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Abstract We conducted a comprehensive metabolic

phenotyping of primary metabolism of photosynthetic

tissue of Arabidopsis thaliana following spray treatment

with a number of commercially used herbicides using a

well established gas-chromatography mass-spectrometry

profiling method. Applying this technique we were able to

identify and quantify in excess of 80 polar metabolites

and based on a combination of co-elution with standards

and prediction from the mass spectra a similar number of

lipophillic components within two chromatographic runs.

The herbicides selected were glufosinate, sulcotrione,

AE944 [N2-(1-ethyl-3-phenylpropyl)-6-(1-fluoro-1-methyl-

ethyl)-1,3,5-triazine-2,4-diamine], foramsulfuron, benfure-

sate and glyphosate. We determined causal changes in the

metabolite profiles by following their time-dependent

changes using a serial sampling strategy. The resultant

profiles were compared both by looking at the largest

changes in a metabolite by metabolite manner and by per-

formance of statistical analyses. These data revealed that

analysis of the polar metabolites allows clear separation of

the compounds under test. This finding is discussed in the

context of current strategies for agrochemical discovery.

Keywords Herbicide � Mode of action � GC-MS �
Metabolic profiling

1 Introduction

Agrochemicals are compounds that specifically control or

arrest growth of weeds and pests. They have played an

important role in the large increase of crop productivity

achieved over the last 50 years (Lein et al. 2004). Until

recently the first step in agrochemical discovery was to take

a collection of chemicals, apply each to a small population

of representative pests, and assess their efficacy by visual

inspection. Testing of chemicals for efficacy on whole

plants is direct and integrates several important attributes of

a crop protectant including its uptake, transport, metabolism

and ability to inhibit an important target protein (Lein et al.

2004). Commercially used herbicides act on a total of about

20 biochemically distinct and commercially relevant modes

of action (Menne and Köcher 2007). Following the initial

identification of lead chemicals, exploration and optimiza-

tion of their structure is accompanied by research into their

mode of action (Ott et al. 2003; Lein et al. 2004). In the

search for more efficacious herbicides, knowledge con-

cerning the biochemical mode of action is desirable for a

number of reasons. Firstly, it facilitates access to advanced

tools like such as ultra-high-throughput screening. Sec-

ondly, it can allow the determination of whether a novel

analog shares the mode of action of its parent molecule.

Thirdly, it is important in the classification and prioritiza-

tion of the modes of action of novel leads found by

biological screening. The commercial value of such find-

ings is obviously far greater if the researcher avoids

involving well-exploited targets for which novel com-

pounds are not needed or targets historically associated with
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am Main, Germany

123

Metabolomics (2009) 5:277–291

DOI 10.1007/s11306-008-0149-8

http://dx.doi.org/10.1007/s11306-008-0149-8


undesired side-effects (Petroff 1988; Aranibar et al. 2001;

Fiehn et al. 2000; Sauter et al. 1991).

For these purposes investigations at the level of the

metabolite have been demonstrated to represent effective

diagnostic approaches. Indeed, one of the earliest applica-

tions of metabolic profiling in plants was the observation

by Sauter and co-workers (Sauter et al. 1991), that barley

plants treated with sub-lethal doses of various herbicides

displayed different GC-MS metabolite profiles depending

on the mode of action of the chemicals applied. In this

study they compared the profiles of acetyl CoA carboxyl-

ase (ACC) and acetolactate synthase (ALS) inhibitors on

the basis of visual comparison of metabolite profiles of

plants treated with these herbicides. This study thus indi-

cated the possibility that the mode of action of herbicides

might be diagnosed by the analysis of reflective patterns of

metabolite composition. Targetted GC-MS profiling of

very long chain fatty acids in yeast expressing very long

chain fatty acid elongases in the presence of, amongst

others, the herbicides oxyacetamide and chloroacetanilide

has also been used as a method of narrowing down the

precise herbicidal mode of action (Trenkamp et al. 2004).

Recently, a sophisticated broad range analysis of the mode

of action has been carried out by Ott and colleagues, who

used a combination of NMR-based metabolic profiling and

bioinformatics to classify herbicides with unknown modes

of action (Ott et al. 2003). This study illustrated a similar

diagnostic power following the statistical analysis of pro-

ton NMR (1H-NMR) spectra to that which has been

effectively used for non-invasive diagnosis of coronary

disease (Brindle et al. 2002).

Another technology that has been successfully applied in

the study of herbicide action is direct-infusion Fourier

transform ion cyclotron resonance mass spectrometry

(FT-ICR-MS), this technique was used by Oikawa et al.

(2006) to profile metabolic changes following the growth of

Arabidopsis plants for 1 week on agar containing sub-lethal

levels of herbicides of varying mode of action. This study

revealed that the herbicide treated samples were clearly

distinguishable from non-treated samples and showed that

in some instances the target site of inhibition could be

retroactively located, but perhaps more importantly estab-

lished an impressive bioinformatics resource to facilitate

the use of FT-ICR-MS, which is by nature difficult to use

(Iijima et al. 2008; Fernie et al. 2004; Aharoni et al. 2002),

as a metabolomics tool. Here, we describe a similar set of

experiments although our strategy differs somewhat in

approach in two important ways. First, we utilized a well

established GC-MS based metabolic profiling approach and

secondly we applied herbicide by spraying and harvested

plants at various time points post-treatment in order to

evaluate the time-dependency of the metabolic response to

inhibition of the herbicide targets. For this purpose we took

a total of six partly commercial herbicides of known mode

of action and compared the metabolic response of Arabid-

opsis to each of the chemicals. The relative efficacy of this

method is discussed as is the possibility to adapt it into a

high-throughput screening technology.

2 Methods

2.1 Chemicals

Herbicides were used from commercial sources (Riedel de

Haen) or supplied by Bayer CropScience AG, Frankfurt

with a minimum purity of 95%. The herbicides were dis-

solved in Dimethylsulfoxide (Sigma Aldrich) to 100 lg/ll

to provide stock solutions. To provide spray solutions

herbicide stock solutions were diluted in 800 ll 0.2%

Agrotin supplemented with 16 ll EC-premixture/Diace-

tonalcohol 1:6 to the predefined desired concentrations

(Eckes and Busch 2007; EC-premixture comprises 5%

phenylsulfonate CA70, 7% Emulsogen EL360, 40%

Isophorone and 48% methyloleate).

2.2 Experimental design

Fifteen Arabidopsis thaliana seeds (ecotype Col0 obtained

from the Nottingham Arabidopsis Stock Center), were

sown on soil using 11 cm plastic pots and grown under

short day conditions (9 h 75 lE/m2s and 15 h darkness at

21�C) for 28 days. At day 14, plants were picked to result

in ten evenly distributed plants. On day 28, plants were

transferred to long-day conditions (16 h 75 lE/m2s at

21�C, 8 h darkness at 19�C). Following an adaptation

period of 6 days, plants were evenly sprayed at a defined

timepoint on day 34 with 800 ll of spray solutions con-

taining herbicides as described above. Controls were

treated similarly with spray solution devoid of herbicide.

At timepoints 1, 3, 6, 12 and 24 h following spray appli-

cations rosettes of two pots each were harvested and pooled

independently and immediately frozen in liquid nitrogen

prior to storage at -70�C until further processing.

2.3 Metabolic profiling

Metabolite extraction was carried out on the exactly as

described previously (Roessner et al. 2001; Schauer et al.

2006). 100 mg of Arabidopsis were homogenized by

grinding in liquid nitrogen. Derivatization and GC-MS

analysis were carried out as described previously (Lisec

et al. 2006). The GC-MS system was comprised of a CTC

CombiPAL autosampler, an Agilent 6890N gas chro-

matograph and a LECO Pegasus III TOF-MS running in

EI? mode. Metabolites were identified in comparison to
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database entries of authentic standards (Kopka et al. 2005;

Schauer et al. 2005). Evaluation of non-polar metabolites

was carried out following the method of Fiehn et al.

(2000), since authentic chemical standards were not run for

every metabolite the metabolite identity should be regarded

as putative rather than exact for these metabolites.

2.4 Statistical analysis

The term significant is used in the text only when the

change in question has been confirmed to be significant

(P \ 0.05) with the t-test using the algorithm embedded in

Microsoft Excel. Principal component analysis (PCA) was

performed on the data sets obtained from metabolite pro-

filing with the software package TMEV (Saeed et al. 2003)

using the default weighted covariance-estimation function.

Further ICA analysis was performed using MetaGeneAlyse

(Scholz et al. 2004). In this software (available at

http://metagenealyse.mpimp-golm.mpg.de) ICA was per-

formed following a PCA preprocessing step to optimize the

outcome of the analysis. The data was log10-transformed

and normalized to the mean of the entire sample set for

each metabolite before the analysis. This transformation

reduces the influence of rare high-measurement values, but

does not change the discrimination in the data set.

3 Results

3.1 Experimental design

Herbicide treatments in the field are generally performed

either by foliar spraying or by soil application. For the

purposes of this study we decided to assess the effects of

application by spraying since this represents the common

method of application for the herbicides selected for these

experiments. We decided to evaluate the effects of several

herbicides of known mode of action, using a highly stan-

dardized growth and treatment cycle summarized in

Fig. 1a. Given that we are looking at a short-term response

to the herbicides we decided to adopt a serial sampling

approach (harvesting plant material at 1, 3, 6, 12 and 24 h

post-treatment), in order to follow the kinetics of the

metabolic response to the herbicide. The herbicides we

chose to study were glufosinate, sulcotrione, AE 944

[N2-(1-ethyl-3-phenylpropyl)-6-(1-fluoro-1-methylethyl)-

1,3,5-triazine-2,4-diamine], foramsulfuron, benfuresate and

glyphosate representing inhibitors of glutamine synthetase,

4-Hydroxyphenylpyruvate dioxygenase (4-HPPD), cellu-

lose biosynthesis (exact target unknown; Kiedaisch et al.

2003) acetolactate synthase (ALS), very long chain fatty

acid biosynthesis (VLCFA), and 5-enolpyruvylshikimate-

3-phosphate synthase (EPSPS), respectively.

3.2 Metabolic response of Arabidopsis to glufosinate

treatment

Treatment of Arabidopsis with the glutamine synthetase

inhibitor glufosinate resulted in dramatic metabolic chan-

ges. The most prominent of these are represented, in log

scale, in the histogram of Fig. 2a whilst the entire data set

is available as Supplemental Table I. This study revealed

that treatment with glufosinate resulted in a dramatic

accumulation of the TCA cycle intermediate 2-oxoglutar-

ate which reached 124% of the control level after 1 h,

222% after 3 h, 402% after 6 h, 2239% after 12 h and an

incredible 9416% after 24 h. In addition, there were large

increases in the concentrations of succinate and citrate, the

branched chain amino acid leucine and the aromatic amino

acid phenylalanine. Looking at the pathway map to identify

the metabolites changing after 24 h revealed that the TCA

cycle associated metabolites malate and citramalate also

increased as did aspartate, b-alanine and lysine as well as

other members of the branched chain and aromatic amino

acid families, the fatty acids, metabolites of ascorbate

metabolism and c-aminobutyric acid (GABA) and urea. In

contrast, sucrose and trehalose and serine and glycine were

significantly lower 24 h after treatment as were putrescine,

5-oxoproline and glutamine (Fig. 2b).

3.3 Metabolic response of Arabidopsis to sulcotrione

treatment

Application of the 4-HPPD inhibitor sulcotrione which is

known to block plastoquinone and tocopherol biosynthesis

day 0 

day 5 

day 10 

day 15 

day 20 

day 25 

day 30 

day 35 

Seeding and Culture under  
Short Day Conditions 

Picking

Removal of Lid 

Switch to Long Day Conditions 

Spraying with Herbicide 

Analysis

Fig. 1 Overview of the standardized experimental treatment and

growthconditions of the Arabidopsis thaliana (Col0) plants up until

the herbicide application
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(Schulz et al 1993; Pallett 2000), also resulted in large

metabolic shifts, however, these were of a quite different

nature to those described above for glufosinate. The most

prominent of these are represented, in log scale, in the

histogram of Fig. 3a (whilst the entire data set is available

as Supplemental Table I). Intriguingly, the majority of

changes observed were decreases with only tyrosine

increasing whereas glucose, fructose, glycerate and glycine

Glufosinate

Relative metabolite content

-0,5 0,0 0,5 1,0 1,5 2,0 2,5

Leucine

Succinic acid

Glutaric acid, 2-oxo-

Phenylalanine

Citric acid

1 h 
3 h 
6 h 
12 h 
24 h 

A

B

Fig. 2 Metabolic changes

following treatment of

Arabidopsis thaliana plants

with the herbicide glufosinate.

The graph shows the five most

variant metabolites samples to

the left of the line are increased

in content following treatment,

samples to the right are

decreased in content following

treatment. Data are presented on

a logarithmic (base10) scale and

are the mean of four

independent samples. The full

dataset is viewable in

Supplemental Table I
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all decreased dramatically. The increase in tyrosine was

very rapid with levels increasing mainly in the first hour

following treatment and remaining relatively stable there-

after. Looking at the full data set in order to gain an

overview of metabolites which display altered levels 24 h

after sulcotrione treatment revealed that the trend of

decreasing metabolite levels is reflected across the dataset

with sucrose, raffinose, trehalose, erythritol, serine, shi-

kimate, pyruvate, fumarate, putrescine, proline and 5-oxy-

proline all being significantly lower, but only inositol,

b-alanine, urea and GABA behaving similarly to Tyr, at

this timepoint (Fig. 3b).

3.4 Metabolic response of Arabidopsis to AE 944

treatment

Application of the cell wall biosynthesis inhibitor AE 944

(Kiedaisch et al. 2003) also resulted in distinct shifts in

metabolism. As was observed for the sulcotrione treatment

the general trend was of decreased metabolite content with

four of the five most variable metabolites displaying this

behavior (see the histogram of Fig. 4a or the entire data-

set—Supplemental Table I), namely glutamine, glucose,

fructose and glycine, whilst the level of lysine was pro-

gressively increased over time. Analysis of the full data set

revealed that after 24 h, the aspartate-derived b-alanine as

well as the branched chain amino acids and the aromatic

amino acids Tyr and Phe were additionally present at sig-

nificantly elevated levels. In contrast, the levels of sucrose,

raffinose, trehalose, mannose, pyruvate, citramalate,

fumarate, succinate, putrescine, proline and glutamine were

significant decreased at this timepoint (Fig. 4b).

3.5 Metabolic response of Arabidopsis

to foramsulfuron treatment

Next we evaluated the effect of treatment with the well

characterized acetolactate synthase inhibitor foramsulfuron

(Hacker et al. 2002). The pattern of metabolic change

following this treatment was once again distinct from those

following the other treatments described above. In this

instance the changes were consistent in the first 12 h fol-

lowing treatment but appeared highly pleiotropic after this

timepoint and we therefore focused on only the response up

to 12 h following treatment with this chemical. The most

dramatic changes after 12 h were seen in fructose, methi-

onine and phenylalanine which increased and perhaps

unsurprisingly given its mode of action the branched chain

amino acids isoleucine and valine which were dramatically

and rapidly depleted (leucine was the sixth most dramati-

cally altered; see the histogram of Fig. 5a or the entire

dataset—Supplemental Table I). When the full data set was

analysed, again 12 h following treatment, all three

branched chain amino acids are clearly dramatically

decreased and there is a resultant build up of alanine,

shikimate and all the aromatic amino acids, as well as a

conserved increase in the sugars maltose, fructose, glucose

and mannose, the amino acids glycine, asparagine, b-ala-

nine, lysine, glutamine, glutamate, GABA, proline,

5-hydoxy-proline and arginine, putrescine, citrate and ci-

tramalate (Fig. 5b).

3.6 Metabolic response of Arabidopsis to benfuresate

treatment

Treatment with the previously characterized very long

chain fatty acid elongase inhibitor benfuresate (Trenkamp

et al. 2004; Lechelt-Kunze et al. 2003) resulted in less

dramatic changes in primary metabolites than has been

described for the other herbicides (see Fig. 6a and Sup-

plemental Table I). The most dramatically affected

metabolites were tryptophan, aspartate, glucose, fructose

and succinate, however, with the exception of asparagine

(which increased in all timepoints following herbicide

treatment), the directionality of the changes in these

metabolites varied across the timecourse suggesting that

these changes were more likely to be pleiotropic. Assess-

ment of the polar metabolites 24 h after treatment, revealed

conserved increases in trehalose, glucose, fructose threo-

nate, leucine, phenylalanine, tryptophan, asparagine,

succinate, glucose, GABA, 5-hydoxy-proline and aspara-

gine and decreases in dehydroascorbate and putrescine

(Fig. 6b). It should, however, be noted that given that these

changes are inconsistent across the entire experiment,

evaluation of the final changes are unlikely to be of high

value in this instance. Since we knew this inhibitor affected

fatty acid metabolism we also checked the non-polar pro-

files carefully, however, these also gave no clear indicators

of the mode of action of the herbicide (data not shown).

3.7 Metabolic response of Arabidopsis to glyphosate

treatment

The final herbicide we evaluated was the EPSPS inhibitor

glyphosate which has previously been well characterised at

both the biochemical (Amrhein et al. 1980; DeMaria et al.

2006) and even the metabolomic level (Böttcher et al.

2008; Oikawa et al. 2006). The data collected here was

largely in accordance with the earlier studies (see Fig. 7a

and Supplemental Table I), with the outstanding metabolic

change being the dramatic accumulation of shikimate as

well as a general increase in Ala (although in both

instances these metabolites were decreased 1 h after

application of the herbicide) and large, albeit mixed,

changes in the levels of Gln, Asp and Arg. When the full

data set was evaluated, 24 h after treatment, additional
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Sulcotrione

Relative metabolite level

-2,0 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5

Glycine

Glyceric acid

Fructose

Glucose

Tyrosine

1 h 
3 h 
6 h 
12 h 
24 h 

A

B

Fig. 3 Metabolic changes

following treatment of

Arabidopsis thaliana plants

with the herbicide sulcotrione.

The graph shows the five most

variant metabolites samples to

the left of the line are increased

in content following treatment,

samples to the right are

decreased in content following

treatment. Data are presented on

a logarithmic (base10) scale and

are the mean of four

independent samples. The full

dataset is viewable in

Supplemental Table I
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AE 944

Relative metabolite content

-2,0 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5

Glycine

Fructose

Glucose

Glutamine

Lysine

1 h 
3 h 
6 h 
12 h 
24 h 

A

B

Fig. 4 Metabolic changes

following treatment of

Arabidopsis thaliana plants

with the herbicide AE 944.

The graph shows the five most

variant metabolites samples to

the left of the line are increased

in content following treatment,

samples to the right are

decreased in content following

treatment. Data are presented on

a logarithmic (base10) scale and

are the mean of four

independent samples. The full

dataset is viewable in

Supplemental Table I
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increases were observed in levels of fructose, glycine,

tyrosine, phenylalanine, valine, asparagine, aspartate,

b-alanine, methionine, tyrosine, glutamate, glutamine,

praline, arginine and putrescine. By contrast, the levels of

glycerate were significantly decreased at this time point

(Fig. 7b).

Foramsulfuron

Relative metabolite level

-1,5 -1,0 -0,5 0,0 0,5 1,0 1,5

Valine

Isoleucine

Methionine

Phenylalanine

Fructose

1 h 
3 h 
6 h 
12 h 
24 h 

A

B

Fig. 5 Metabolic changes

following treatment of

Arabidopsis thaliana plants

with the herbicide

formasulfuron. The graph shows

the five most variant metabolites

samples to the left of the line are

increased in content following

treatment, samples to the right

are decreased in content

following treatment. Data are

presented on a logarithmic

(base10) scale and are the mean

of four independent samples.

The full dataset is viewable in

Supplemental Table I
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Benfuresate

Relative metabolite level

-0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,

Succinic acid

Asparagine

Fructose

Glucose

Tryptophan

1 h 
3 h 
6 h 
12 h 
24 h 

A

B

Fig. 6 Metabolic changes

following treatment of

Arabidopsis thaliana plants

with the herbicide benfuresate.

The graph shows the five most

variant metabolites samples to

the left of the line are increased

in content following treatment,

samples to the right are

decreased in content following

treatment. Data are presented on

a logarithmic (base10) scale and

are the mean of four

independent samples. The full

dataset is viewable in

Supplemental Table I
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Glyphosate

Relative metabolite content

-1,0 -0,5 0,0 0,5 1,0 1,5 2,0

Alanine

Asparagine

Shikimic acid

Glutamine

Arginine

1 h 
3 h 
6 h 
12 h 
24 h 

A

B

Fig. 7 Metabolic changes

following treatment of

Arabidopsis thaliana plants

with the herbicide glyphosate.

The graph shows the five most

variant metabolites samples to

the left of the line are increased

in content following treatment,

samples to the right are

decreased in content following

treatment. Data are presented on

a logarithmic (base10) scale and

are the mean of four

independent samples. The full

dataset is viewable in

Supplemental Table I
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3.8 Statistical comparison of the datasets resulting

from treatments with herbicides of different mode

of action

In order to perform comparative analysis of the different

herbicide treatments we chose to adopt principal component

analysis (PCA). For this purpose we decided to restrict our

analysis to the samples taken 24 h after treatment. The plots

of the first three components, are presented in Fig. 8. As

would perhaps be expected the clearest discrimination

between the treatments was given by plotting principal

component 1 against principal component 2 (Fig. 8a).

Notably, the different treatments seem to be relatively easy

to discriminate from one another but, reassuringly, the

control treatments are indistinct from one another. From the

perspective of this plot it would appear that the sulcotrione

and AE 944 treatments were less easy to discriminate from

one another than from the other treatment and the same holds

true for the benfuresate and glyphosate treatments. That said,

whilst these observations are conserved in the plot of com-

ponent 2 against component 3 (Fig. 8b), the plot of

component 1 against component 3 (Fig. 8c), clearly dis-

crimates both sulcotrione from AE 944 and benfuresate from

glyphosate treatments. We next performed an evaluation of

the loadings, the parameters (in this case the metabolites)

that exhibit the greatest influence on the discrimination. For

principal component 1, the top five loadings (2-oxoglutarate,

citrate, Tyr, Leu and Phe), include four metabolites thought

to be diagnostic of the given mode of action with 2-oxo-

glutarate clearly indicative of inhibition of glutamine

synthetase whilst Tyr and Phe are indicative of EPSPS

inhibition and Leu is indicative of ALS inhibition. Similarly,

Val and Iso, indicative of ALS inhibition, are amongst the

top five loadings in principal component 1 and Tyr is again in

the top five loadings of principal component 3.

Given that both the point-by-point analysis and to a

lesser extent the PCA analysis suggested that the effects

of the herbicide treatments can be quite pleiotropic we

decided to additionally evaluate the combined dataset by

independent component analysis using the framework

specifically adapted for metabolite profiling studies by

Scholz et al. (2004). In this instance, rather than choosing

a single sampling point to focus on we rather performed

a comparative study across the kinetic of the experiment.

The results of these analyses are presented in Fig. 9, for

each time point three plots are shown which correspond

to independent component (IC) 1C1 versus IC2, IC1

versus IC3 and IC2 versus IC1. In all instances a prin-

cipal component analysis set to define four principal

components was run as a preparatory analysis as detailed

in Scholz et al. (2004). The discrimination afforded by

this technique was largely as would be expected. At the

first timepoint post treatment (1 h) there was essentially

no discrimination between the treatments although it

should be noted that the samples treated with AE 944,

sulcotrione, foramsulfuron and glyphosate can be easily

Fig. 8 Principal component analysis (PCA) of metabolite profiles

following 24 h treatment with distinct herbicides. The PCA is

presented as a combinations of the first three dimensions. Each data

point represents an independent sample. The analysis of this data was

performed using the TMEV software (Saeed et al. 2003). ) untreated

plants; glufosinate;� sulcotrione; h AE 944; 9 foramsulfuron; ?

benfuresate; D glyphosate
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spotted in the Plot of IC2 versus IC3 at this timepoint.

Three and six hours after treatment the separation of

samples treated with these three herbicides was even

clearer being obvious in all three plots. Twenty-four

hours after treatment the glufosinate treated samples

could additionally be clearly discriminated. The ben-

furesate samples were never clearly separable from the

control samples—even when the analysis of lipophillic

compounds was taken into consideration (data not

shown).

4 Discussion

To combat crop losses to pests or weeds comprehensive

strategies have recently been adopted including saturation

Fig. 9 Independent component

analysis (ICA) of metabolite

profiles of distinct herbicide

treatments following different

treatment timespans. Separate

ICA are presented for each

timepoint. The analysis of this

data was performed on the basis

of the first four principal

components using the

MetGenAlyse software (Scholz

et al. 2004). ) untreated plants;

glufosinate; � sulcotrione;

h AE 944; 9 foramsulfuron; ?

benfuresate; D glyphosate
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transgenesis approaches to search for suitable herbicidal

targets (Lein et al. 2004) as well as the application of

genomics level screening methodologies such as transcript

(Eckes nad Busch 2007; Yip et al. 1992; Raghavan et al.

2006), or metabolic profiling (Ott et al. 2003; Oikawa et al.

2006). Whilst the work described by Oikawa et al. observed

the effects of herbicides supplied via the growth media over a

longer time period, we favored a system by which plants

were grown under very highly standardized conditions and

then sprayed at a highly controlled developmental stage.

Post-application plant material was also harvested at set

times in a carefully controlled manner. The reasons for tak-

ing this approach were two-fold. Firstly, especially given our

interest in changes at the level of the single metabolites

themselves, we wanted to adopt as strict a procedure as

possible in order to minimize pleiotropic or secondary

effects that were not a direct consequence of the herbicide

treatment. Secondly, application by spray was much more

appropriate for the herbicides that we chose to work with

here since this is the manner by which they are predomi-

nantly applied in the field. This approach allowed us to do

two things. Firstly, we were able to demonstrate that simply

measuring the polar phase of a simple ethanol extract by GC-

MS produced data that enabled us to discriminate the her-

bicide treated samples from wild type in all the experiments.

Intriguingly this was also true for the statistical tools PCA

and ICA. That the treatments could be discriminated from

one another using this approach was reassuring but perhaps

not so surprising. Such discrimination had previously been

demonstrated using similar statistical approaches following

FT-ICR-MS analysis (Oikawa et al. 2006) and following

machine learning approaches on the smaller metabolite data

sets produced by NMR analysis (Ott et al. 2003). However,

given the low unit cost of a standard GC-MS run (Stitt and

Fernie 2003), these results highlight the potential of the

approach taken here for high-throughput screening of novel

agrochemicals.

The time-dependent sampling approach described here

allowed us to identify metabolites that responded rapidly

to the effects of the various herbicides. For several of the

herbicides this strategy was highly effective. Of particular

note are the five most effected metabolites following

treatment with foramsulfuron, glufosinate and glyphosate

with all three treatments showing metabolic changes

previously characterized following these treatments

(Gaston et al. 2003; Ray 1984; Servaites et al. 1987;

Barsch et al. 2006; Böttcher et al. 2008), within a very

short timeframe. Indeed after 24 h those plants treated

with foramsulfuron displayed a metabolic profile that was

not consistent with the mode of action—most probably

due to a combination of pleiotropic and adaptive effects.

Similarly the consistent increase in tryptophan in samples

treated with sulcotrione is in accordance with its action as

a 4-HPPD inhibitor (Pallett 2000) and likewise the

accumulation of sugars following the treatment with AE

944 are what would be anticipated from a cell wall bio-

synthesis inhibitor (Kiedaisch et al. 2003). When taken

together these five examples provide strong evidence that

time-dependent metabolite profiling by GC-MS can aid in

the identification of the mode of action of herbicides. The

fact that many compounds with herbicidal activity exert

their effects through the disruption of primary metabolism

renders it likely that the coverage afforded by GC-MS

approaches (Fernie et al. 2004) will be suitable for the

detection of many different classes of herbicides. As a

caveat to this statement it should be noted that the

metabolite profiles following treatment with benfuresate

provided little clue to its mode of action. Perhaps sur-

prisingly, this was also true following GC-MS profiling of

the lipophilic metabolites of samples collected following

this treatment. That said further studies are probably

required on compounds of similar mode of action to

benfuresate in order to evaluate if there are metabolites

diagnostic of very long chain fatty acid elongase inhibi-

tion present within the subset of metabolites accessible by

this method.

In summary, in this article we have shown that a time

dependent approach for GC-MS profiling based on serial

sampling following herbicidal spray is likely to have high

utility in aiding the process of mode of action identifi-

cation of agrochemicals. The advantage of this approach

is that it allows the discrimination of early and adaptive

responses and is therefore more likely to facilitate a

correct identification of the metabolic pathway or process

that the herbicide is working on. Metabolic profiling of

herbicide treated samples is also likely to be increasingly

important given increasing public awareness with respect

to crop safety issues (Catchpole et al. 2005; Shepherd

et al. 2005). It should be noted that this approach has

clear limitations, for example it was unable to provide

useful clues to the mode of action of the very long chain

fatty acid elongase inhibitor benfuresate and for certain

other classes of herbicides—for example those that effect

hormonal aspects of plant function. It, therefore, seems

likely that for certain compound classes specific proto-

cols, such as those used for determination of very long

chain fatty acid elongase inhibitors (Trenkamp et al.

2004), are likely to retain their utility. That said, the fact

that the identification of the mode of action of some of

the inhibitors was facile on the basis of the behaviour of

diagnostic metabolites suggests that this approach will

likely play an important role in the acceleration of novel

herbicide mode of action discoveries.
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Menne, H., & Köcher, H. (2007). HRAC classification of herbicides

and resistance development. In W. Krämer & U. Schirmer
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