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Abstract
We consider text-independent speaker verification under addi-

tive noise corruption. In the popular mel-frequency cepstral

coefficient (MFCC) front-end, we substitute the conventional

Fourier-based spectrum estimation with weighted linear predic-

tive methods, which have earlier shown success in noise-robust

speech recognition. We introduce two temporally weighted

variants of linear predictive (LP) modeling to speaker verifica-

tion and compare them to FFT, which is normally used in com-

puting MFCCs, and to conventional LP. We also investigate the

effect of speech enhancement (spectral subtraction) on the sys-

tem performance with each of the four feature representations.

Our experiments on the NIST 2002 SRE corpus indicate that the

accuracy of the conventional and proposed features are close to

each other on clean data. On 0 dB SNR level, baseline FFT and

the better of the proposed features give EERs of 17.4 % and

15.6 %, respectively. These accuracies improve to 11.6 % and

11.2 %, respectively, when spectral subtraction is included as

a pre-processing method. The new features hold a promise for

noise-robust speaker verification.

1. Introduction

Speaker verification is the task of verifying one’s identity based

on the speech signal [1]. A typical speaker verification sys-

tem consists of a short-term spectral feature extractor (front-

end) and a pattern matching module (back-end). For pattern

matching, Gaussian mixture models [2] and support vector ma-

chines [3] are commonly used. The standard spectrum analy-

sis method for speaker verification is the discrete Fourier trans-

form, implemented by fast Fourier transform (FFT). Linear pre-

diction (LP) is another approach to estimate the short-time spec-

trum [4].

Research in speaker recognition over the past two decades

has largely concentrated on tackling the channel variability

problem, that is, how to normalize out the adverse effects due

to differing training and test handsets or channels (e.g. GSM

versus landline speech) [5]. Another challenging problem in

speaker recognition, and speech technology in general, is that

of additive noise, that is, degradation that originates from other

sound sources and adds to the speech signal.

Neither FFT nor LP can robustly handle conditions of ad-

ditive noise. Therefore, this topic has been studied extensively

in the past few decades and many speech enhancement meth-

ods have been proposed to tackle problems caused by additive

noise [6, 7]. These methods include, for example, spectral sub-

traction, Wiener filtering and Kalman filtering. They are all

∗Short version of the paper has been accepted to IEEE Signal Pro-

cessing Letters.

Figure 1: Front-end of the speaker recognition system.

While we use standard mel-frequency cepstral features derived

through mel-frequency spaced filterbank placed on the magni-

tude spectrum, the way how the magnitude spectrum is com-

puted varies (FFT = Fast Fourier transform, baseline method;

LP = Linear prediction; WLP = Weighted linear prediction;

SWLP = Stabilized weighted linear prediction).

based on forming a statistical estimate for the noise and remov-

ing it from the corrupted speech. Speech enhancement methods

can be used in speaker recognition as a pre-processing stage to

remove additive noise. However, they have two potential draw-

backs. First, noise estimates are never perfect, which may re-

sult in removing not only the noise but also speaker-dependent

components of the original speech. Second, additional pre-

processing increases processing time which can become a prob-

lem in real-time authentication.

Another approach to increase robustness is to carry out fea-

ture normalization such as cepstral mean and variance normal-

ization (CMVN), RASTA filtering [8] or feature warping [9].

These methods are often stacked with each other and combined

with score normalization such as T-norm [10]. Finally, exam-

ples of model-domain methods, specifically designed to tackle

additive noise, include model-domain spectral subtraction [11],

missing feature theory [12] and parallel model combination [13]

to mention a few. Model-domain methods are always limited to

a certain model family, such as Gaussian mixtures.

This paper focuses on short-term spectral feature extrac-

tion (Fig. 1). Several previous studies have addressed robust

feature extraction in speaker identification based on LP-derived

methods, e.g., [14] [15] [16]. All these investigations, however,

use vector quantization (VQ) classifiers and some of the fea-

ture extraction methods utilized are computationally intensive,

because they involve solving for the roots of LP polynomials.

Differently from these previous studies, we (a) compare two

straightforward noise-robust modifications of LP and (b) utilize

them in a more modern speaker verification system based on
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Figure 2: (a) Short time energy (STE) as it used as the weighting

function in WLP and SWLP is shown for a voiced speech sound

taken from the NIST 2002 speaker recognition corpus and cor-

rupted by factory noise (SNR -10 dB). (b) Examples of FFT,

LP, WLP and SWLP spectra for the speech frame in (a). The

spectra have been shifted by approximately 10 dB with respect

to each other.

adapted Gaussian mixtures [2] and MFCC feature extraction.

The robust linear predictive methods used for spectrum estima-

tion (Fig. 1) are weighted linear prediction (WLP) [17] and

stabilized WLP (SWLP) [18], which is a modified version of

WLP that guarantees the stability of the resulting all-pole filter.

Rather than removing noise as speech enhancement methods

do, the weighted LP methods aim to increase the contribution

of such samples in the filter optimization that have been less

corrupted by noise. As illustrated in Fig. 2, the corresponding

all-pole spectra may preserve the formant structure of noise-

corrupted voiced speech better than the conventional methods.

The WLP and SWLP features were recently applied to auto-

matic speech recognition in [19] with promising results; we

were curious to see whether these improvements would trans-

late to speaker verification as well.

We first introduce the spectrum estimation methods in Sec-

tion 2. Experimental setup is described in Section 3. We use a

robust mel-frequency cepstral coefficient (MFCC) front-end as

indicated in Fig. 1 and vary the computation of the magnitude

spectrum. The standard FFT and LP form a point of compar-

ison. We expect the temporally weighted LP variants – WLP

and SWLP – to perform better under additive noise conditions,

which will be demonstrated in Section 4. The paper is con-

cluded in Section 6.

2. Spectrum Estimation Methods

In linear predictive (LP) modeling, with prediction order p, it

is assumed that each speech sample can be predicted as a lin-

ear combination of p previous samples, ŝn =
∑p

k=1
aksn−k,

where sn is the digital speech signal and {ak} are the prediction

coefficients. The difference between the actual sample sn and

its predicted value ŝn is the residual en = sn−
∑p

k=1
aksn−k.

Weighted linear prediction (WLP) is a generalization of LP. In

contrast to conventional LP, WLP introduces a temporal weight-

ing of the squared residual in model coefficient optimization,

allowing emphasis of the temporal regions assumed to be lit-

tle affected by the noise, and de-emphasis of the noisy re-

gions. The coefficients {bk} are solved by minimizing the en-

ergy of the weighted squared residual [17] E =
∑

n
e2nWn =∑

n
(sn − ∑p

k=1
bksn−k)

2Wn, where Wn is the weighting

function. The range of summation of n (not explicitly writ-

ten) is chosen in this work to correspond to the autocorrelation

method, in which the energy is minimized over a theoretically

infinite interval, but sn is considered to be zero outside the ac-

tual analysis window [4]. By setting the partial derivatives of

E with respect to each bk to zero, we arrive at the WLP normal

equations

p∑

k=1

bk
∑

n

Wnsn−ksn−i =
∑

n

Wnsnsn−i, 1 ≤ i ≤ p,

(1)

which can be solved for the coefficients bk to obtain the WLP

all-pole model H(z) = 1/(1 − ∑p

k=1
bkz

−k). It is easy to

show that conventional LP can be obtained as a special case of

WLP: by setting, for all n, Wn = c, where c is a finite nonzero

constant, c becomes a multiplier of both sides of (1) and cancels

out, leaving the LP normal equations [4].

The conventional autocorrelation LP method is guaranteed

to always produce a stable all-pole model, that is, a filter where

all poles are within the unit circle [4]. However, such a guaran-

tee does not exist for autocorrelation WLP when the weighting

function Wn is arbitrary [17] [18]. Because of the importance of

model stability in coding and synthesis applications, stabilized

WLP (SWLP) was developed [18]. The WLP normal equations

(1) can alternatively be written in terms of partial weights Zn,j

as

p∑

k=1

bk
∑

n

Zn,ksn−kZn,isn−i =
∑

n

Zn,0snZn,isn−i, (2)

1 ≤ i ≤ p,

where Zn,j =
√
Wn for 0 ≤ j ≤ p. As shown in [18]

(using a matrix-based formulation), model stability is guaran-

teed if the partial weights Zn,j are, instead, defined recursively

as Zn,0 =
√
Wn and Zn,j = max(1,

√
Wn√

W
n−1

)Zn−1,j−1,

1 ≤ j ≤ p. Substitution of these values in (2) gives the SWLP

normal equations.

The motivation for temporal weighting is to emphasize the

contribution of the less noisy signal regions in solving the LP fil-

ter coefficients. Typically, the weighting function Wn in WLP



and SWLP is chosen as the short-time energy (STE) of the im-

mediate signal history [17] [18] [19], computed using a sliding

window of M samples as Wn =
∑M

i=1
s2n−i. STE weight-

ing emphasizes those sections of the speech waveform which

consist of samples of large amplitude. It can be argued that

these segments of speech are likely to have been less corrupted

by stationary additive noise than low-energy segments. Indeed,

when compared to traditional spectral modeling methods such

as FFT and LP, WLP and SWLP using STE-weighting have

been shown to improve noise robustness in automatic speech

recognition [19] [18].

3. Speaker Verification Setup

We evaluate the effectiveness of the features on the NIST

2002 speaker recognition evaluation (SRE) corpus by using a

standard Gaussian mixture model with a universal background

model (GMM-UBM) [2]. We chose the GMM-UBM system

since it is simple and may outperform support vector machines

under additive noise conditions [13]. Test normalization (T-

norm) [10] is applied on the log likelihood ratio scores. There

are 2982 genuine and 36,277 impostor test trials in the NIST

2002 corpus. For each of the 330 target speakers, two minutes

of untranscribed, conversational speech is available for train-

ing the target speaker model. Duration of the test utterances

varies between 15 and 45 seconds. The (gender-dependent)

background models and cohort models for Tnorm, having 1024

Gaussians, are trained using NIST 2001 corpus. Our baseline

system [20] has comparable or better accuracy to other systems

evaluated on this corpus (e.g. [21]). Features are extracted ev-

ery 15 ms from 30 ms frames multiplied by a Hamming win-

dow. Depending on the feature extraction method, the magni-

tude spectrum is computed differently. For the baseline method,

we directly compute the fast Fourier transform (FFT) of the

windowed frame. For LP, WLP, and SWLP, the model coeffi-

cients and the corresponding all-pole spectra are first derived as

explained in Section 2. All the three parametric methods use a

predictor order of p = 20. For WLP and SWLP, the short-term

energy window duration is set to M = 20 samples. We use

a 27-channel mel-frequency filterbank to extract 12 MFCCs.

After RASTA filtering, ∆ and ∆2 coefficients are appended.

Voiced frames are then selected using an energy-based voice ac-

tivity detector (VAD). Finally, cepstral mean and variance nor-

malization (CMVN) is performed. The procedure is illustrated

in Fig. 1.

We use two standard metrics to assess recognition accuracy:

equal error rate (EER) and minimum detection cost function

value (MinDCF). EER corresponds to the threshold at which the

miss rate (Pmiss) and false alarm rate (Pfa) are equal; MinDCF

is the minimum value of a weighted cost function given by 0.1×
Pmiss+0.99×Pfa. In addition, we plot a few selected detection

error tradeoff (DET) curves which shows the full trade-off curve

between false alarms and misses in a normal deviate scale. All

the reported minDCF values are multiplied by 10, for ease of

comparison.

To study robustness against additive noise, we digitally

add some additive noise from the NOISEX-92 database1 to

the speech samples. In this study we use white, pink and

factory2 noises2. The background models and target speaker

models are trained on clean data, but the noises are added to

1Samples available at http://spib.rice.edu/spib/
select_noise.html

2We will refer this as “factory noise” throughout the paper.

the test files with a given average segmental (frame-average)

signal-to-noise ratio (SNR). We consider five values: SNR ∈
{clean, 20, 10, 0,−10} dB, where “clean” refers to the origi-

nal, uncontaminated NIST samples3.

We also include the well-known and simple speech en-

hancement method, spectral subtraction (SS), as described in

[6], in the experiments. We study the effect of speech enhance-

ment alone, as well as the combination of speech enhancement

with the new features. The noise model is initialized from the

first five frames and updated during the non-speech periods with

VAD labels given by the energy method.

4. Speaker Verification Results

We first study the effects of spectral subtraction and T-norm un-

der white noise corruption in Fig. 3. The results, shown here for

the FFT-derived spectrum, are similar for LP, WLP and SWLP.

Inclusion of spectral subtraction helps especially in very noisy

conditions, and does not degrade the performance even for the

clean condition. T-norm helps to reduce the miss rate at small

false alarm rates (as reflected by the value of MinDCF), as ex-

pected [10]. In the rest of the experiments, we include T-norm

unless otherwise stated.

We next study the effect of noise type and noise level to

all four feature sets, both with and without spectral subtrac-

tion. The equal error rates are presented graphically in Fig. 4,

whereas Tables 1, 2 and 3 display more detailed breakdown of

the results for white, pink and factory noise, respectively. Fi-

nally, Fig. 6 shows a DET plot that compares the four feature

sets under factory noise degradation at SNR of 0 dB without any

speech enhancement. Comparing the results without speech en-

hancement, we make the following observations:

• The accuracy of all four feature sets degrades signifi-

cantly under additive noise; performance in white and

pink noises is inferior to that in factory noise.

• WLP and SWLP outperform FFT and LP in most cases,

with large differences at low SNRs and for factory noise

• WLP and SWLP show minor improvement over FFT

also in the clean condition, showing consistency of the

new features.

• It is interesting to note that, although SWLP is stabi-

lized mainly for synthesis purposes, and WLP has per-

formed better in speech recognition [19], SWLP seems

to slightly outperform WLP in speaker recognition.

In speaker recognition, it is common to fuse FFT- and LP-

derived features since that they capture complementary proper-

ties of the underlying speech process [22, 23]. Here, we con-

sider fusion of the FFT- and SWLP-based features using two

well-known fusion strategies. Score fusion is carried out by

summing the log-likelihood ratio scores of the two classifiers,

score = 0.5 × (LLRFFT + LLRSWlP) and feature fusion is

implemented by training a single GMM-UBM classifier on the

concatenated 72-dimensional features. The results for the in-

dividual classifiers (FFT, SWLP) and the two types of fusion

are given in Fig. 5. Overall, the fusion gains are rather mod-

est and feature fusion is more stable. Since the FFT and SWLP

classifiers do not degrade uniformly with decreasing SNR level,

for effective score fusion the fusion weight should be adopted

for the (estimated) SNR-level; feature fusion seems to be more

3In fact, these samples are far away from “clean” as they have been
transmitted over different cellular networks with varying types of hand-
sets and are possibly already contaminated with some additive noise.
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Figure 3: Effects of spectral subtraction (SS) and test normalization (T-norm) to EER (left) and MinDCF (right) on white noise when

using features derived from the FFT spectrum. Results for LP, WLP and SWLP spectrum are similar.
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Figure 4: Equal error rates (EER %) of the four spectrum estimation methods on white noise (left), pink noise (middle) and factory

noise (right). Test normalization (T-norm) is applied in all cases; SS = spectral subtraction.
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on white noise (left), pink noise (middle) and factory noise (right). Test normalization (T-norm) is applied in all cases; SS = spectral

subtraction.

straightforward. The DET plot in Fig. 7 also includes the fea-

ture fusion which indicates slight improvements at low false

alarm rates.

5. Discussion

Considering the effect of speech enhancement, as summarized

by Figs. 4 and 7, we see that speech enhancement as a pre-

processing step significantly improves all the four methods. In

addition, according to Tables 1 through 3, the difference be-



Table 1: System performance under white noise with T-norm applied.
Signal- Equal error rate (EER %) MinDCF

to-noise Without spectral subtraction With spectral subtraction Without spectral subtraction With spectral subtraction

ratio (dB) FFT LP WLP SWLP FFT LP WLP SWLP FFT LP WLP SWLP FFT LP WLP SWLP

clean 9.22 8.89 9.15 9.15 9.29 8.92 9.26 9.19 3.56 3.47 3.50 3.54 3.59 3.51 3.53 3.60

20 9.76 9.43 9.46 9.39 9.52 9.35 9.39 9.19 3.83 3.77 3.69 3.82 3.77 3.60 3.69 3.69

10 12.37 12.04 12.01 12.11 10.73 10.19 10.32 10.09 5.12 5.10 5.09 5.20 4.17 4.10 4.18 4.14

0 26.27 26.19 25.15 25.39 13.22 12.71 12.91 12.71 9.34 9.51 9.50 9.44 5.28 5.14 5.15 5.10

-10 37.66 37.73 37.06 37.16 23.51 22.77 23.44 22.50 10.00 10.00 10.00 10.00 8.57 8.29 8.56 8.27

Average 19.08 18.86 18.57 18.64 13.25 12.79 13.06 12.74 6.37 6.37 6.36 6.40 5.08 4.93 5.02 4.96

Table 2: System performance under pink noise with T-norm applied.
Signal- Equal error rate (EER %) MinDCF

to-noise Without spectral subtraction With spectral subtraction Without spectral subtraction With spectral subtraction

ratio (dB) FFT LP WLP SWLP FFT LP WLP SWLP FFT LP WLP SWLP FFT LP WLP SWLP

clean 9.22 8.89 9.15 9.15 9.29 8.92 9.26 9.19 3.56 3.47 3.50 3.54 3.59 3.51 3.53 3.60

20 9.53 9.22 9.32 9.32 9.46 9.23 9.42 9.39 3.71 3.72 3.70 3.75 3.77 3.69 3.63 3.70

10 11.00 11.21 10.66 10.70 10.36 10.03 9.99 9.99 4.41 4.62 4.51 4.51 4.12 4.02 4.11 4.05

0 22.74 22.86 20.86 21.76 11.80 11.70 12.14 11.50 8.72 9.07 8.86 8.74 4.76 4.84 4.81 4.77

-10 33.37 33.17 31.92 31.69 20.12 20.32 20.76 19.14 10.00 10.00 10.00 10.00 7.90 7.66 7.94 7.51

Average 17.17 17.07 16.38 16.52 12.21 12.04 12.31 11.84 6.08 6.18 6.11 6.11 4.83 4.74 4.80 4.73

Table 3: System performance under factory noise with T-norm applied.
Signal- Equal error rate (EER %) MinDCF

to-noise Without spectral subtraction With spectral subtraction Without spectral subtraction With spectral subtraction

ratio (dB) FFT LP WLP SWLP FFT LP WLP SWLP FFT LP WLP SWLP FFT LP WLP SWLP

clean 9.22 8.89 9.15 9.15 9.29 8.92 9.26 9.19 3.56 3.47 3.50 3.54 3.59 3.51 3.53 3.60

20 9.57 9.22 9.22 9.29 9.69 9.26 9.46 9.35 3.71 3.70 3.70 3.71 3.72 3.65 3.64 3.68

10 10.13 10.26 10.13 10.03 10.47 10.20 10.26 10.03 4.05 4.20 4.16 4.16 4.09 4.00 4.15 4.09

0 17.40 17.04 16.03 15.59 11.64 11.57 11.57 11.17 7.62 7.82 7.24 7.04 4.54 4.64 4.76 4.60

-10 26.19 25.63 24.41 23.68 16.84 16.60 16.87 15.55 9.80 9.84 9.75 9.69 6.99 6.70 6.72 6.34

Average 14.50 14.23 13.79 13.55 11.59 11.31 11.48 11.06 5.75 5.81 5.67 5.63 4.59 4.50 4.56 4.46

Table 4: The effects of spectral subtraction and voice activity detector (VAD) on the noisiest factory noise condition (-10 dB SNR).
Spectral VAD labels Equal error rate (EER %) MinDCF

subtraction from FFT LP WLP SWLP FFT LP WLP SWLP

No Noisy 26.19 25.63 24.41 23.68 9.80 9.84 9.75 9.69

No Clean 17.60 17.49 17.54 16.18 7.68 7.57 7.49 7.36

Yes Noisy 16.84 16.60 16.87 15.55 6.99 6.70 6.72 6.34

Yes Clean 17.25 16.97 17.42 15.66 7.30 6.68 6.93 6.41

comes progressively larger with decreasing SNR. This is ex-

pected, since for a less noisy signal, spectral subtraction is likely

to remove also other information in addition to noise. After in-

cluding speech enhancement, even though the enhancement has

a larger effect than the choice of the feature set, SWLP remains

the most robust method and together with WLP outperforms

baseline FFT. Note that here the benefit from spectral subtrac-

tion may be quite pronounced due to almost stationary noise

types.

In analyzing the results further we noticed that the energy-

based VAD tends to produce unreliable results at low SNR (0

dB and -10 dB), by declaring most of the frames as speech. To

exclude the detrimental effect of the (highly) errorneous VAD

and focus on differences of spectrum estimation methods them-

selves, we performed another experiment on the noisiest (-10

dB) factory noise condition where the VAD labels were de-

rived from the clean signal. The results in Table 4 confirm

that the errorneous VAD labels are the main cause of degra-

dation at the low SNRs; spectral subtraction can be seen as

a “soft VAD”. Interestingly, combination of spectral subtrac-

tion and “non-cheating VAD” appears to be the best combi-

nation. Further research is required to find good combination

of speech enhancement and voice activity detection for non-

stationary noises. Comparing the spectrum estimation methods

in Table 4, SWLP remains the best method irrespective of the

chosen VAD and spectral subtraction.

6. Conclusions

We studied temporally weighted linear predictive features in

speaker verification. Without speech enhancement, the new

WLP and SWLP features outperformed standard FFT and LP

features in recognition experiments under additive noise condi-

tions. The usefulness of robust voice activity detector and spec-

tral subtraction in highly noisy environments was also demon-

strated. Overall, the SWLP remained the most robust method.

The temporally weighted linear predictive features are a promis-

ing approach for speaker recognition in the presence of additive

noise.
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Figure 6: Comparing the features without any speech enhance-

ment.
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Figure 7: Comparing FFT and SWLP with and without speech

enhancement. Feature-level fusion of the enhanced systems is

also shown (SS = Spectral Subtraction).
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and P. Alku, “Weighted linear prediction for speech anal-

ysis in noisy conditions,” in Proc. Interspeech 2009,

Brighton, UK, 2009, pp. 1315–1318.

[20] R. Saeidi, H. R. S. Mohammadi, T. Ganchev, and R. D.

Rodman, “Particle swarm optimization for sorted adapted

gaussian mixture models,” IEEE Trans. Audio, Speech

and Language Processing, vol. 17, no. 2, pp. 344–353,

February 2009.

[21] C. Longworth and M.J.F. Gales, “Combining derivative

and parametric kernels for speaker verification,” IEEE

Trans. Audio, Speech and Language Processing, vol. 17,

no. 4, pp. 748–757, May 2009.

[22] W.M. Campbell, J.P. Campbell, D.A. Reynolds, E. Singer,

and P.A. Torres-Carrasquillo, “Support vector machines

for speaker and language recognition,” Computer Speech

and Language, vol. 20, no. 2-3, pp. 210–229, April 2006.

[23] T. Kinnunen, V. Hautamäki, and P. Fränti, “Fusion of
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