et al., 2012). The same split as

in (Gao et al., 2017) is used, consisting of 10146,

4589, and 4083 video-sentence pairs for training,

validation, and testing, respectively.

ActivityNet Captions4 consists of 19, 209 videos

amounting to 849 hours. The public split is used

for our experiments, which has 37421, 17505, and

17031 video-sentence pairs for training, valida-

tion, and testing, respectively.

4.2 Experimental Settings

4.2.1 Baselines

We compare our proposed TGN against the fol-

lowing two state-of-the-art models, specifically,

the MCN (Hendricks et al., 2017), CTRL (Gao

et al., 2017), visual-semantic alignment with

LSTM (VSA-RNN) (Karpathy and Li, 2015), and

visual-semantic alignment with skip thought vec-

tor (VSA-STV) (Kiros et al., 2015). For fair

comparisons, we compare the results of MCN on

DiDeMo and the results of CTRL, VSA-RNN,

VSA-STV on TACoS reported in their papers.

4.2.2 Evaluation Metrics

A grounding of one natural sentence in a video is

considered as “correct” if its temporal IoU with

the ground-truth boundary is above a threshold

θ. To be consistent with the baselines, we adopt

R@N , IoU=θ, and mean IoU (mIoU) as our eval-

uation metrics. R@N , IoU=θ represents the per-

centage of testing samples which have at least one

of the top-N results with IoU larger than θ. mIoU

means the average IoU over all testing samples.

4.2.3 Configurations

Generally, the video frame features are usually ex-

tracted with a time resolution. For the videos in

DiDeMo and TACoS, we sample every 5 second as

done by (Hendricks et al., 2017). As the videos in

DiDeMo are 25-30 second long, the video feature

length is reduced to 6. For videos in ActivityNet

Captions, we sample every second. To extract vi-

sual features, we consider both appearance and

optical flow features. Specifically, we study four

widely-used visual features: VGG16 (Simonyan

and Zisserman, 2014), C3D (Tran et al., 2015),

Inception-V4 (Szegedy et al., 2017), and optical

flow (Wang et al., 2016). Please note that when

3https://goo.gl/ajmsva.
4https://goo.gl/N355bG.

Table 1: Performance comparisons of different meth-

ods on DiDeMo. The best performance for each metric

entry is highlighted in boldface.

Method
R@1

IoU=1

R@5

IoU=1
mIoU

MFP 19.40 66.38 26.65

MCN-VGG16 13.10 44.82 25.13

MCN-Flow 18.35 56.25 31.46

MCN-Fusion 19.88 62.39 33.51

MCN-Fusion+TEF 28.10 78.21 41.08

TGN-VGG16 24.28 71.43 38.62

TGN-Flow 27.52 76.94 42.84

TGN-Fusion 28.23 79.26 42.97

comparing with specific baseline methods, we use

the same features as baseline methods, specifi-

cally, VGG16 and optical flow for MCN and C3D

for CTRL, VSA-RNN, and VSA-STV.

For sentences, we tokenize each sentence by

Stanford CoreNLP (Manning et al., 2014) and use

the 300-D word embeddings from GloVe (Pen-

nington et al., 2014) to initialize the models.

The words not found in GloVe are initialized as

zero vectors. The hidden state dimensions of all

LSTMs (including the video, sentence, and in-

teraction LSTMs) are set as 512. We use the

Adam (Kingma and Ba, 2014) optimizer with β1
= 0.5 and β2 = 0.999. The initial learning rate is

set to 0.001. We train the network for 200 iter-

ations, and the learning rate is gradually decayed

over time. The mini-batch size is set to 64.

4.3 Experimental Results and Analysis

4.3.1 Comparisons with State-of-the-Arts

Experiments on DiDeMo. Table 1 illustrates

the performance comparisons on the DiDeMo

dataset. In addition to MCN, we also compare

with the baseline Moment Frequency Prior (MFP)

in (Hendricks et al., 2017), which selects segments

corresponding to the positions of videos in the

training dataset with most annotations. First, TGN

with different features can significantly outper-

forms the “prior baseline” MFP, which retrieves

segments corresponding to the most common start

and end points in the dataset. Second, it can be ob-

served that with the same visual features, specifi-

cally VGG16 and optical flow, TGN significantly

outperforms MCN. And the performance of TGN

with optical flow is better than that with VGG16.

One possible reason is that the videos in DiDeMo

are relatively short, which only contain a single

event. In such a case, the action information plays

https://goo.gl/ajmsva
https://goo.gl/N355bG
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Table 2: Performance comparisons of different meth-

ods on TACoS. The best performance for each metric

entry is highlighted in boldface.

Method
R@1

IoU=0.5

R@1

IoU=0.3

R@1

IoU=0.1

R@5

IoU=0.5

R@5

IoU=0.3

R@5

IoU=0.1

VSA-RNN 4.78 6.91 8.84 9.10 13.90 19.05

VSA-STV 7.56 10.77 15.01 15.5 23.92 32.82

CTRL-C3D 13.30 18.32 24.32 25.42 36.39 48.73

TGN-C3D 18.90 21.77 41.87 31.02 39.06 53.40

a more critical role. This finding is also consis-

tent with (Hendricks et al., 2017). By fusing the

results obtained by VGG16 and optical flow to-

gether, the performance can be further boosted, as

demonstrated by TGN-Fusion and MCN-Fusion.

Third, MCN introduces the temporal endpoint fea-

ture (TEF) as prior knowledge, which indicates

when a segment occurs in a video. With TEF,

the performance of MCN can be significantly im-

proved. However, it is still inferior to our proposed

TGN.

MCN is designed as an enumeration-based ap-

proach. Each video in the DiDeMo dataset is split

into six five-second chunks which are considered

as the time unit for localization. Therefore, in total

there are only C2
7 = 7 × 6/2 = 21 different ways

of localization for DiDeMo videos. Therefore, al-

though MCN can be effectively applied to videos

with several chunks due to the small search space,

it is not practical for untrimmed long videos. In

the Section 4.3.3, we will evaluate and compare

the efficiencies of MCN, CTRL, and our proposed

TGN.

Experiments on TACoS. Table 2 illustrates the

experimental results on TACoS. First, it can be

observed that CTRL performs much better than

VSA-RNN and VSA-STV. The reasons lie in

twofold (Gao et al., 2017). On one hand, CTRL

utilizes a multilayer alignment network to learn

better alignment. On the other hand, VSA-RNN

and VSA-STV do not encode temporal context in-

formation of video. Second, with the same visual

feature, specifically C3D, TGN-C3D significantly

outperforms CTRL-C3D. This is due to the fact

that TGN exploits not only the contextual infor-

mation but also the fine-grained interaction behav-

iors. More concretely, TGN considers the frame-

by-word correlations by introducing an attentive

combinations of the words in the sentence, where

each weight encodes the degree to which the word

is aligned with each specific frame. This mecha-

nism is beneficial to capturing the informative se-

Table 3: Performance comparisons of different visual

features on ActivityNet Captions. The best perfor-

mance for each metric entry is highlighted in boldface.

Feature
R@1

IoU=0.5

R@1

IoU=0.3

R@1

IoU=0.1

R@5

IoU=0.5

R@5

IoU=0.3

R@5

IoU=0.1

C3D 27.93 43.81 69.59 44.20 54.56 78.66

VGG16 23.90 42.24 65.76 40.17 51.82 76.21

Inception-V4 28.47 45.51 70.06 43.33 57.32 79.10

Table 4: Ablation studies on TACoS. The best perfor-

mance for each metric entry is highlighted in boldface.

Feature
R@1

IoU=0.5

R@1

IoU=0.3

R@1

IoU=0.1

R@5

IoU=0.5

R@5

IoU=0.3

R@5

IoU=0.1

NA 5.53 7.67 24.23 15.20 18.94 41.25

NM 13.89 18.60 41.41 26.60 31.74 47.70

TGN 18.90 21.77 41.87 31.02 39.06 53.40

mantics in the sentences for alignment.

Experiments on ActivityNet Captions. Be-

sides the two benchmarks, we also evaluate our

model on the ActivityNet Captions dataset. Dif-

ferent CNNs are used to encode video visual in-

formation. Specifically, we consider VGG16,

C3D, and Inception-V4. The results are included

in Table 3. First, our proposed TGN can per-

form effectively on long untrimmed videos. Sec-

ond, Inception-V4 performs generally better than

VGG16 and C3D, which is consistent with the

finding in (Canziani et al., 2016). Therefore, more

powerful visual representations of video features

will undoubtedly improve the the performance of

our proposed TGN on the NSGV task.

Some qualitative results of our proposed TGN

on ActiveityNet Captions dataset is illustrated in

Figure 3. It can be observed that with different

visual features, different grounding results are ob-

tained. For the first and second examples, TGN

with VGG16 and Inception-V4 generates more ac-

curate groundings than that with C3D, while TGN

with C3D yields more accurate grounding results

for the third example. More specifically, our pro-

posed TGN with VGG16 and Inception-V4 can

well identify the visual information related with

the sentence, i.e. “A man in a red shirt

claps his hands”.

4.3.2 Effect of Frame-by-Word Attention

We examine the effect of the frame-by-word atten-

tion in interactor. We ablate TGN into two other

methods. 1) NA: There is no attention layer in

this model. After obtaining the sequential hid-

den states of the sentence, mean pooling is used to

generate the representation for the whole sentence.
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Figure 3: The qualitative grounding results of our TGN model on the ActiveityNet Captions dataset with different

visual features.

Then the generated representation is concatenated

with video representation, based on which the

scores for multiple grounding candidates are pre-

dicted. 2) NM: The idea of generating frame-

specific sentence feature is still reserved in the NM

model. The difference between NM and TGN is

that there is no interaction LSTM in NM. Specif-

ically, when calculating the attention weight for

each word as in Eq. (3), the hidden state hr
t−1 in-

dicating the interaction status is not incorporated.

The quantitative results are displayed in Table 4.

First, when the attention mechanism is applied

(NM), the performance is improved as compared

with utilizing mean pooling (NA) for sentence fea-

tures. The better performance demonstrates that

our assumption about the evolving frame-by-word

correlations between two modalities is reasonable.

This also indicates that it is necessary to discrim-

inate the contribution of each word in a sentence

to perform the NSGV task. Second, utilizing the

interaction LSTM module (TGN) achieves better

performance than simply concatenating the video

representation and the attentive sentence represen-

tation (NM). This result indicates that the interac-

tion LSTM yields better interaction status between

these two modalities, which can thereby benefit

the final grounding.

We provide some qualitative examples in Fig-

ure 4 for a better understanding of the frame-by-

word attention. Meanwhile, the grounding results

yielded by TGN-Fusion (considering both VGG16

and optical flow) are also illustrated. This ex-

periment is designed to verify whether the frame-

by-word attention mechanism in interactor is use-

ful to highlight the representative concepts in the

sentence. The attention weights α for two test-

ing samples in DiDeMo are illustrated in Fig-

ure 4, where the darker the color is, the larger
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GroundTruth 0s                                                                                  10s

Prediction 0s                                                                                  10s

(a)

a

person

with

a

blue

shirt

walks

past

the

camera

GroundTruth 15s 20s

Prediction 15s                                20s

(b)

Figure 4: Visualization results on frame-by-word atten-

tion. The darker the color is, the larger its represented

attention value is.

Table 5: Efficiency comparison in terms of frame per

second.

CTRL MCN TGN

FPS 562 286 1,363

the attention weight is. It can be observed that

some words well match the frames. For exam-

ple, in Figure 4 (a), the concept “forest” ap-

pears across all the video frames presenting an

evenly distributed attention weights, while the

other concept “waterfall” only presents in the

first two frames. In addition to nouns, the ad-

jective “blue” in Figure 4 (b) also receives rela-

tively higher attention weights in relevant frames.

Lastly, for stop words like “a”, “the” and “in”,

their attention weights, which are very small, also

present an even distribution.

4.3.3 Efficiency

We evaluate the efficiency of our proposed TGN,

by comparing its runtime with MCN and CTRL

on a Tesla M40 GPU. The efficiency is mea-

sured by frames per second (FPS) as shown in Ta-

ble 5. Please not that the feature extraction time

is excluded. It can be observed that our TGN

model achieves much faster processing speeds,

with 1,363 fps vs. 562 and 286 for CTRL and

MCN, respectively. The reason mainly attributes

to that the proposed TGN only process each video

in one single pass without processing overlapped

sliding windows.

5 Conclusion

In this paper, we focused on the task of natu-

ral sentence grounding in video that is believed

to offer a comprehensive understanding of bridg-

ing computer vision and natural language process-

ing. Towards this task, we proposed an end-to-end

Temporal GroundNet (TGN) by incorporating the

evolving fine-grained frame-by-word interactions

across video-sentence modalities to generate a vi-

sual grounding tailored to each given natural sen-

tence. Moreover, TGN performs efficiently, which

only needs to process the video sequence in one

single pass. Extensive experiments on three real-

world datasets clearly demonstrate the effective-

ness and efficiency of the proposed TGN.
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