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Throughout its modern history, sleep research has been concerned with both 
the benefits of sleep and the deleterious impact of sleep disruption for cognition, 
behavior, and performance. When more specifically examining the impact of sleep 
on memory and learning, however, research has overwhelmingly focused on how 
sleep following learning facilitates memory, with less attention paid to how lack of 
sleep prior to learning can disrupt subsequent memory. Although this imbalance 
in research emphasis is being more frequently addressed by current investigators, 
there is a need for a more organized approach to examining the effect of sleep 
deprivation before learning. The present review briefly describes the generally 
accepted approach to analyzing effects of sleep deprivation on subsequent 
memory and learning by means of its effects on encoding. Then, we  suggest 
an alternative framework with which to understand sleep loss and memory in 
terms of temporary amnesia from sleep loss (TASL). The review covers the well-
characterized properties of amnesia arising from medial temporal lobe lesions and 
shows how the pattern of preserved and impaired aspects of memory in amnesia 
may also be appearing during sleep loss. The view of the TASL framework is that 
amnesia and the amnesia-like deficits observed during sleep deprivation not only 
affect memory processes but will also be apparent in cognitive processes that 
rely on those memory processes, such as decision-making. Adoption of the TASL 
framework encourages movement away from traditional explanations based on 
narrowly defined domains of memory functioning, such as encoding, and taking 
instead a more expansive view of how brain structures that support memory, 
such as the hippocampus, interact with higher structures, such as the prefrontal 
cortex, to produce complex cognition and behavioral performance, and how this 
interaction may be compromised by sleep disruption.
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1. Introduction

There is a considerable history of interest in the relationship between sleep and memory, but 
since the seminal studies on sleep and memory (Jenkins and Dallenbach, 1924), most research 
addressing this relationship has focused on how sleep strengthens memories established during 
previous waking hours. More recently, there has been increased study of the ability to learn and 
remember new information while sleep deprived. There are good reasons, both practical and 
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theoretical, to better understand how sleep deprivation may impair or 
degrade the quality of memory. With epidemic levels of insufficient 
sleep in modern industrial societies (Chattu et al., 2018), the potential 
for impaired learning due to lack of sleep is very high in schools and 
training environments. From a fundamental research perspective, if 
we are to identify the mechanisms by which sleep deprivation affects 
cognitive performance in general, memory is a critical domain to 
understand because what we remember from our experiences affects 
how we relate to others and how we make choices. Recognizing the 
much larger body of sleep research on how sleep strengthens 
previously acquired memories, it is noteworthy that Newbury et al. 
(2021) found that sleep deprivation after learning produced 
substantially smaller effects than a night of sleep deprivation before 
learning new material.

The effects of sleep deprivation before or after learning are 
typically mapped onto a division of memory processing into three 
phases: encoding, consolidation, and retrieval. Research on sleep 
deprivation after learning is most concerned with the role of sleep in 
memory consolidation. According to the active systems view of the 
consolidation of memory, sleep facilitates the transfer of information 
from hippocampally dependent processing more broadly to the 
neocortex where it is integrated with prior knowledge (Takashima 
et al., 2009; Walker, 2009; Born and Wilhelm, 2012; Rasch and Born, 
2013). Research on sleep deprivation before learning analyzes possible 
impairments in the other phases of memory. The consensus from this 
research is that sleep deprivation degrades the capacity for encoding 
new information, and similar to studies of memory consolidation, has 
focused on the hippocampus and associated structures where sleep 
loss decreases hippocampal activation and alters its connectivity with 
other brain regions. Specifically, neuroimaging studies indicate that 
sleep deprivation decreases connectivity with the prefrontal cortex 
(PFC), temporal, and parietal lobes, and increases connectivity with 
alertness networks that include the thalamus (Yeo et al., 2015; Zhao 
et al., 2019; Chai et al., 2020; Gisabella et al., 2020).

Our purpose here is to provide a framework for better 
understanding the growing body of evidence on the effects of sleep 
deprivation before learning. Although there are typically large effects 
of sleep deprivation on subsequent learning, multiple investigators 
have noted that there is substantial variation in these effects for 
reasons that are as yet unknown (Cousins and Fernández, 2019; 
Vaseghi et  al., 2021). We  believe that lessons from the history of 
studies of memory impairment from hippocampal lesions, which 
produce anterograde amnesia, suggest that viewing sleep deprivation 
as producing a deficit in “encoding capacity” may be misleading and 
may obscure important connections between memorial effects of sleep 
loss and other cognitive processes not typically considered in a 
memory context.

2. Lessons from the study of amnesia

One of the most famous patients in the history of clinical 
neurology, Henry Molaison, known in the scientific and medical 
literature by his initials H.M. until after his death, provided the most 
important case study of profound anterograde amnesia resulting from 
bilateral resection of the medial temporal lobes (MTL). Study of 
H.M. had an extraordinary influence on subsequent memory research. 
This influence, and that of converging studies of other individuals with 

hippocampal damage, has been widely discussed and we need not 
provide a comprehensive review here (cf., Scoville and Milner, 1957; 
Salat et al., 2006; Squire, 2009; Squire and Wixted, 2011). What is 
important for present purposes is to briefly review changes over time 
in conceptions of anterograde amnesia, and the role of the 
hippocampus in memory, as a basis for comparison to current 
research on sleep deprivation.

Studies of individuals with MTL lesions showed a striking 
dissociation between an apparent inability to learn new information 
and intact abilities in short-term memory (STM) and general 
intellectual functioning. In addition, deficits in memory produced by 
damage to the hippocampus were not accompanied by deficits in 
acquiring skills such as mirror drawing and tactile maze learning, or 
for showing automatic priming of perceptual or conceptual relations 
among words (Milner et al., 1968; Cohen and Squire, 1980; Levy et al., 
2004). Thus, it was concluded that the hippocampus and related 
structures in the MTL are critical for the transfer of consciously 
accessible information in short-term memory to more permanent 
storage in long-term memory (Wickelgren, 1968; Baddeley and 
Warrington, 1970; Milner et al., 1998; Ranganath and Blumenfeld, 
2005). This classic conception of the nature of anterograde amnesia is 
consistent with the viewpoint that impaired functioning of the 
hippocampus during sleep deprivation diminishes the capacity to 
encode new, explicit information. However, as research on amnesia 
has grown, and with the introduction of functional imaging of the 
hippocampus during memory tasks, new ideas have supplanted the 
original conception that the hippocampus functions to transfer 
information from STM to long-term memory (LTM).

Evidence accumulated from the study of LTM deficits in amnesia 
clearly demonstrates that the hippocampus supports relational 
binding, i.e., the linking of stimulus elements into integrated 
representations (Cohen and Eichenbaum, 1993; Ryan et al., 2000), 
with converging support obtained from animal studies and 
neuroimaging (Olsen et al., 2012; Bird, 2017; Schwarb et al., 2019). 
Hippocampally dependent binding occurs across various levels of 
cognitive processing, from perception to memory (Treisman and 
Gelade, 1980; Cohen and Eichenbaum, 1993; Yonelinas, 2013). Within 
the memory domain, binding primarily links stimuli with each other 
(e.g., associating pairs of words together; Yonelinas et al., 2001), or 
links stimuli with their relevant contextual information (e.g., 
remembering when or where an image was viewed; Mitchell and 
Johnson, 2009). Regardless of what is being bound, successful binding 
depends on having intact hippocampal functioning, particularly for 
the creation of complex, high-resolution bindings that help form more 
precise, differentiated memories (Yonelinas, 2013; Ekstrom and 
Yonelinas, 2020).

The evidence for relational memory problems in anterograde 
amnesia comes from a variety of paradigms and stimulus types. For 
example, MTL damage produces profound deficits in acquiring 
arbitrary associations of names and pictures (Morrow et al., 2020), 
binding of objects to the scenes they appear in (Hannula et al., 2015), 
and the binding of objects to their spatial locations (Horecka et al., 
2018). However, it is important to note that the binding problems 
created by MTL damage will not only be manifest in tests of memory 
specifically targeting the relationships among stimulus items. Consider 
the well-known dissociation in which amnesia patients show deficits 
on explicit memory even as they show unimpaired performance on 
several tests of implicit memory (Graf et al., 1985). Explicit memories 
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are those that can be consciously and deliberately remembered, such 
as memories for events and experiences. In contrast, implicit 
memories are those that are manifest in performance (Squire and 
Dede, 2015) without awareness, such as habit-based skills or priming, 
i.e., the influence of stimuli that occurs unconsciously (Schacter, 1987; 
Squire, 2004; Squire and Dede, 2015). In general, explicit tests of 
memory will necessarily be dependent on binding of items with their 
context. Even if asked to simply recognize whether a word was in a 
study list or not, the context of studying the item in a particular list at 
a particular time is part of the information that supports a judgment 
based on recollection of studying the item and, at least for many types 
of stimuli, whether the word seems familiar (Squire and Wixted, 2011; 
Bird, 2017). Moreover, the role of the hippocampus in binding also 
means that its function cuts across the traditional three phases of 
encoding, consolidation, and retrieval. The associations bound 
together during encoding are critical to later retrieval because they 
allow for reinstating earlier hippocampal and cortical activation, even 
if only partial cues to the original experience are available (Henke, 
2010). Reinstating hippocampal-cortical interactions likewise appears 
to play a role in consolidation (Murty et al., 2017; Cowan et al., 2021).

Although implicit memory is generally preserved in amnesia, 
problems with binding of stimulus elements have also been 
demonstrated under conditions of implicit memory rather than 
conscious recollection. Ryan et al. (2000) presented a series of scenes 
to control subjects and people with amnesia and monitored eye 
movements as the scenes were viewed. Some scenes were repeated in 
their original form and other scenes were repeated but with 
manipulation of the relationships among objects (e.g., shifting the 
position of one of the objects). Among control subjects, simple 
repetition reduced visual sampling of the objects in the scene, but 
manipulated scenes increased viewing time of the changes that were 
made. These eye movement effects occurred in the absence of 
conscious awareness of the scene changes. Subjects with amnesia 
showed the same effect as controls for simple scene repetition, but 
unlike controls, they showed no effect of changed scenes on viewing 
times. Thus, people with amnesia, who show severe deficits in 
conscious recollection, also, in an implicit memory procedure, failed 
to bind separate objects together in their memory representations.

Additional support for the role of the hippocampus in binding can 
also be found in studies of amnesia and motor memory. Early studies 
of the learning of motor procedures through practice, such as mirror 
drawing and pursuit rotor performance, suggested that motor 
memory was intact in patients with amnesia (Milner, 1962; Brooks 
and Baddeley, 1976). While motor skill learning can often occur 
without hippocampal involvement, particularly in the case of more 
implicit tasks, subsequent research showed that the hippocampus is 
critical to such memory when it involves learning higher order motor 
sequences (Albouy et al., 2013). For example, in the serial reaction 
time task (SRTT), people use visual cues to anticipate and reproduce 
a set of corresponding sequential motor responses (Chafee and Ashe, 
2007). When the series can be  learned from simple pairwise 
associations among the pattern of cues, amnesic patients do not show 
learning deficits, but when the pattern depends on more complex 
higher-order associations among the cues, the hippocampus is needed 
to bind the motor responses into a sequence. Therefore, if higher order 
relations must be bound, a process that is hippocampally dependent, 
amnesic patients show deficits in performance (Curran, 1997; 
Robertson, 2007).

The classic view that anterograde amnesia represents a failure of 
encoding information into LTM has been further undermined by 
studies showing that hippocampal damage disrupts some aspects of 
STM processing, and not just storage in LTM. For example, when 
amnesic patients are presented with scenes and are given a recognition 
memory test after only a few seconds, their memory for which objects 
are in the scene is typically intact, but memory for item locations 
within the scenes is very impaired (Olson et al., 2006; Yee et al., 2014). 
This pattern has been replicated with multiple types of associations 
among distinct elements including faces and scenes, colors and 
locations, and colors and numbers (see Olsen et al., 2012 for a review). 
These results suggest that a critical role of the hippocampus is to bind 
distinct elements in the focus of attention together into a composite 
representation that captures the temporal, spatial, and conceptual 
relationships among the elements (Cohen and Eichenbaum, 1993; 
Rubin et al., 2017). Results from studies of amnesic patients have 
received converging support from neuroimaging studies of 
hippocampal engagement during perceptual processing and working 
memory tasks (Ranganath and D’Esposito, 2001; Ranganath et al., 
2005; Riggs et al., 2009).

Perhaps the most striking departure from the classic view of the 
hippocampus and amnesia comes from recent research demonstrating 
that the hippocampus is not limited to functions traditionally 
designated as being in the memory domain (Olsen et al., 2012; Rubin 
et al., 2017). Through its role in binding stimulus items together with 
their context, and through its interaction with other brain areas, 
particularly the PFC, the hippocampus makes an essential 
contribution to decision-making, spatial navigation, and some aspects 
of language use. Amnesia patients once thought to have a 
circumscribed memory deficit actually show other kinds of deficits 
related to binding and comparing information (Biderman et al., 2020). 
For example, performance on the Iowa Gambling Task (IGT), which 
was originally developed to understand decision-making deficits 
associated with damage to the ventromedial PFC (Bechara et  al., 
1994), is impaired in people with MTL damage as well (Bechara et al., 
1994; Gutbrod et al., 2006). In the IGT, subjects choose cards from 
among four decks, and based on the outcomes associated with choices 
of each deck, they must learn which deck choices are advantageous 
and which are disadvantageous in the long run. There are multiple 
possible reasons for poor performance on the IGT, including an 
insensitivity to future consequences of choices (Bechara et al., 1996). 
However, in the case of amnesia patients, failure to develop an 
advantageous choice strategy is likely because the task involves 
associating gains and losses with their respective decks, i.e., a 
fundamental binding problem (cf., Whitney and Hinson, 2012).

Further evidence that amnesia patients have difficulties in 
decision-making comes from Bakkour et al. (2019) who reported 
deficits in value-based decision-making among these patients. 
Although the patient group performed similarly to controls on a color 
discrimination task using familiar food items, when asked to compare 
food items and choose which one they would prefer, a difference 
between groups emerged. The patient group made choices that were 
less consistent with their initial evaluation of individual items, while 
control subjects made value-based comparisons that were highly 
consistent with initial evaluation of each of the individual items.

In summary, research on amnesia provides compelling evidence 
that the hippocampus, the functioning of which is known to 
be strongly affected by sleep deprivation, plays a critical role in LTM 
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through relational binding of stimuli and their context, while also 
functioning to bind items together in novel associations on timescales 
operating in perception and working memory. Further, hippocampal 
binding is needed for performance on several aspects of complex 
cognition typically considered outside the domain of memory 
research. We  next evaluate whether deficits in these processes 
associated with anterograde amnesia may underlie sleep deprivation 
effects on memory and other cognitive processes.

3. Temporary amnesia from sleep loss

Based on strong evidence that the hippocampus plays a critical 
role in relational binding, along with the demonstrated effects of sleep 
deprivation on hippocampal functioning, we believe it is useful to 
think of sleep loss effects on memory, and some other aspects of 
cognition, as representing a case of mild to moderate temporary 
amnesia. Much like transient global amnesia, which results in 
cognitive deficits similar to that of hippocampal amnesia but typically 
resolves with 24 h (Quinette et al., 2003, 2006), the amnesia-like effects 
of sleep deprivation are expected to resolve without long-term 
consequences. However, unlike transient global amnesia, the 
progression of sleep deprivation-induced amnesia is less severe and 
does not have a sudden and rapid onset. Before addressing the key 
question of whether such binding problems are manifest under sleep 
deprivation, we first must acknowledge an important caveat. Sleep 
deprivation produces some deficits in cognition that are different from 
problems experienced by patients with MTL lesions. For instance, 
sleep deprivation disrupts PFC functioning and connectivity with 
other brain regions (Yoo et al., 2007a), leading to problems directing 
attentional resources in pursuit of goals (Chee and Tan, 2010) and 
controlling emotional responses (Stenson et  al., 2021). The most 
noteworthy example is the deficit in vigilant attention produced by 
sleep deprivation (Lim and Dinges, 2008; Basner and Dinges, 2011; 
Hudson et al., 2020). Amnesic patients do not typically have problems 
with vigilant attention, and if a memory task was administered to 
sleep-deprived subjects in a way that taxes vigilant attention, then 
lapses of attention could themselves produce a failure to encode 
stimuli. Nonetheless, in the tests of memory under sleep deprivation 
discussed below, task pacing and other means of ensuring that stimuli 
were processed, such as use of orienting tasks, reduce or eliminate 
lapses of vigilant attention as a potential source of memory deficits.

3.1. Binding deficits in explicit and implicit 
LTM

A comparison of the memory-based deficits observed in amnesia 
and sleep deprivation is included in Table 1. Like amnesia patients, 
sleep-deprived subjects show impaired learning and retention of new 
episodic information, such as lists of words or series of images 
(Drummond et  al., 2000; Walker and Stickgold, 2006; Yoo et  al., 
2007b). In addition, sleep-deprived subjects show deficits in relational 
memory, with worse performance on tasks that require binding 
compared to their baseline performance or their rested counterparts 
(Harrison and Horne, 2000a; Tempesta et al., 2016; Ratcliff and Van 
Dongen, 2018; Kurinec et al., 2021). For example, Kurinec et al. (2021) 
presented subjects, assigned to either a sleep deprived or rested control 

condition, with a series of words spoken by either a male or female 
speaker. Compared to their rested counterparts and their own rested 
baseline, sleep-deprived subjects were worse at recognizing the words 
presented during study, consistent with previous work showing sleep 
deprivation impairments in new learning. However, even when sleep-
deprived subjects correctly recognized the studied words, they were 
less able to recognize their associated speaker. Thus, even when sleep-
deprived subjects have successfully encoded information, sleep 
deprivation results in additional impairments to the ability to bind 
that information with its context.

There is less of a history of overlapping research paradigms to 
compare the effects of sleep deprivation and MTL damage on implicit 
memory. We do know that much like amnesia patients, sleep-deprived 
subjects show intact priming (López-Zunini et al., 2014; Casey et al., 
2016) and preserved performance on some implicit skills (McWhirter 
et  al., 2015). The limited evidence available indicates that sleep-
deprived subjects are similarly impaired on implicit memory tasks 
involving relational memory. For instance, compared to rested 
controls, sleep-deprived subjects show poorer implicit sequence 
learning during sleep loss (Heuer et al., 1998; Heuer and Klein, 2003). 
Implicit sequence learning requires individuals to learn new, higher-
order associations, and the acquisition of these relations has been 
found to activate the MTL in healthy adult subjects, regardless of 
whether subjects later display awareness of the associations (Schendan 
et al., 2003). Still, given the limited research on implicit memory and 
sleep deprivation in general, this pattern of effects must 
be interpreted cautiously.

There has also been considerable interest in the sleep-related 
consolidation of motor memories (see King et al., 2017 for a review). 
Consistent with findings from the amnesia literature indicating a role 
for hippocampal binding in complex motor sequence learning, the 
data on sleep-related consolidation show that hippocampal-cortical 
connections are important when the task is dependent on complex 
spatial or abstract associations, or explicit memory. However, to our 
knowledge, there has yet to be a direct test of how sleep deprivation 
affects simple versus complex motor sequence learning. Adopting 
tasks used in the amnesia literature that show dissociations in amnesia 
patients based on the need for binding of relations in implicit or motor 
learning tasks could provide a strong test of the TASL framework.

3.2. Dissociation of STM and LTM

As noted above, the classic dissociation of STM and LTM in 
performance of amnesic patients is not as clear cut as once believed. 
Nevertheless, it is certainly the case that hippocampal lesions affect 
LTM without affecting typical measures of verbal STM, such as digit 
span. The same is true of subjects under sleep deprivation, as Tucker 
and colleagues showed that speed of searching verbal STM was 
unaffected by sleep deprivation (Tucker et al., 2010; García et al., 2021).

The picture is more complex if we look beyond verbal STM, and 
consider working memory, i.e., functions involved in the storage and 
manipulation of information in the focus of attention. Working 
memory can involve manipulation of verbal, semantic, visuospatial, 
and other types of representations (Baddeley, 1986; Rubin et al., 2017). 
The precise nature of deficits in working memory associated with 
amnesia is still being investigated, but as discussed above, there is 
considerable evidence for the involvement of the hippocampus in 
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working memory processing when binding is needed, particularly 
when complex spatial relationships among objects must be processed 
(see Yonelinas, 2013), or when novel rather than familiar stimuli must 
be  maintained (Rose et  al., 2012). Consistent with the TASL 
framework, Chee and Chuah (2007) found a sleep deprivation-
induced deficit in performance of a working memory task that 
required maintenance of the spatial positions of visual stimuli. 

Likewise, sleep-deprived subjects are impaired on tasks that require 
them to bind color-location pairings in working memory (Wee 
et al., 2013).

A working memory issue that has received more attention in the 
sleep literature than in research on amnesia is working memory 
updating (cf., Spiers et al., 2001; Choo et al., 2005; Lythe et al., 2012). 
In many kinds of complex tasks, information must be continuously 

TABLE 1 Comparison of preserved and impaired memory processes in amnesia and sleep deprivation.

Process Task In amnesia Under sleep deprivation

Explicit long-term memory

Item memory
Encoding of new episodic 

information (e.g., words or pictures)

Poorer memory for words and pictures 

than their matched controls (Huppert 

and Piercy, 1977; Hirst et al., 1986)

Worse memory for words and pictures 

compared to rested controls or their own 

rested performance (Drummond et al., 2000; 

Yoo et al., 2007b)

Relational memory

Associative memory, or memory for 

the relations among sets of stimuli

Deficit in associative memory for the 

studied stimuli sets compared to 

matched controls (Giovanello et al., 

2003), regardless of the type of 

association among the stimuli (Konkel 

et al., 2008)

Poorer associative and sequential memory for 

the studied stimuli sets compared to their 

rested counterparts and/or own performance 

at rested baseline (Tempesta et al., 2016; 

Ratcliff and Van Dongen, 2018)

Source memory, or memory for 

individual stimuli (items) and the 

context (source) in which they were 

originally presented

Worse memory for items and their 

sources compared to controls 

(Shimamura and Squire, 1991; Gold 

et al., 2006)

Worse memory for individual items and their 

sources compared to rested controls and their 

own baseline performance (Kurinec et al., 

2021)

Implicit long-term memory

Item memory1

Unconscious memory for skills

Preserved mirror reading (Cohen and 

Squire, 1980), mirror drawing, and 

tactile maze learning (Milner et al., 

1968)

Similar encoding of a texture discrimination 

task as their rested counterparts (McWhirter 

et al., 2015)

Priming

Similar conceptual and repetition 

priming as control subjects (Haist et al., 

1991; Levy et al., 2004)

Intact verbal priming compared to their rested 

baseline (López-Zunini et al., 2014; Casey 

et al., 2016)

Relational memory

Implicit sequence learning, or 

learning relationships that occur 

among series of stimuli

Less able to learn higher-order 

associations than controls (Curran, 

1997)

Poorer learning than their rested counterparts 

(Heuer et al., 1998; Heuer and Klein, 2003)

Short-term memory

Item memory
Maintaining individual stimuli in the 

focus of attention

Preserved ability to maintain 

information in memory (Baddeley and 

Warrington, 1970; Cave and Squire, 

1992)

Preserved working memory scanning (Tucker 

et al., 2010; Whitney et al., 2015)

Relational memory
Maintaining associations in the focus 

of attention for short periods of time

Impaired at detecting changes in item-

location associations (Yee et al., 2014) 

and at maintaining object-location 

associations (Olson et al., 2006)

Poorer performance when spatial positions or 

color-location pairings must be maintained in 

memory (Chee and Chuah, 2007; Wee et al., 

2013)

Decision-making

Binding independent

Delay discounting, or choosing 

between smaller immediate rewards 

or larger, delayed rewards

Show similar discounting functions as 

matched controls (Kwan et al., 2012, 

2013)

Show similar discounting functions as their 

rested baseline or rested counterparts 

(Acheson et al., 2007; Libedinsky et al., 2013)

Binding-dependent

Iowa Gambling Task (IGT), which 

requires subjects to learn to prefer the 

decks that result in long-term gains

Fail to learn to prefer the advantageous 

decks over time (Gutbrod et al., 2006; 

Gupta et al., 2009)

Do not learn to prefer the advantageous decks 

compared to their rested baseline (Killgore 

et al., 2006)

1Although item memory can generally be conceived as a memory representation for a given stimulus, implicit item memory is better thought of as the “functional unit of repetition in a task” 
(Cohen et al., 1997, p. 150).
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moved into and out of the focus of attention, and this process is often 
studied in the laboratory using the N-back task (Jonides et al., 1997; 
Pelegrina et al., 2015). Subjects performing the N-back task see a 
series of stimuli, often letters, and must report whether the stimulus 
on the current trial is the same as one N (typically from 1 to 3 items) 
back. Sleep-deprived subjects are impaired on the N-back task 
compared to their rested state (Choo et al., 2005). Relevant to the 
TASL framework is evidence that hippocampal-PFC pathways are 
invoked in the N-back task, which is consistent with the known role 
of the hippocampus in maintaining temporal order information 
(Costers et al., 2020). However, it is misleading to think of the N-back 
task as a simple measure of working memory updating because 
multiple cognitive processes are needed for successful performance 
including inhibition of distractors, and multiple interactions among 
the PFC, hippocampus, and basal ganglia are involved 
(Rac-Lubashevsky and Kessler, 2016; Costers et al., 2020). Hence, 
there are several potential sources of performance decrements on the 
N-back. More research is needed to determine whether the effects of 
sleep deprivation on the N-back are based on compromised 
hippocampal functioning, or due to other contributors to 
task performance.

Of course, sleep deprivation effects on cognition have often been 
attributed to deficits in PFC functioning and the circuits connecting 
the PFC to striatal and parietal areas (Chee et al., 2010; Wickens et al., 
2015; Krause et  al., 2017). The data on when STM and working 
memory tasks are, and are not, compromised by amnesia suggest that 
the need for binding in working memory tasks may well predict the 
degree of performance impairment from sleep deprivation, and serve 
as a further test of the TASL framework.

3.3. Binding in other cognitive domains

Studies of the effect of sleep deprivation on logical reasoning and 
complex decision-making have typically concluded that sleep 
deprivation has minimal effects on these cognitive processes (Harrison 
and Horne, 2000b; Killgore, 2010; Lim and Dinges, 2010). Similarly, 
preserved performance in these domains by people with amnesia was 
an important reason that amnesia was considered to be a specific 
deficit in declarative memory. But as we  noted earlier, decision-
making tasks such as the IGT, that require binding novel associations 
based on decision outcomes, are disrupted by MTL damage. A similar 
pattern of effects is observed with sleep deprivation during the 
IGT. Sleep-deprived subjects are less able to learn to choose from the 
advantageous decks on the IGT, resulting in poorer decision-making 
performance compared to controls (Killgore et  al., 2006; Gupta 
et al., 2009).

The use of choice outcome feedback to guide future actions is a 
key component of adaptive behavior in everyday life, and it can mean 
the difference between success and disaster when making decisions in 
high stakes medical, military, and first responder settings. Consistent 
with the TASL framework, difficulty with binding choices and 
outcomes to guide future actions is not limited to the IGT. In amnesia 
patients and people deprived of sleep, impaired use of choice outcome 
feedback to guide subsequent choices has been demonstrated in 
decisions involving risk and in tasks requiring cognitive flexibility 
(Brand et al., 2009; Foerde et al., 2013; Whitney et al., 2015; Honn 
et al., 2019).

4. Conclusions and implications

Based on the accumulating evidence that the functioning of the 
hippocampus and associated MTL areas are disrupted by sleep 
deprivation in humans and in animal models (Tudor et  al., 2016; 
Guttensen et al., 2023), it would be surprising if we did not observe 
significant effects of sleep loss on memory. However, to understand 
what aspects of memory are, and are not, affected by sleep deprivation 
requires a deeper understanding of the role of the hippocampus in 
memory. The TASL framework draws on the amnesia literature and 
the role of the hippocampus in binding to provide an organizing 
perspective on sleep deprivation and memory, and on how sleep loss 
is likely to affect other cognitive tasks that depend on binding.

The existing literature on sleep deprivation deficits in memory 
provides substantial support for the TASL framework. Although sleep 
deprivation does not lead to the same degree of impairment typically 
seen in amnesia resulting from MTL lesions, the pattern of impaired 
and preserved memory functioning observed in sleep-deprived 
subjects is remarkably consistent with that characteristically seen in 
amnesia patients. This is true not only for explicit recall and 
recognition tasks, but also for relational memory of items with their 
context. Even in the case of implicit memory, the pattern of preserved 
functions and deficits appears similar in amnesic patients and people 
who have had a night of sleep deprivation.

The TASL framework also calls attention to the possibility that 
some sleep deprivation effects outside of LTM may result from 
problems with relational binding. Amnesia patients show preserved 
STM maintenance along with deficits in working memory tasks that 
require processing of temporal, spatial, and other relational 
information, and this pattern has been observed after sleep loss 
as well.

The similarities between the effects of sleep deprivation and 
amnesia on various memorial processes lead to specific 
predictions that would test this framework. To begin, there remain 
several aspects of memory that have yet to be  extensively or 
explicitly investigated under sleep deprivation, such as dissociating 
between explicit and implicit memories, or dissociating between 
tests that differ in their need for hippocampal involvement. From 
the TASL framework, we  expect that sleep-deprived subjects 
would show similar patterns of performance as amnesia patients, 
insofar as the task is largely dependent on the hippocampus. Such 
a deliberate comparison would not only test the framework but 
would also provide clarity on how sleep deprivation and amnesia 
effects on memory differ. Separately, given that amnesia is 
characterized as a deficit in relational memory (Ryan et al., 2000), 
the TASL framework implies that sleep deprivation should result 
in impairment on all tasks that require binding, including those 
that do not fall under the memory domain. Such a prediction has 
wide-reaching implications with the obvious importance of 
binding to the development of schemas, inferences, and other 
forms of abstract representations that support flexible decision-
making (Biderman et al., 2020; Vaidya and Badre, 2022). Further, 
because sleep deprivation does not result in deficits to the same 
extent as amnesia, we expect that any binding that does occur 
should result in less precise representations, as these similarly 
depend on intact hippocampal functioning (Ekstrom and 
Yonelinas, 2020). On a positive note, the TASL framework implies 
that some of the strategies that promote memory and performance 
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in amnesia patients should also benefit sleep-deprived individuals. 
For example, unitizing or integrating separate representations into 
a single unit (e.g., creating the novel compound word “cloudlawn” 
to remember the words “cloud” and “lawn” together) has been 
shown to improve relational memory for certain types of amnesia 
(Quamme et al., 2007; Ryan et al., 2013). Testing these predictions 
will determine the extent to which the TASL framework is useful 
for guiding future research on sleep deprivation and memory-
related processes.

One of the most important implications of the TASL framework 
is that while considerable research has documented sleep 
deprivation effects on LTM, disruptions in hippocampal functioning 
are expected to have specific consequences for relational processing 
needed on shorter timescales such as working memory processing, 
and on some kinds of decision-making tasks. In addition, the data 
we  have reviewed here strongly suggest that to understand 
dissociations in the effects of sleep deprivation on cognitive 
performance, it will be  important to not only examine what 
cognitive processes are needed for a given task, but also the 
representations on which the processes operate. The hippocampus 
and PFC-hippocampus interactions support multiple cognitive 
operations, but the contribution of this circuitry depends in part on 
the nature of the information being represented (Rubin et al., 2017). 
For example, as noted earlier, working memory is typically thought 
of as PFC driven processing, but the hippocampus is crucial when 
the information in the focus of attentional depends on maintenance 
of information about temporal or spatial relationships 
among elements.

Clearly, sleep loss disrupts more than the cognitive operation of 
binding, so the TASL framework can only serve as a guide to one 
source of impairment in cognitive performance. Nevertheless, 
future studies of the effects of sleep deprivation that examine 
whether it produces similar deficits, and islands of preserved 
performance, as found in the performance of amnesia patients on 
implicit memory, working memory, and decision-making, could 
help isolate the role of hippocampal disruption apart from other 
consequences of sleep loss.
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