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ABSTRACT
Previous methods of network anomaly detection have fo-
cused on defining a temporal model of what is “normal,”
and flagging the “abnormal” activity that does not fit into
this pre-trained construct. When monitoring traffic to and
from IP addresses on a large network, this problem can be-
come computationally complex, and potentially intractable,
as a state model must be maintained for each address. In
this paper, we present a method of detecting anomalous net-
work activity without providing any historical context. By
exploiting the size of the network along with the minimal
overhead of NetFlow data, we are able to model groups of
hosts performing similar functions to discover anomalous be-
havior. As a collection, these anomalies can be further de-
scribed with a few high-level characterizations and we pro-
vide a means for creating and labeling these categories. We
demonstrate our method on a very large-scale network con-
sisting of 30 million unique addresses, focusing specifically
on traffic related to web servers.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network Monitoring

General Terms
Measurement, Security
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1. INTRODUCTION
To complement signature-based intrusion detection sys-

tems (IDS) such as Snort [17] and Bro-IDS [16], there has
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been much research in the area of anomaly-based systems
[22, 11], which do not match pre-defined signatures, but
rather identify behavior which is rare compared to a data-
driven model. This approach provides the benefit of being
able to detect zero-day attacks – or deviations of known at-
tacks without a signature – as long as they deviate from the
normal traffic patterns. Sommer and Paxson [20] provide a
detailed breakdown of several of the reasons why machine
learning based anomaly detection methods have failed to
reach wide adoption. We address two important weaknesses
and develop an anomaly detection method that scales to
large networks and provides context for decisions.

In this paper we present a method for anomaly detection
on very large-scale networks which is temporally oblivious,
e.g. we do not utilize any historic information about a host
to determine if it is anomalous. In complete isolation, it is
impossible to determine if a host is behaving in an anoma-
lous fashion during a given moment without the historical
context that is typically used for anomaly detection. How-
ever, in the presence of numerous functional peers – hosts
providing similar services – we can identify those hosts ex-
hibiting significantly different behaviors over a static snap-
shot in time. This intuition follows from the fact that many
functions and services have inherent properties which gov-
ern their behavior. In our approach, the model used to de-
tect anomalies consists of measurements over the group of
peers and automatically compensates for variations in traf-
fic patterns over time. While abnormal by definition, the
anomalies detected can be further characterized by a small
set of descriptions, and we provide an automated method of
providing these qualitative assessments.

The contributions of this paper to network anomaly de-
tection are as follows:

• Temporal modeling is not required, instead we use on-
the-fly data driven statistics from other active network
hosts performing similar functions.

• Computation is low because only NetFlow [1] features
are used and instead of building one reference model
per host, only one reference model is required for each
general function. This supports scaling to very-large
networks.

• After training, anomalies are automatically categorized
by a small set of descriptive characterizations, requir-
ing minimal additional computation in a live environ-
ment.
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Table 1: Anomaly Detection Features
Incoming Outgoing Ratio (Outgoing/Incoming)

Bytes / Packet (B/P) B / P Bytes
Packets / Flow (P/F) P / F Packets

Flows / Unique External Source IP (F/SIP) F / DIP Flows
# Unique External Source IP (SIP) DIP IP addresses

1.1 Previous Work
Some recently presented methods of network anomaly de-

tection focus on detecting volume anomalies which show a
sharp change (typically an increase) in the traffic volumes
received by a network or host [2, 21, 22]. This approach
may miss important traffic variations because the volume
increases to an individual host are often masked by varia-
tions in normal network traffic [11]. There has been work
to detect specific types of malicious volume activity such as
port scanning [18], worm and botnet propagation [6, 8], and
denial of service attacks [4, 23, 14]. These techniques use
properties of machine learning, along with high-level net-
work information (such as NetFlow records) to detect these
very specific activities. Additional work has been done to
classify internet traffic into specified applications [13]. While
payload-oblivious techniques have their natural limitations
[7], they scale to large networks. Statistical entropy has been
used to detect a more general class of anomalies [10, 11, 12,
15], measuring the change in the distribution of network
traffic. These methods have been shown to be very success-
ful at identifying when an anomaly occurs on the network,
but they require additional post-processing to identify the
responsible parties, which has seen additional work [3].

2. DETECTING ANOMALOUS HOSTS
We define an anomalous host as one which exhibits be-

havior that is significantly dissimilar to other hosts on the
monitored network performing similar function(s) during an
observation window; stressing specifically that anomalous is
not necessarily malicious. While network traffic is known to
be highly variable over short periods for individual hosts, on
large networks there are frequently many hosts performing
similar functions. This makes it possible to detect anoma-
lies among these functional peers by using the collection of
hosts as a reference to detect the few which deviate from
this behavior.

2.1 Data and Features
Given our goal for detection on large-scale networks, we

utilize unsampled NetFlow data as full packet capture is
often unfeasible. From the data, we extract a 12-dimensional
feature vector x from each host on the monitored network
during a T second observation window. These aggregated
flow features are listed in Table 1, where SIP and DIP refer
to the number of external unique source and destination
IP addresses respectively, and the ratio of IP addresses is
computed as DIP/SIP.

With the exception of the number of unique IP addresses
communicating with the host, each feature is invariant to the
scale of the network or service utilization. This was chosen
specifically so that hosts with similar utilization patterns are
observed as such, regardless of the number of external hosts
accessing the service. However, it is still necessary to include

the number of unique IP addresses connecting to the host
in order to give some context to the access patterns.

2.2 Identifying Outliers

Measuring Dissimilarity
Given the collection of feature vectors for theN IP addresses
on the network X = [x1, x2, . . . , xN ], we identify anoma-
lies by first defining a dissimilarity measure for each pair
of hosts. As each measured feature from Table 1 covers a
different range, we normalize each feature to the same rel-
ative scale. We choose to normalize each feature such that
there is unit distance between the 10th and 90th percentiles
of that feature. Specifically, let fp(y) be defined such that it
returns the pth percentile of the data in vector y. For exam-
ple, f50(y) would be equal to the median of y. We normalize
each feature i in X such that

X(i) = X(i)/(f90(X(i))− f10(X(i))),

where X(i) = [x1(i), . . . , xN (i)]. This normalization ensures
that 80% of the mass of data will lie in the same range for
the various features, but the outliers will still stand out as we
are linearly scaling the data. Once normalized, we calculate
pairwise distances between hosts with a standard Euclidean
(L2) distance D(xi, xj) =‖ xi − xj ‖2.
Hierarchical Clustering
After calculating the pairwise dissimilarities between hosts,
we employ hierarchical clustering [9] to identify outliers.
Clustering is performed by first assigning each host to its
own cluster or node. The two nodes with the smallest link-
age cost between them are merged to form a new node, and
the process is repeated until all hosts belong to the same
node. For this task we use single-linkage clustering, which
defines the cost of merging nodes A and B as min{D(a, b) :
a ∈ A, b ∈ B}; the minimum distance between any two hosts
in the nodes. This is a logical linkage criterion for anomaly
detection as we aim to find those samples which are most
dissimilar from others. This method results in a hierarchical
cluster tree in which the top of the tree is a single cluster
containing all hosts, and the bottom of the tree contains a
unique cluster for each host.

Intuition suggests that in the presence of outliers, the final
nodes to merge would contain the potential outliers, as the
linkage cost will be among the largest of any nodes in the
set. We develop a stopping criterion intentionally designed
to identify these outliers. Note that the linkage cost L(i)
is strictly non-decreasing over iterations i; we stop merg-
ing clusters at the point where L(i) > αL(i − 1), α > 1.
For a large enough value of α, this stopping criterion will
identify the first significant jump in the linkage cost. When
the cost of merging two nodes is a significant gain over the
previous merge, any remaining clusters are distinctly differ-
ent and any sample belonging to a cluster with less than n
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members is flagged as an outlier. The threshold n may be
defined either as a constant value, or some function of the
set size N . By our definition of anomaly, if there is a clus-
ter of activity with ≥ n members, those hosts will not be
flagged because there is a large enough contingent of hosts
exhibiting similar behaviors. Hence, certain activities which
are not historically normal to the monitored network may
go undetected. This does not mean the activity is not ma-
licious or temporally anomalous, it is simply not anomalous
for the monitored network during this window T .

2.3 A Network Illustration
We tested our anomaly detection method on seven contin-

uous days of traffic on a monitored network consisting of 30
million hosts. Our data comes from gateway border routers
that observe all traffic entering and leaving the network and
transmit all flow records to a central repository. We use the
SiLK system to query this database and compute aggregate
statistics [5]. This centralized system alleviates concerns of
asymmetric routing, as we are guaranteed to see both sides
of the flow.

As a proof-of-concept, we limit our analysis to incoming
traffic with destination port 80 and outgoing traffic with
source port 80. This corresponds primarily, although not
exclusively, to those IP addresses hosting web services. Note
that we do not make a distinction between TCP and UDP
for this analysis. On this monitored network, there are
roughly 750 hosts receiving applicable traffic at any given
time. While we lack appropriate labels for the data during
this period, we do have knowledge of two large-scale SYN-
flood distributed denial of service (DDoS) attacks against
two network web servers during the monitored period.

Our detection parameters are set with the goal of identify-
ing the most egregious anomalies on the network. We apply
five-minute aggregation windows (T = 300s) to the data;
a window large enough to benefit from consistency due to
aggregation, yet small enough to still identify brief anoma-
lies. Defining the optimal value T is a network-specific task
and an area for future work. We set our stopping criterion
variable at α = 3 and our cluster size threshold at n = 3,
reiterating our goal to find the most significant outliers.

As an illustration, we randomly select a five-minute win-
dow and demonstrate the detection results. In Fig. 1, we
plot the dendrogram of the hierarchical cluster tree calcu-
lated from the extracted features, which shows the manner
in which the tree is formed by merging nodes of increasing
linkage costs. Due to the size of the network, we do not il-
lustrate all of the unique leaf nodes, beginning instead with
nodes that have already been merged. What is clear from
Fig. 1 is that there exists a significant jump in the linkage
cost near the top of the tree. We plot the cutoff thresh-
old determined by α = 3 with the dashed line, resulting
in 3 remaining clusters, 2 of which contain only one sam-
ple. These two hosts are flagged as anomalous during this
process. When run over the entire seven day window, this
method resulted in 1,658 flagged anomalies out of a possi-
ble 1.5 million host samples, flagging an average of 0.11%
of monitored hosts (0.8 hosts) as anomalous during a given
observation period. In 47% of the observation windows, no
hosts were flagged as anomalous.

3. GROUPING THE ANOMALIES
It is of particular interest to see if common anomalies oc-
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Figure 1: Dendrogram of the hierarchical cluster
tree resultant from a single time window. The
dashed line shows the stopping point, resulting in
two detected outliers.

cur at different time intervals and over different hosts in the
network. This is not obvious, as by definition the behav-
ior is not within the network norms. To determine this,
we gather the feature vectors of all 1,658 anomalies flagged
during the analysis of Section 2.2 in a set Z, and perform
additional clustering on this set. Each individual anomaly
was detected in a temporally oblivious manner, and follow-
on analysis determines if there are common themes amongst
those detected.

Normalizing the Data
To obtain categories for the collected outliers, it is necessary
to normalize in a way that preserves the high-level descrip-
tion of the data. For example, if the vast majority of hosts
receive less than F flows per unique external source IP, and
two distinct hosts receive 100F and 500F flows in a five
minute window, they should be treated as equals – they are
anomalous due to large received F/SIP. To account for this
issue, we normalize the data by a sigmoid function s(x),
which translates every value x ∈ [−∞,∞] to s(x) ∈ [0, 1]:

s(x) =
1

1 + exp(−(x− μ)/b)
.

We omit the full details for brevity, but we set our param-
eters μ = f50(Z(i)) and b such that the end of the lin-
ear portion of s(x) (e.g. the bend point [19]) occurs at
x = f90(Z(i)). We set the bend point to the 90th percentile
of the data such that the extreme outliers will be truncated
to near unity while still linearly scaling the majority of the
data samples.

We demonstrate this scaling for the incoming B/P fea-
ture in Fig. 2, where we plot the scaled histogram of val-
ues alongside the sigmoid normalization function. This plot
shows that the sample points far away from the mass of the
distribution will be quantized to nearly 1, regardless of the
magnitude of their distance.
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Figure 2: Normalizing the data features of the out-
liers using a sigmoid function. This offers linear scal-
ing for the mass of the data while quantizing the
extreme outliers.

Clustering the Anomalies
We proceed by performing hierarchical clustering on the nor-
malized data using a complete-linkage criterion. The cost of
merging nodes A and B is defined as max{D(a, b) : a ∈
A, b ∈ B}, which is more useful for identifying similar clus-
ters rather than outliers. Rather than assigning our cutoff
threshold by identifying the jump in linkage cost as before,
we qualitatively assess the dendrogram to determine the ap-
propriate threshold. This has the benefit of enabling us to
specify the level of detail which we are interested in describ-
ing the anomalies.

Visual inspection of the abbreviated dendrogram in Fig.
3 shows that we can glean a high-level description of the
outliers by setting our threshold to 1.45, which results in 4
clusters covering all of the anomalies. In order to identify
the common theme of each cluster in a quantitative sense
we applied a 2-class decision tree for each cluster, in which
members of the cluster belonged to the positive class, and all
other vectors are given a negative label. While we omit the
quantitative results, the decision rules were quite simple, ac-
curately classifying the large amount of anomalies generally
based on three primary features: byte ratio, IP ratio, and
outgoing bytes/packet. We now provide a brief qualitative
assessment of the type of traffic we see in each cluster:

Cluster 1: As the largest cluster, the hosts on this clus-
ter exhibit several different patterns, and we noticed 3
distinct groups. However, the key feature is that 99%
of the 1,008 host samples in the cluster sent traffic to
more IP addresses than they received it from. The first
group we observed in this cluster contains those hosts
which received a large number of low-byte packets in
a single flow from a single IP address, and responded
with a much larger volume of traffic. An example of
this would be a host that received a single flow with
26,000 packets each containing 40 bytes (1 MB total)
from a single IP address, and responded to the same
address with 30 MB of traffic.
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Figure 3: Dendrogram of the hierarchical cluster
tree resultant from all anomalies over a 7 day period.
The choice of cutoff threshold determines the cluster
granularity.

The next group consists of hosts receiving a large amount
of traffic from a single source IP through an abnormally
large number of flow records, and responding in kind.
An example of this would be a host which received
250 KB of data from a single IP across 350 flows. We
can infer from this type of traffic that the source IP
in question operates as a network address translation
(NAT) or proxy server, and there are potentially nu-
merous unique hosts using the same externally visible
IP address.

Finally, the third group is clearly DDoS activity, as
the hosts receive traffic from numerous unique source
IP addresses each sending a significantly large number
of flows containing only 2-3 packets. The servers are
responding to more hosts than they are receiving traffic
from, signifying that they are able to keep up for the
time being. An interesting aspect about this cluster is
that the DDoS attacks on the two servers mentioned
earlier cluster together, even though they were carried
out in different manners.

Cluster 2: The hosts in this cluster receive very low vol-
umes of traffic from very few sources, yet send substan-
tial volumes to more IP addresses than they received
traffic from. In fact, 97% of the 94 hosts in this group
sent outgoing traffic to more IP addresses than they
received incoming traffic from. Example: A host re-
ceived 735 bytes across 7 packets in a single flow from a
single source and sent 195 MB of traffic across 140,000
packets in 2 flows to 2 unique IP addresses.

Cluster 3: The hosts in this cluster received high volumes,
with a median of 595 MB of traffic during the obser-
vation period – for reference the median received traf-
fic in the other clusters was 2.2 MB, 800 bytes, and
306 KB respectively. This could imply the hosts al-
low file uploads. Additionally, 99% of 402 hosts in this
group sent outgoing traffic to less destinations than
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they received incoming traffic from. Within this clus-
ter, we noticed subgroups containing high-volume uni-
directional traffic entering the network which had no
observed responses. This included DDoS traffic where
the servers under attack had either crashed or stopped
accepting traffic. There was additionally DDoS traffic
for which there were responses, although the response
volume was always less than the incoming traffic. This
may imply a DDoS for which the server is unable to
keep up with requests.

Cluster 4: The hosts in this cluster behaved similarly to
those in Cluster 2; receiving low volumes of traffic
while sending significantly larger ones. This cluster
is differentiated by the fact that no host sent traffic to
more IP addresses than it received traffic from. In fact,
66% of the 154 hosts sent traffic to fewer hosts. There
was an additional group within this cluster of hosts
that received traffic from a few sources, comprised of
large numbers of small byte packets in a minimal num-
ber of flows, yet still sent a large volume of traffic in
return, approaching the maximum transmission unit
(MTU) size of the network (1,500 bytes/packet). This
appears to be large file-transfer traffic, which would ex-
plain the large outgoing packet sizes, low flow counts,
and small incoming packet sizes (which would simply
by ACKs by the external host).

Our cluster descriptions provide a high-level understanding
of the different types of detected anomalies. While there
were many “repeat offenders”, 172 of the 1,658 anomalies
were attributed to unique IP addresses, and each cluster
contained at minimum 39 unique IP addresses. A finer cat-
egorical granularity can be achieved by simply decreasing
the cutoff threshold for the hierarchical cluster tree. For ex-
ample, when reducing the threshold to 1.2, Cluster 1 is now
split into the three clusters we previously observed as shown
in Fig. 3

3.1 Classifying New Anomalies
If new anomalies could be detected without a new cluster-

ing analysis, the qualitative categorization presented would
be of high value to analysts; abstracting them from the tech-
nical and statistical details concerning clustering. By train-
ing classifiers on anomalies detected over a period of time,
we can provide a label along with a confidence for each newly
detected anomaly. In the absence of ground truth, we de-
velop our classifier by using the previously clustered anoma-
lies as our training set. For this study, we train on the
high-level cluster labels represented in Fig. 3 (four classes),
and implement a simple linear classifier on the normalized
anomaly data; choosing decision boundaries via linear dis-
criminant analysis. This results in a 1.69% classification
error on the training set. Note that this error is in classi-
fying hosts which have already been flagged as anomalous,
so there is a drastically lower cost for misclassification than
with a traditional IDS.

We test this classifier over seven days of traffic occurring
8 weeks after the data we trained on. We normalize the
newly flagged anomalous data in the same manner, still us-
ing the f50 and f90 values from the training data in order
to preserve the appropriate scaling. There were 2,411 out
of a possible 1.4 million hosts flagged during this testing
period, yielding an average of 1.24 hosts being flagged as

anomalous during an observation window. After classifying
each anomaly, we note that the types of activity in each
class are consistent with those during the training period.
We can quantify the confidence c(x) in these labels by us-
ing the posterior probability that a sample xi belongs to a
specific class Cj , which is denoted as P(Cj | xi). As each
sample is labeled according to the class Cj which maximizes
this value, we can set the confidence of our classification la-
bel as c(xi) = maxj P(Cj | xi). For the test data, 95.5%
of the detected anomalies had c(x) > 90%, confirming that
the general categories of anomalies on the network did not
change. It is worth noting that 66% of the anomalies de-
tected during this testing phase were from IP addresses that
were never flagged as anomalous during the training phase.
It is not simply the same hosts consistently exhibiting the
same anomalous behavior, but different hosts behaving in
manners which fall under persistent categorizations. There
was one sample with a confidence of < 50% (c(x) = 42%). A
sample with a confidence this low may represent a new cat-
egory of anomaly, and a method for culling this information
automatically is an area for future work.

4. DISCUSSION
We’ve presented what we deem to be very promising re-

sults, yet our work has a few shortcomings which we now
address. First, while we provide intuition for our chosen pa-
rameter values, α and n, a more rigorous approach would
be necessary for a full deployment. Given the nature of
anomalies, and their lack of expert-defined labels, there is
no straightforward way to define these parameters in an au-
tomated fashion. A network administrator deploying a sys-
tem such as ours would have to train the parameters to yield
an “acceptable” amount of alerts per observation period, as
is done in many IDS and anomaly detection systems, and
determine which classes of anomalous traffic are potentially
benign. The detected anomalies could then be filtered based
on their class and network knowledge (eg. NATs) to reduce
the alerts an analyst must investigate.

There is a chance that a previously unseen anomaly could
occur which is not accurately described by the previously
trained classifier. This is the nature of anomaly detection,
yet our system has the tools to account for this. Specifically,
the classification confidence of such an anomaly would be
predictably low (as shown in Section 3.1), and these types
of anomalies could be saved for retraining the system. As
with any classifier, periodic retraining is necessary if the
statistics of the feature space change, and that will almost
always be the case for network data. It is future work to
determine how often this retraining would be necessary.

While our method is specifically not an IDS, we realize
that anomaly detection is often used for that purpose and
we want to detail how an adversary could circumvent this
system. A sophisticated attack could have an adversary in-
tentionally manipulate the traffic of multiple servers at the
same time in the same manner, causing them to form a
large enough group in the feature space that would not be
deemed anomalous. This would require knowledge of the
algorithm parameters, specifically the minimum cluster size
n, and would also increase the required resources for the
adversary.
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5. CONCLUSIONS
In this paper we have described a temporally-oblivious

approach for detecting anomalous hosts on large-scale net-
works. By modeling the behavior of functional peers, anoma-
lies stand out and can be described by a small set of qual-
itative characterizations. The fact that anomalous activity,
which by definition is significantly abnormal, is categorically
consistent over time is intriguing. We utilized this discovery
to develop a labeling system for anomalies discovered during
new observation periods. This framework was trained over
seven days and tested over an additional seven days nearly
2 months later, with very similar results.

This work is presented as a proof-of-concept of a novel
method of detecting anomalies. We note that hierarchi-
cal clustering is an O(N2) operation, meaning that it will
not purely scale to large N . This is why we operate our
system on a per service basis, focusing on port 80 in this
study. While port numbers do not restrict activity, many

are reserved for specified functions, so this split is logical
for anomaly detection. Since networks are made of a finite
number of services of interest, this split also enables scal-
ing to very large-scale networks. Determining a manner to
cluster across services is an area for future work. Addition-
ally, we would like to identify clusters of activity within the
non-anomalous traffic, seeing whether these clusters remain
consistent over time in a similar fashion as the clusters of
anomalous activity. This naturally lends itself to many re-
search areas in network behavioral analysis. The nature of
the clusters themselves provides network situational aware-
ness, and identifying the movement of hosts between clusters
could provide additional information.
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