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Abstract

This article discusses several definitions of the fractional Laplace oper-
ator L = −(−Δ)α/2 in Rd, also known as the Riesz fractional derivative
operator; here α ∈ (0, 2) and d ≥ 1. This is a core example of a non-
local pseudo-differential operator, appearing in various areas of theoretical
and applied mathematics. As an operator on Lebesgue spaces L p (with
p ∈ [1,∞)), on the space C0 of continuous functions vanishing at infinity
and on the space Cbu of bounded uniformly continuous functions, L can
be defined, among others, as a singular integral operator, as the generator
of an appropriate semigroup of operators, by Bochner’s subordination, or
using harmonic extensions. It is relatively easy to see that all these defi-
nitions agree on the space of appropriately smooth functions. We collect
and extend known results in order to prove that in fact all these defini-
tions are completely equivalent: on each of the above function spaces, the
corresponding operators have a common domain and they coincide on that
common domain.
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1. Introduction

We consider the fractional Laplace operator L = −(−Δ)α/2 in Rd, with
α ∈ (0, 2) and d ∈ {1, 2, . . .}. This operator appears in different disciplines
of mathematics (partial differential equations, potential theory, harmonic
analysis, semigroup theory, function spaces, probability theory), as well as
in various applications that involve long-range interactions (water waves,
dislocations in crystals, anomalous diffusions, non-local quantum theories).
We refer the reader to [12, 46] for a comprehensive list of references from
the point of view of partial differential equations, to [8] for a potential-
theoretic and theoretical probability point of view, and to [15] for an applied
probability perspective.

Numerous definitions of L can be found in literature: as a Fourier mul-
tiplier with symbol −|ξ|α, as a fractional power in the sense of Bochner
or Balakrishnan, as the inverse of the Riesz potential operator, as a singu-
lar integral operator, as an operator associated to an appropriate Dirichlet
form, as an infinitesimal generator of an appropriate semigroup of contrac-
tions, or as the Dirichlet-to-Neumann operator for an appropriate harmonic
extension problem. Equivalence of these definitions for sufficiently smooth
functions is well-known and easy. There is, however, no reference that
would collect all definitions and discuss how they are related to each other.

The purpose of this article is to fill in this gap: by extending or modi-
fying known results and introducing some new ideas, below we prove that,
whenever meaningful, all definitions of L mentioned above are equivalent
in the Lebesgue space L p for p ∈ [1,∞), in the space C0 of continuous
functions vanishing at infinity, and in the space Cbu of bounded uniformly
continuous functions.

The literature on the above topic is rather scattered. Equivalence be-
tween semigroup definition, Bochner’s formula and Balakrishnan’s formula
is a general result, see [41]. Inversion of Riesz potentials is well-studied
in the context of L p spaces (with p ∈ [1, dα )) and certain classes of distri-
butions, see [39, 47, 49, 55]. Semigroup and singular integral definitions
are also known to be equivalent, at least in L p for p ∈ [1, dα), see [47]. Fi-
nally, the semigroup definition on the space C0 is known to be equivalent to
Dynkin’s pointwise definition, known as Dynkin’s characteristic operator,
see [23].

In the present article we remove unnecessary restrictions and prove
equivalence of the above definitions in full generality. Our proofs are ele-
mentary and mostly analytic, but they originate in potential theory (ex-
plicit expressions due to M. Riesz) and Markov processes (Dynkin’s char-
acteristic operator). The main new ingredient consists of several relations
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between pointwise definitions of Lf(x), which are then re-used to prove
norm convergence in L p, C0 and Cbu.

Note that we restrict α to (0, 2), that is, we do not consider complex
values of α, nor we include the hypersingular case α > 2. The following
theorem summarizes the results of the paper.

Theorem 1.1. Let X be any of the spaces L p, p ∈ [1,∞), C0 or Cbu,
and let f ∈ X . The following definitions of Lf ∈ X are equivalent:

(a) Fourier definition:

F (Lf)(ξ) = −|ξ|αFf(ξ)

(if X = L p, p ∈ [1, 2]);
(b) distributional definition:∫

Rd

Lf(y)ϕ(y)dy =

∫
Rd

f(x)Lϕ(x)dx

for all Schwartz functions ϕ, with Lϕ defined, for example, as in (a);
(c) Bochner’s definition:

Lf =
1

|Γ(−α
2 )|
∫ ∞

0
(etΔf − f)t−1−α/2dt,

with the Bochner’s integral of an X -valued function;
(d) Balakrishnan’s definition:

Lf =
sin απ

2

π

∫ ∞

0
Δ(sI − Δ)−1f sα/2−1ds,

with the Bochner’s integral of an X -valued function;
(e) singular integral definition:

Lf = lim
r→0+

2αΓ(d+α
2 )

πd/2|Γ(−α
2 )|
∫
Rd\B(x,r)

f(· + z) − f(·)
|z|d+α

dz,

with the limit in X ;
(f) Dynkin’s definition:

Lf = lim
r→0+

2αΓ(d+α
2 )

πd/2|Γ(−α
2 )|
∫
Rd\B(x,r)

f(· + z) − f(·)
|z|d(|z|2 − r2)α/2

dz,

with the limit in X ;
(g) quadratic form definition: 〈Lf, ϕ〉 = E(f, ϕ) for all ϕ in the Sobolev

space Hα/2, where

E(f, g) =
2αΓ(d+α

2 )

2πd/2|Γ(−α
2 )|
∫
Rd

∫
Rd

(f(y) − f(x))(g(y) − g(x))

|x− y|d+α
dxdy

(if X = L 2);
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(h) semigroup definition:

Lf = lim
t→0+

Ptf − f

t
,

where Ptf = f ∗ pt and Fpt(ξ) = e−t|ξ|α;
(i) definition as the inverse of the Riesz potential:

Γ(d−α
2 )

2απd/2Γ(α2 )

∫
Rd

Lf(· + z)

|z|d−α
dz = −f(·)

(if α < d and X = L p, p ∈ [1, dα));
(j) definition through harmonic extensions:⎧⎪⎨

⎪⎩
Δxu(x, y) + α2c

2/α
α y2−2/α∂2yu(x, y) = 0 for y > 0,

u(x, 0) = f(x),

∂yu(x, 0) = Lf(x),

where cα = 2−α|Γ(−α
2 )|/Γ(α2 ) and where u(·, y) is a function of

class X which depends continuously on y ∈ [0,∞) and ‖u(·, y)‖X

is bounded in y ∈ [0,∞).

In addition, in (c), (e), (f), (h) and (j), convergence in the uniform norm
can be relaxed to pointwise convergence to a function in X when X = C0

or X = Cbu. Finally, for X = L p with p ∈ [1,∞), norm convergence
in (e), (f), (h) or (j) implies pointwise convergence for almost all x.

We emphasize that in each definition, both f and Lf are assumed to
be in X . For the detailed statements of the above definitions, we refer the
reader to Section 2. Theorem 1.1 is a combination of Theorems 5.3 and 6.1,
and Lemma 7.1.

Remark 1.1. The main novelty of the proof lies in the following ob-
servation: for a fixed x, the convergence in the Dynkin’s definition (h)
implies convergence in the singular integral definition (e), which in turn as-
serts convergence in the semigroup and harmonic extension definitions (h)
and (j). By using this property instead of more advanced techniques found
in literature, such as inversion of Riesz potentials, we are able to cover all
L p spaces, with no restrictions on p ∈ [1,∞), as well as C0 and Cbu. Prob-
abilistic methods are perfectly suited to prove convergence in the Dynkin’s
definition (h), see Section 7 for sample applications and further discussion.

Remark 1.2. The spaces X = L ∞ and X = Cb (the space of
bounded continuous functions), not included in the theorem, can often
be reduced to Cbu due to the fact that the domains of L defined with the
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singular integral, Dynkin’s, semigroup or harmonic extension definitions on
Cbu, Cb and L ∞ are all equal. Indeed, for example, consider the Dynkin’s
definition of L on L ∞. The convolution of any f ∈ L ∞ with kernel
ν̃r(z) = |z|−d(r2 − |z|2)−α/21Rd\Br

(z) is uniformly continuous. Therefore,

if the limit Lf in the Dynkin’s definition exists in L ∞ norm, then

Lf = lim
r→0+

(f ∗ ν̃r − ‖ν̃r‖1f)

(with the limit in L ∞), so that in particular

f = lim
r→0+

f ∗ ν̃r
‖ν̃r‖1

(again with the limit in L ∞). Since the limit in L ∞ of uniformly continu-
ous functions is uniformly continuous, we conclude that f ∈ Cbu, and thus
also Lf ∈ Cbu.

Remark 1.3. An essential extension of L defined with, for example,
semigroup definition (h) is possible when uniform convergence in Cbu is
replaced with uniform convergence on all compact subsets of Rd in Cb. For
a detailed discussion of this concept in a much more general context of
Cb-Feller semigroups, see [33, Section 4.8].

An even more general approach is possible, when one considers uniform
convergence on all compact subsets of Rd in the space of (not necessarily
bounded) continuous functions f such that (1 + |x|)−d−αf(x) is integrable.
We remark that some of our results (in particular, Lemmas 3.7, 4.1 and 4.2)
extend rather easily to this case. To keep the article concise, however, these
extensions are not discussed below.

We remark that in this article we restrict our attention to convergence
problems for full-space definitions of the fractional Laplace operator L.
Various results are also known for the restriction of L to a domain: detailed
properties of L in a domain with Dirichlet condition can be found in [8,
9, 10, 11, 38, 44]; see also [6] for the study of L in a domain with certain
reflection. Explicit expressions for the fractional Laplace operator can be
found in [5, 9, 11, 21, 22, 28, 44]. We also refer to a survey article [46] and
the references therein for an analytical perspective. Some applications of
the fractional Laplace operator in a domain are reviewed in [12, 42]; see
also [31] for a discussion of physical limitations of these applications.

The article is organized as follows. In Section 2 we collect various defi-
nitions of the fractional Laplace operator L. Pointwise definitions (c), (e),
(f), (h) and (j) for a fixed x are studied Section 3. In Section 4, M. Riesz’s
explicit expressions for the harmonic measure (or the Poisson kernel) and
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the Green function of a ball are used to identify norm convergence in (e),
(f) and (h). Equivalence with the other definitions is discussed in Section 5,
where the main part of Theorem 1.1 is proved. Section 6 collects further
results: equivalence of pointwise and uniform convergence in C0 and Cbu,
almost everywhere convergence in L p, and a sample regularity result for L.
Finally, in Section 7 we discuss the probabilistic definition of L involving
an isotropic α-stable Lévy process.

The following notation is used throughout the article. By S we denote
the class of Schwartz functions, and S ′ is the space of Schwartz distribu-
tions. Fourier transform of an integrable function f is a C0 function Ff
defined by

Ff(ξ) =

∫
Rd

e−iξ·xf(x)dx.

The Fourier transform extends continuously to an operator from L p to L q

for p ∈ [1, 2] and 1
p + 1

q = 1. It also maps S to S , and by duality it extends

to a mapping from S ′ to S ′. The Gauss–Weierstrass kernel (or the heat
kernel) kt(x) is defined by

kt(x) = (4πt)−d/2 exp(−|x|2/(4t)), Fkt(ξ) = e−t|ξ|2 .

We denote Br = B(0, r) and B = B1. Generic positive constants are de-
noted by C (or C(d), C(d, α) etc.). Occasionally we use the modified Bessel
function of the second kind Kν and the Gauss hypergeometric function 2F1.

2. Definitions of fractional Laplace operator

In this section we review different definitions of L. For each of them we
discuss basic properties and provide an informal motivation.

2.1. Fourier transform. In the setting of Hilbert spaces, the fractional
power of a self-adjoint operator is typically defined by means of spectral
theory. Observe that the Laplace operator Δ takes diagonal form in the
Fourier variable: it is a Fourier multiplier with symbol −|ξ|2, namely
F (Δf)(ξ) = −|ξ|2Ff(ξ) for f ∈ S . By the spectral theorem, the op-
erator L = −(−Δ)α/2 also takes diagonal form in the Fourier variable: it
is a Fourier multiplier with symbol −|ξ|α.

Definition 2.1 (Fourier transform definition of L). The fractional
Laplace operator is given by

F (LF f)(ξ) = −|ξ|αFf(ξ). (F)

More formally, let X = L p, where p ∈ [1, 2]. We say that f ∈ D(LF ,X )
whenever f ∈ X and there is LF f ∈ X such that (F) holds.
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2.2. Weak formulation. The Fourier transform of a convolution of two
functions is the product of their Fourier transforms, and −|ξ|α is a Schwartz

distribution, so it is the Fourier transform of some L̃ ∈ S ′. Therefore, the
fractional Laplace operator L is the convolution operator with kernel L̃.
Unfortunately, the convolution of two Schwartz distributions is not always
well-defined. Nevertheless, the following definition is a very general one.

Definition 2.2 (distributional definition of L). Let L̃ be the distri-
bution in S ′ with Fourier transform −|ξ|α. The weak (or distributional)
fractional Laplace operator is given by

LW f = L̃ ∗ f. (W)

We write f ∈ D(LW ,S
′) whenever f ∈ S ′ and the convolution of L̃ and

f is well-defined in S ′, that is, for all ϕ,ψ ∈ S the functions L̃ ∗ ϕ and
f ∗ ψ are convolvable in the usual sense, and

LW f ∗ (ϕ ∗ ψ) = (L̃ ∗ ϕ) ∗ (f ∗ ψ). (2.1)

When f and LW f both belong to X , we write f ∈ D(LW ,X ).

Note that f ∈ D(LW ,X ) if and only if f ∈ X and there is LW f ∈ X
such that

LW f ∗ ϕ = (L̃ ∗ ϕ) ∗ f.
Indeed, the above equality follows from (2.1) by taking ψ = ψn to be an
approximate identity and passing to the limit as n → ∞. Conversely,
a function LW f ∈ X with the above property clearly satisfies (2.1).

For a more detailed discussion of convolvability of Schwartz distribu-
tions in this context, see [38, Sections 2.1 and 2.2] and the references therein.
Distributional definition of L is also studied in [7, 39, 49], see also [3, 51].

2.3. Bochner’s subordination and Balakrishnan’s formula. If an op-
erator generates a strongly continuous semigroup on a Banach space (see
Section 2.6), its fractional power can be defined using Bochner’s subordi-

nation. Observe that λα/2 is a Bernstein function with representation

λα/2 =
1

|Γ(−α
2 )|
∫ ∞

0
(1 − e−tλ)t−1−α/2dt

(this identity follows easily by integrating by parts the integral for Γ(1−α
2 )).

Therefore, at least in the sense of spectral theory on L 2,

L = −(−Δ)α/2 =
1

|Γ(−α
2 )|
∫ ∞

0
(etΔ − 1)t−1−α/2dt.
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Here etΔ denotes the convolution operator with the Gauss–Weierstrass ker-
nel kt(z).

Definition 2.3 (Bochner definition of L). The definition of the frac-
tional Laplace operator through Bochner’s subordination is given by

LBf(x) =
1

|Γ(−α
2 )|
∫ ∞

0
(f ∗ kt(x) − f(x))t−1−α/2dt

=
1

|Γ(−α
2 )|
∫ ∞

0

(∫
Rd

(f(x+ z) − f(x))kt(z)dz

)
t−1−α/2dt.

(B)

More formally, we say that f ∈ D(LB , x) if the integrals converge for a given
x ∈ Rd. If X is a Banach space, f ∈ X and ‖f ∗ kt − f‖X t−1−α/2 is
integrable in t ∈ (0,∞), then the first expression for LBf(x) in (B) can be
understood as the Bochner’s integral of a function with values in X , and
in this case we write f ∈ D(LB ,X ).

Note that in general the order of integration in (B) cannot be changed.
In particular, (B) is likely the only way to interpret Lf(x) for some functions
f for which (1+ |x|)−d−αf(x) is not integrable. The most natural examples
here are harmonic polynomials: if f is a solid harmonic polynomial, then
f ∗ kt(x) = f(x), and hence, according to (B), LBf(x) = 0 for all x.

A closely related approach uses the representation of λα/2 as a complete
Bernstein function, or an operator monotone function,

λα/2 =
sin απ

2

π

∫ ∞

0

λ

s+ λ
sα/2−1ds

(an identity which is typically proved using complex variable methods, or
by a substitution s = λ(1 − t)/t, which reduces it to a beta integral). This
way of defining the fractional power of a dissipative operator was introduced
by Balakrishnan. Recall that (sI − Δ)−1, the resolvent of Δ, is a Fourier
multiplier with symbol (|ξ|2 + s)−1 and a convolution operator with kernel

function (2π)−d/2(
√
s x)1−d/2Kd/2−1(

√
s x), where Kd/2−1 is the modified

Bessel function of the second kind.

Definition 2.4 (Balakrishnan definition of L). The definition of the
fractional Laplace operator as the Balakrishnan’s fractional power is given
by

LB̂f(x) =
sin απ

2

π

∫ ∞

0
Δ(sI − Δ)−1f(x)sα/2−1ds. (B̂)

More formally, if X is a Banach space such that Δ has a strongly continuous
family of resolvent operators (sI −Δ)−1 on X (with s > 0), if f ∈ X and
sα/2−1‖Δ(sI−Δ)−1f‖X is integrable in s ∈ (0,∞), then the integral in (B̂)
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can be understood as the Bochner’s integral of a function with values in
X , and in this case we write f ∈ D(LB̂ ,X ).

Among the Banach spaces considered in the present article, the family
of resolvent operators is not strongly continuous only when X = L ∞ or
X = Cb.

For more information on Bochner’s subordination in the present con-
text, see [51, Chapter 6], [52, Chapter 13] and the references therein. A
complete treatment of the theory of fractional powers of operators, which
includes the above two concepts in a much more general context, is given
in [41].

2.4. Singular integrals. If the order of integration in (B) could be re-
versed, we would have LBf(x) =

∫
Rd(f(x+ z) − f(x))ν(z)dz, where, by a

substitution t = |z|2/(4s),
ν(z) =

1

|Γ(−α
2 )|
∫ ∞

0
kt(z)t

−1−α/2dt

=
1

2dπd/2|Γ(−α
2 )|
∫ ∞

0
t−1−(d+α)/2e−|z|2/(4t)dt

=
2α

πd/2|Γ(−α
2 )| |z|d+α

∫ ∞

0
s−1+(d+α)/2e−sds

=
2αΓ(d+α

2 )

πd/2|Γ(−α
2 )| |z|d+α

.

(2.2)

This motivates the classical pointwise definition of the fractional Laplace
operator.

Definition 2.5 (singular integral definition of L). The fractional
Laplace operator is given by the Cauchy principal value integral

LIf(x) = lim
r→0+

cd,α

∫
Rd\Br

(f(x+ z) − f(x))
1

|z|d+α
dz

= lim
r→0+

∫
Rd

(f(x+ z) − f(x))νr(z)dz,

(I)

where

νr(z) =
cd,α

|z|d+α
1Rd\Br

(z), (2.3)

and

cd,α =
2αΓ(d+α

2 )

πd/2|Γ(−α
2 )| . (2.4)
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For later use, we denote ν(z) = ν0(z) = cd,α|z|−d−α, and allow for negative
α in (2.4). We write f ∈ D(LI , x) if the limit in (I) exists for a given
x ∈ Rd. We write f ∈ D(LI ,X ) if f ∈ X and the limit in (I) exists in X .

The following variant of (I) is commonly used in probability theory.

Definition 2.6 (variant of the singular integral definition of L). The
fractional Laplace operator is given by

LÎf(x) =

∫
Rd

(f(x+ z) − f(x) −∇f(x) · z1B(z))ν(z)dz. (̂I)

We write f ∈ D(LÎ , x) if ∇f(x) exists and the above integral converges
absolutely.

A different regularization of the singular integral (I) is sometimes found
in analysis.

Definition 2.7 (another variant of the singular integral definition
of L). The fractional Laplace operator is given by

LǏf(x) =
1

2

∫
Rd

(f(x+ z) + f(x− z) − 2f(x))ν(z)dz. (̌I)

We write f ∈ D(LǏ , x), if the above integral converges absolutely.

As we will see later, the following definition of L as the Dynkin charac-
teristic operator of the the isotropic α-stable Lévy process, although more
complicated than (I), has certain advantages. The notion of the Dynkin
characteristic operator is discussed in more detail in Section 7.

Definition 2.8 (Dynkin definition of L). The definition of the frac-
tional Laplace operator as the Dynkin characteristic operator is given by

LDf(x) = lim
r→0+

cd,α

∫
Rd\Br

(f(x+ z) − f(x))
1

|z|d(|z|2 − r2)α/2
dz

= lim
r→0+

∫
Rd

(f(x+ z) − f(x))ν̃r(z)dz,

(D)

where

ν̃r(z) =
cd,α

|z|d(|z|2 − r2)α/2
1Rd\Br

(z) (2.5)

and cd,α is given by (2.4). We write f ∈ D(LD, x) if the limit in (D) exists

for a given x ∈ Rd, and f ∈ D(LD,X ) if f ∈ X and the limit in (D)
exists in X .
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2.5. Quadratic forms. A self-adjoint operator on L 2 is completely de-
scribed by its quadratic form. By Fubini, for all r > 0 and all integrable
functions f, g,∫

Rd

(∫
Rd

(f(x+ z) − f(x))νr(z)dz

)
g(x)dx

=

∫
Rd

∫
Rd

(f(y) − f(x))g(x)νr(y − x)dydx

=
1

2

∫
Rd

∫
Rd

(f(y) − f(x))g(x)νr(y − x)dydx

+
1

2

∫
Rd

∫
Rd

(f(x) − f(y))g(y)νr(y − x)dydx

= −1

2

∫
Rd

∫
Rd

(f(y) − f(x))(g(x) − g(y))νr(y − x)dydx.

A formal limit as r → 0+ leads to the following definition.

Definition 2.9 (quadratic form definition of L). Let

E(f, g) =
cd,α
2

∫
Rd

∫
Rd

(f(y) − f(x))(g(y) − g(x))

|x− y|d+α
dxdy

=
1

2

∫
Rd

∫
Rd

(f(y) − f(x))(g(y) − g(x))ν(x− y)dxdy,

(2.6)

where ν(z) = cd,α|z|−d−α and cd,α is given by (2.4). We write f ∈ D(E) if
f ∈ L 2 and E(f, f) is finite. We write f ∈ D(LQ,L

2) if f ∈ L 2 and there
is LQf ∈ L 2 such that for all g ∈ D(E),∫

Rd

LQf(x)g(x)dx = −E(f, g). (Q)

We note that D(E) is the Sobolev space Hα/2, which consists of func-
tions f in L 2 such that |ξ|α|Ff(ξ)|2 is integrable. Furthermore, E(f, g) =

(2π)−d
∫
Rd |ξ|αFf(ξ)Fg(ξ)dξ. These properties follow easily from the ex-

pression for the Fourier transform of pt and the relation between E and pt,
see the proof of Lemma 5.1 below.

The quadratic form E is positive definite and it is an important example
of a (non-local) Dirichlet form. For more information about E , we refer
to [19, 55], and for a detailed treatment of the theory of Dirichlet forms,
see [26].

2.6. Semigroup approach. The spectral theorem implies that the frac-
tional Laplace operator L generates a strongly continuous semigroup of
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operators Pt = etL on L 2, and Pt is the Fourier multiplier with symbol
e−t|ξ|α . Hence, Pt is the convolution operator with a symmetric kernel
function pt(z), given by Fpt(ξ) = e−t|ξ|α .

We note some well-known properties of the kernel pt(z). For α = 1,
pt(z) is the Poisson kernel of the half-space in Rd+1,

pt(z) =
Γ(d+1

2 )

π(d+1)/2

t

(t2 + |z|2)(d+1)/2
. (2.7)

For arbitrary α ∈ (0, 2), Fpt is rapidly decreasing, and therefore pt is

infinitely smooth. We also have Fpt(ξ) = Fp1(t1/αξ), and so

pt(z) = t−d/αp1(t
−1/αz). (2.8)

Furthermore, by the Bochner’s subordination formula, pt is the integral
average of the Gauss–Weierstrass kernel ks with respect to s ∈ (0,∞).
More precisely, let η be a function on (0,∞) with Fourier–Laplace transform∫∞
0 e−ξsη(s)ds = exp(−ξα/2) when Re ξ > 0. Then η is smooth, positive,

and η(s) converges to 0 as s → 0+ or s → ∞, see [51, Remark 14.18]. As
one can easily verify using Fourier transform and Fubini,

pt(z) = t−2/α

∫ ∞

0
ks(z)η(t−2/αs)ds. (2.9)

Finally,

lim
|z|→∞

|z|d+αp1(z) = cd,α, lim
t→0+

pt(z)

t
= cd,α|z|−d−α (2.10)

with cd,α given in (2.4). In particular

C1(d, α) min(1, |z|−d−α) ≤ p1(z) ≤ C2(d, α) min(1, |z|−d−α). (2.11)

Property (2.10) can be easily derived using the Tauberian theory for the
Laplace transform and (2.9). Alternatively, one can use the Abelian–
Tauberian theory for the Fourier transform (or, more precisely, for the
corresponding Hankel transform), see [40, 53] and the references therein.
Yet another way to show (2.10) involves vague convergence of t−1pt(z)dz to
ν(z)dz = cd,α|z|−d−αdz as t → 0+, which is a general result in the theory
of convolution semigroups, see [51]. Pointwise convergence is then a con-
sequence of appropriate regularity of pt(z). We omit the details here, and
refer to Lemma 3.4 below for a formal proof of a more detailed property
of pt(z).

Definition 2.10 (semigroup definition of L). The fractional Laplace
operator is given by
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LSf(x) = lim
t→0+

Ptf(x) − f(x)

t

= lim
t→0+

∫
Rd

(f(x+ z) − f(x))
pt(z)

t
dz.

(S)

Here Fpt(ξ) = e−t|ξ|α and Ptf(x) = f ∗ pt(x) (note that pt(z) = pt(−z)).
More precisely, we write f ∈ D(LS , x) if the limit exists for a given x ∈ Rd.
If f ∈ X and the limit in (S) exists in X , then we write f ∈ D(LS ,X ).

The above approach is distinguished because it allows one to apply the
general theory of strongly continuous semigroups of operators on Banach
spaces. The operators Pt form a semigroup of contractions on every L p,
p ∈ [1,∞], and on C0, Cbu and Cb. This semigroup is strongly continuous,
except on L ∞ and Cb.

Suppose that X is any of the spaces L p, p ∈ [1,∞), C0 or Cbu. By the
general theory, for λ > 0 the operator λI −LS (where LS is defined by (S)
with convergence in X ) is a bijective map from D(LS ,X ) onto X , and
its inverse is the λ-resolvent operator

Uλf(x) = f ∗ uλ(x) =

∫
Rd

f(x+ z)uλ(z)dz,

where

uλ(z) =

∫ ∞

0
e−λtpt(z)dz, Fuλ(ξ) =

1

λ+ |ξ|α .

Therefore, the fractional Laplace operator LS , defined by (S) with domain

DS(L,X ), has no essential extension L̃ on X such that λI − L̃ is injective
for some λ > 0; here X is any of L p, p ∈ [1,∞), C0 or Cbu. This is
frequently used to prove equivalence of other definitions with the semigroup
definition.

On C0, injectivity of λI − L̃ follows easily from the positive maximum
principle: if f ∈ C0 is in the domain of L̃ and f(x) = max{f(y) : y ∈
Rd}, then L̃f(x) ≤ 0 (for complex-valued functions one requires that if

f(x) = max{|f(y)| : y ∈ Rd}, then Re L̃f(x) ≤ 0). Therefore, the frac-
tional Laplace operator LS , defined by (S) with domain DS(L,C0), has no

essential extension L̃ on C0 which satisfies the positive maximum principle.
It is probably well-known, although difficult to find in literature, that the
above property extends to Cbu.
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Proposition 2.1. If L̃ is an extension of LS , defined by (S) with

domain D(LS ,Cbu), and L̃ satisfies the positive maximum principle, then

L̃ is in fact equal to LS.

P r o o f. Suppose that λ > 0, f ∈ Cbu, ‖f‖∞ > 0, and λf − L̃f = 0.
With no loss of generality we may assume that ‖f‖∞ = 1 and that in fact
sup{f(x) : x ∈ Rd} = 1. Fix x such that f(x) > 1

2 . Let g ∈ D(LS ,C0) be

such that g(x) = 1
2 , ‖g‖∞ = 1

2 and ‖LSg‖∞ ≤ λ
2 . Since f(x)+g(x) > 1 and

lim sup|x|→∞ |f(x)+g(x)| ≤ 1, the function f+g attains a global maximum

at some point y, and f(y) + g(y) > 1. Since f + g is in the domain of L̃,
by the positive maximum principle we have

0 ≥ L̃(f + g)(y) = L̃f(y) + LSg(y) = λf(y) + LSg(y)

> λ(1 − g(y)) + LSg(y) ≥ λ(1 − ‖g‖∞) − ‖LSg‖∞ ≥ λ
2 − λ

2 = 0,

a contradiction. Therefore, λI − L̃ is injective, and hence L̃ is indeed equal
to L. �

Since Fuλ(ξ) = (λ+ |ξ|α)−1 = 1
λFu1(λ−1/αξ), we have

uλ(x) = λ(d−α)/αu1(λ1/αx).

If α < d, scaling (2.8) and the estimate (2.11) give

u1(x) ≤ C1

∫ |x|α

0
e−tt|x|−d−αdt+ C1

∫ ∞

|x|α
e−tt−d/αdt

≤ C1 min(12 |x|−d+α, |x|−d−α) + C1 min( α
d−α |x|−d+α, 2α

d+α |x|−d−α)

≤ C2 min(|x|−d+α, |x|−d−α),

where C1 = C1(d, α), C2 = C2(d, α); here we used the estimates
∫ a
0 e

−tt dt ≤∫ a
0 t dt = 1

2 t
2,
∫ a
0 e

−tt dt ≤ ∫∞
0 e−tt dt = 1 for the former integral and

e−t ≤ 1 and e−t ≤ 2
t2

for the latter integral. Similar estimates hold also
when α > d and α = d = 1; in the end, we have

u1(x) ≤ C(d, α)

⎧⎪⎨
⎪⎩

min(|x|−d+α, |x|−d−α) when α < d,

min(log(2 + 1
|x|), |x|−2) when α = d = 1,

min(1, |x|−d−α) when α > d = 1.

(2.12)

In particular, uλ ∈ L p if and only if 1
p >

d−α
d , that is, if p ∈ [1, d

d−α) when

α < d, p ∈ [1,∞) when α = d = 1, and p ∈ [1,∞] when α > d.

The above observation implies that if f ∈ D(LS,L
p), then f ∈ L q for

every q ∈ [p, (1p − α
d )−1) when p < d

α , for every q ∈ [p,∞) when p = d
α , and

for every q ∈ [p,∞] (and even f ∈ Cbu) when p > d
α . In the case p < d

α
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in fact f ∈ L q also for q = (1p − α
d )−1 by the weak Young’s inequality, see

Section 2.7 for more details.

For a detailed treatment of semigroups of operators on Banach spaces,
see, for example, [20]. Fractional powers of generators of semigroups are
studied in detail in [41]. For further properties of the space D(LS ,L

p),
traditionally denoted by L p

α , see [49, Chapter 7] and [55, Chapter V]. In
particular, D(LS ,L

p) coincides with the space of Bessel potentials of L p

functions, see [49, Theorem 7.16].

2.7. Riesz potentials. Suppose that α < d, that is, d ≥ 2 and α ∈ (0, 2)
or d = 1 and α ∈ (0, 1). Then the function |ξ|−α is integrable in the unit
ball and bounded in the complement of the unit ball, and hence it is the
Fourier transform of a tempered distribution. Using the identity

λ−α/2 =
1

Γ(α2 )

∫ ∞

0
e−tλt−1+α/2dt

and following the argument used in Section 2.3 and in (2.2), one easily
shows that, at least in the sense of spectral theory on L 2,

(−L)−1f(x) = cd,−α

∫
Rd

f(x+ z)|z|−d+αdz,

with cd,−α defined as in (2.4).
The same expression for (−L)−1f can be obtained using the general

theory of strongly continuous semigroups, which tells that, at least formally,
(−L)−1 is the 0-resolvent operator

U0f =

∫ ∞

0
Ptfdt.

Indeed, using the Bochner’s subordination formula (2.9), one easily shows
that ∫ ∞

0
pt(z)dt =

1

Γ(α2 )

∫ ∞

0
t−1+α/2kt(z)dt = cd,−α|z|−d+α,

see, for example, [8] for further details. We remark that under appropriate
conditions, U0 is the inverse of −LS in the general context of generators of
semigroups of contractions on Banach spaces. To be specific, let Pt form
such a semigroup on X , and suppose that Ptf converges to 0 as t → ∞
for all f ∈ X (in our case this is true when X = L p, with p ∈ [1,∞), or
X = C0). If f ∈ D(LS ,X ), then

lim
t→∞

∫ t

0
PsLSfds = lim

t→∞(Ptf − f) = −f
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(see Section 7 for further details). Hence U0LSf = −f whenever the norm
of PtLSf is integrable with respect to t > 0. Conversely, if g ∈ X and the
norm of Ptg is an integrable function of t, then

LSIαg = lim
t→0+

1

t

(∫ ∞

t
−
∫ ∞

0

)
Psgds = − lim

t→0+

1

t

∫ t

0
Psgds = −g. (2.13)

A pointwise version of the above identity is also true; see Proposition 7.1
for a slightly more general statement.

The above considerations motivate the following definition.

Definition 2.11 (Riesz potential definition of L). If α < d, then the
fractional Laplace operator is the inverse of the Riesz potential, namely
LRf = −g whenever

f(x) = Iαg(x) = cd,−α

∫
Rd

g(x+ z)|z|−d+αdz, (R)

with cd,−α defined as in (2.4). More precisely, if f, g ∈ X , the integral in (R)

is finite and the equality therein holds for all x ∈ Rd (when X = C0) or
for almost all x ∈ Rd (when X = L p with p ∈ [1,∞]), then we write
f ∈ D(LR,X ).

Note that if f ∈ L p and p ∈ [1, dα), then the convolution Iαf of f

and |z|−d+α is in L p + L ∞ (because the convolution with |z|−d+α1B(z) is
in L p, while the convolution with |z|−d+α1Rd\B is in L ∞). Using weak
Young’s inequality, one proves that in fact Iα continuously maps L p into
L q if (and only if) 1

q = 1
p− α

d , p ∈ (1,∞), see [55, Theorem 1 in Chapter V].

Therefore, if p < d
α , q = (1p − α

d )−1 and f ∈ D(LR,L
p), then f ∈ L p∩L q.

For this reason it is sometimes more convenient to consider Iα as an operator
from L p to L q, and its inverse LR as an operator from L q to L p; see [49,
Section 7.3] for details.

For p ∈ ( d
α ,∞], Iαf can be defined in the appropriate space of distribu-

tions, see [39, Section I.1] and [49, Section 7.1] for more details. We remark
that this extension can give a similar description of the domain D(LR,L

p)
as in Theorem 1.1 for general p ∈ [1,∞), see [49, Theorem 7.18].

For a detailed analysis of Riesz potential operators Iα, we refer to [35,
39, 44, 45, 49, 55], as well as recent articles [30, 50] and the references
therein. Noteworthy, the study of the relation between L and the Riesz
potential operator Iα resulted in various singular-integral type expressions
for L; see, for example, [47, 48, 49].



TEN EQUIVALENT DEFINITIONS . . . 23

2.8. Harmonic extensions. For λ ≥ 0, there is exactly one solution ϕλ

of the second order ordinary differential equation:

α2c2/αα y2−2/α∂2yϕλ(y) = λϕλ(y) (2.14)

which is non-negative, continuous and bounded on [0,∞), and which sat-
isfies ϕλ(0) = 1. Here cα = 2−α|Γ(−α

2 )|/Γ(α2 ). This solution is given by

ϕλ(y) =
21−α/2

Γ(α2 )

(
λα/2y

cα

)1/2
Kα/2

((
λα/2y

cα

)1/α)
,

where Kα/2 is the modified Bessel function of the second kind (by con-
tinuity, we let ϕλ(0) = ϕ0(y) = 1). By a simple calculation, we have
ϕ′
λ(0) = −λα/2. This property is crucial for the extension technique, de-

scribed below.
Before we proceed, we note that for α = 1 the equation is simply

∂2yϕλ(y) = λϕλ(y), and ϕλ(y) = exp(
√
λ y). We also remark that the solu-

tion of (2.14) linearly independent from ϕλ is given by a similar formula,
with Kα/2 replaced by the modified Bessel function of the first kind Iα/2.

Let f ∈ L 2 and consider the partial differential equation:{
Δxu(x, y) + α2c

2/α
α y2−2/α∂2yu(x, y) = 0 for y > 0,

u(x, 0) = f(x),

together with the following regularity conditions: u(x, y), as a function of
x ∈ Rd, is in L 2 for each y ∈ [0,∞), with norm bounded uniformly in
y ∈ [0,∞); and u(x, y) depends continuously on y ∈ [0,∞) with respect to
the L 2 norm. Then the Fourier transform Fu(ξ, y) of u(x, y) with respect
to the x variable satisfies (2.14) with λ = |ξ|2, and it is equal to Ff(ξ) for
y = 0. It hence relatively easy to see that

Fu(ξ, y) = ϕ|ξ|2(y)Ff(ξ), (2.15)

and therefore,

∂yFu(ξ, 0) = ϕ′
|ξ|2(0)Ff(ξ) = −|ξ|αFf(ξ).

In other words, ∂yu(x, 0) is equal to LF f(x), the fractional Laplace operator
(defined using Fourier transform) applied to f .

The same method applies not only to L 2. The fractional Laplace
operator L on a Banach space X , defined using harmonic extensions, is
the Dirichlet-to-Neumann operator for the weighted Dirichlet problem in
the half-space:
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⎧⎪⎨
⎪⎩

Δxu(x, y) + α2c
2/α
α y2−2/α∂2yu(x, y) = 0 for y > 0,

u(x, 0) = f(x),

∂yu(x, 0) = LHf(x),

(2.16)

where

cα =
|Γ(−α

2 )|
2αΓ(α2 )

. (2.17)

The problem (2.16) requires a regularity condition on u, which asserts that
the (distributional) Fourier transform of u has the desired form (2.15). We
state without a proof that if X is one of the spaces L p, p ∈ [1,∞], C0 or
Cbu, it is sufficient to assume that u(x, y), as a function of x ∈ Rd, is in X
for each y ∈ [0,∞), with norm bounded uniformly in y ∈ [0,∞), and that
u(x, y) depends continuously on y ∈ [0,∞) with respect to the norm of X .

It is, however, convenient to rephrase the definition (2.16) in the fol-
lowing way. The property (2.15) of the distributional Fourier transform is
equivalent to the condition u(x, y) = f ∗ qy(x), where

Fqy(ξ) = ϕ|ξ|2(y) =
21−α/2

Γ(α2 )

( |ξ|αy
cα

)1/2
Kα/2

(( |ξ|αy
cα

)1/α)
. (2.18)

By [29, formula 6.565.4], after simplification we obtain a surprisingly ele-

mentary expression qy(z) = cd,αy((y/cα)2/α + |z|2)−(d+α)/2, with cd,α given
by (2.4) (see [13, Section 2.4] for an alternative derivation). Now the defi-
nition can be given in the same way as in (S), using the kernel qy instead
of pt.

If α = 1, then qy(z) = py(z) is the Poisson kernel for the half-space in

Rd+1. This equality does not extend to general α ∈ (0, 2). Nevertheless,
qy(z) has similar properties to pt(z): it is strictly positive and infinitely

smooth. Furthermore, qt(z) = td/αq1(t
1/αz), and a version of (2.10) holds

for qy.

Definition 2.12 (Harmonic extension definition of L). The fractional
Laplace operator is given by

LHf(x) = lim
y→0+

f ∗ qy(x) − f(x)

y

= lim
y→0+

∫
Rd

(f(x+ z) − f(x))
qy(z)

y
dz,

(H)

where

qy(z) = cd,α
y

((y/cα)2/α + |z|2)(d+α)/2
, (2.19)
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cd,α is given by (2.4) and cα is given by (2.17). We write f ∈ D(LH , x) if

the limit exists for a given x ∈ Rd. If f ∈ X and the limit in (H) exists
in X , then we write f ∈ D(LH ,X ).

The idea of linking the fractional Laplace operator with a Dirichlet-to-
Neumann operator for α = 1 dates back at least to the work of Spitzer [54].
It was heavily used, for example, in hydrodynamics [24, 25, 32, 36], and,
more recently, in probability theory [1, 2, 8, 37]. Similar relation for gen-
eral α appeared first in the article by Molchanov and Ostrovski [43], and
later in [16, 17, 18]. It became well-recognized in analysis as the Caffarelli–
Silvestre extension technique after it was rediscovered in [13], see, for exam-
ple, [14]. Fractional powers of more general operators on arbitrary Banach
spaces can be studied in a similar way, see [27, 56]. The most general ver-
sion of the above approach is to consider an arbitrary operator L̃ in the x
variable, and an arbitrary elliptic differential operator a(y)∂2y in the y vari-
able. When L̃ acts on some Hilbert space, spectral theory for operators on
Hilbert spaces and Krĕın’s spectral theory of strings (see [52, Chapter 15]
and the references therein) imply that the resulting operator L is equal

to −ψ(−L̃) for some operator monotone function, or complete Bernstein
function, ψ, and there is a one-to-one correspondence between such ψ and
the coefficient a(y) (as long as one allows for certain singularities of a(y)).
In many cases this approach extends to other function spaces, such as L p

and C0.
Various variants of (2.16) can be obtained by a change of variable.

A divergence form follows by taking y = cαz
α:⎧⎪⎪⎨

⎪⎪⎩
∇x,z · (z1−α∇x,z u)(x, z) = 0 for z > 0,

u(x, 0) = f(x),

lim
z→0+

u(x, z) − u(x, 0)

cαzα
= LHf(x).

(2.20)

Another interesting variant is obtained by expanding the partial derivatives:⎧⎪⎪⎨
⎪⎪⎩

Δx,zu(x, z) + 1−α
z ∂zu(x, z) = 0 for z > 0,

u(x, 0) = f(x),

lim
z→0+

u(x, z) − u(x, 0)

cαzα
= LHf(x).

(2.21)

3. Pointwise convergence

In this section we discuss the relationship between pointwise defini-
tions (B), (I), (̂I), (̌I), (D), (S) and (H) for a given x. Some of these results
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depend on explicit expressions for Lf(x) and thus extensions to more gen-
eral operators are problematic.

Our first two results are standard.

Lemma 3.1. If f ∈ D(LÎ , x) for some x ∈ Rd, then f ∈ D(LI , x),
and LÎf(x) = LIf(x). Similarly, if f ∈ D(LǏ , x), then f ∈ D(LI , x), and
LǏf(x) = LIf(x).

P r o o f. For the first statement, it suffices to observe that∫
Rd\Br

(f(x+ z) − f(x) −∇f(x) · z1B(z))ν(z)dz

=

∫
Rd\Br

(f(x+ z) − f(x))ν(z)dz

and take a limit as r → 0+. The other one is proved in a similar way. �

Note that any bounded f such that f(x + z) = −f(x − z) belongs to
D(LI , x), but not every such function has a gradient at x, so D(LÎ , x) is
a proper subset of D(LI , x). In a similar way, it is easy to construct a
bounded function f such that the integral of ϕ(z) = (f(x+ z) + f(x− z)−
2f(x))/|z|d+α over Rd \Br has a finite limit as r → 0+, but a similar limit
for the integral of |ϕ(z)| is infinite. This shows that inclusions in the above
lemma are proper.

Lemma 3.2. If f has second order partial derivatives at x ∈ Rd and
(1 + |z|)−d−αf(z) is integrable, then f is in D(LD, x), D(LI , x), D(LÎ , x),
D(LǏ , x), D(LS , x), D(LH , x) and D(LB , x), and all corresponding def-
initions of Lf(x) agree. If f is of class C 2 in B(x, r), then the rates
of convergence in each of the definitions (D), (I), (S) and (H) of Lf(x)
depend only on r, sup{max(|f(y)|, |∇f(y)|, |∇2f(y)|) : y ∈ B(x, r)} and∫
Rd(1 + |z|)−d−α|f(x+ z)|dz.

P r o o f. The result follows easily from Taylor’s expansion of f at x,

f(x+ z) = f(x) + z · ∇f(x) +O(|z|2),

as well as the symmetry and upper bounds for the appropriate convolution
kernels. We omit the details. �

The following result seems to be new.

Lemma 3.3. If f ∈ D(LD, x) for some x ∈ Rd, then f ∈ D(LI , x), and
LDf(x) = LIf(x).
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P r o o f. Let 0 < s < t. Substituting r2 = s2+v(t2−s2) and using [29,
formula 3.197.4], we obtain∫ t

s

1

td(t2 − r2)α/2
1

r(r2 − s2)1−α/2
dr

=
1

2s2td

∫ 1

0

vα/2−1(1 − v)−α/2

(1 + v(t2/s2 − 1))
dv

=
Γ(α2 )Γ(1 − α

2 )

2s2td(t2/s2)α/2
=
αΓ(α2 )|Γ(−α

2 )|
4s2−αtd+α

.

Taking s = R, t = |z| and multiplying both sides by cd,α leads to

νR(z) =
4R2−α

αΓ(α2 )|Γ(−α
2 )|
∫ ∞

R
ν̃r(z)

1

r(r2 −R2)1−α/2
dr. (3.1)

Note that both sides of the above equality are zero in BR, and so it extends
to all R > 0 and all z.

The remaining part of the proof is standard. Let f ∈ D(LD, x) and

ϕ(r) =

∫
Rd

(f(x+ z) − f(x))ν̃r(z)dz

for r > 0. Then ϕ converges to a limit ϕ(0+) = LDf(x) as r → 0+. In
particular, ϕ is bounded on some interval (0, r0). Since νr(z) ≤ ν̃r(z), the
definition (D) requires that (f(x+ z) − f(x))νr(z) is absolutely integrable
for all r > 0. Hence, by (3.1) and Fubini,∫

Rd

(f(x+ z) − f(x))νR(z)dz

=
4R2−α

αΓ(α2 )|Γ(−α
2 )|
∫ ∞

R
ϕ(r)

1

r(r2 −R2)1−α/2
dr

=
4

αΓ(α2 )|Γ(−α
2 )|
∫ r0/R

1
ϕ(Rs)

1

s(s2 − 1)1−α/2
ds

+
4

αΓ(α2 )|Γ(−α
2 )|
∫ ∞

r0

ϕ(r)
1

r(( r
R )2 − 1)1−α/2

dr,

(3.2)

and all integrals above are absolutely convergent. We consider the two inte-
grals in the right-hand side of (3.2) separately. By dominated convergence,
as R→ 0+, the former one converges to (see [29, formula 3.191.2])

− 4ϕ(0+)

αΓ(α2 )Γ(−α
2 )

∫ ∞

1

1

s(s2 − 1)1−α/2
ds = ϕ(0+).

In the latter integral, the absolute value of the integrand decreases to 0
as R → 0+, and the integral is absolutely integrable for all R ∈ (0, r0).
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Again by dominated convergence, the latter integral in the right-hand side
of (3.2) converges to 0 as R→ 0+. �

It is easy to construct f ∈ D(LI , x) which is not in D(LD, x).

Example 3.1. Let

f(x+ z) =
∞∑
n=1

εn
(|z|2 − r2n)1−α/2

1[rn,2rn](|z|),

where, for example, rn = 2−n and εn = 5−n. Then

∫
Rd

f(x+ z)ν(z)dz =

∞∑
n=1

cd,αεn
r2n

∫
B2\B1

1

|y|d+α(|y|2 − 1)1−α/2
dy <∞,

so f ∈ D(LI , x), but ∫
Rd

f(x+ z)ν̃rn(z)dz = ∞,

so that f /∈ D(LD, x).

The next result is likely well-known, although the author could not
find it in the literature. Clearly, if f(x + z) = −f(x − z) for z ∈ Rd and
f(x+z)|z|d+α is integrable in Rd\B(x, r) for every r > 0, then f ∈ D(LI , x)
and LIf(x) = 0. Nevertheless, f may fail to be locally integrable near x,
and so f /∈ D(LS , x). For locally integrable f , however, the pointwise
definition of LS is indeed an extension of the pointwise definition of LI .

Lemma 3.4. If f ∈ D(LI , x) for some x ∈ Rd and f is locally integrable
near x, then f ∈ D(LS , x), and LIf(x) = LSf(x).

P r o o f. Let m(r) be the profile function of c−1
d,α|z|d+αp1(z). Later in

this proof we show that |m′(r)| is integrable on (0,∞). Once this is done,
the argument is very similar to the one used in the proof of Lemma 3.3.
Observe that m(0) = 0 and m(r) → 1 as r → ∞, so that the integral of
m′(r) is equal to 1. Since

c−1
d,α|z|d+αpt(z) = c−1

d,αt
−d/α|z|d+αp1(t

−1/αz) = tm(t−1/α|z|)

= t

∫ t−1/α|z|

0
m′(r)dr = t

∫ ∞

0
1Rd\Br

(t−1/αz)m′(r)dr,
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we have, by Fubini,

pt(z) = t

∫ ∞

0
cd,α|z|−d−α1Rd\Br

(t−1/αz)m′(r)dr

= t

∫ ∞

0
νt1/αr(z)m

′(r)dr.

Let f ∈ D(LI , x) and

ϕ(r) =

∫
Rd

(f(x+ z) − f(x))νr(z)dz

for r > 0. Then ϕ is bounded and it converges to a limit ϕ(0+) = LIf(x)
as r → 0+. Since∫

Rd

(f(x+ z) − f(x))
pt(z)

t
dz =

∫ ∞

0
ϕ(t1/αr)m′(r)dr,

the desired result follows by dominated convergence.
It remains to prove integrability of |m′(r)|. Observe that

m′(|z|) = c−1
d,α|z|d+α−1((d+ α)p1(z) + z · ∇p1(z)),

so that the Fourier transform of g(z) = cd,α|z|1−d−αm′(|z|) is equal to

Fg(ξ) = (d+ α)e−|ξ|α −∇ · (ξe−|ξ|α)

= (d+ α)e−|ξ|α − (d− α|ξ|α)e−|ξ|α

= αe−|ξ|α(1 + |ξ|α).

The right-hand side is smooth in Rd \ {0}, and its series expansion at 0 is
Fg(ξ) = α(1 − 1

2 |ξ|2α) +O(|ξ|3α). By [40, Theorem 4],

lim
r→∞ cd,αr

1+αm′(r) = lim
|z|→∞

|z|d+2αg(z) =
22α−d/2−1Γ(d2 + α)

Γ(−α)
,

where the right-hand side is understood to be equal to 0 if α = 1. It follows
that for α ∈ (0, 1), m′(r) is ultimately positive, while for α ∈ (1, 2), m′(r)
is ultimately negative. By (2.7), for α = 1, m′(r) is everywhere positive
(ultimate positivity also follows from [40, Theorem 4] by considering the
next term in the series expansion of Fg(ξ)). Since m′(r) is smooth on
[0,∞) and

lim
R→∞

∫ R

0
m′(r)dr = lim

R→∞
m(R) −m(0) = lim

|z|→∞
c−1
d,α|z|d+αp1(z) = 1,

we conclude that |m′(r)| is integrable, as desired. �

In a similar way, we obtain the following result.
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Lemma 3.5. If f ∈ D(LI , x) for some x ∈ Rd and f is locally integrable
near x, then f ∈ D(LH , x), and LIf(x) = LHf(x).

P r o o f. The argument is exactly the same as the proof of Lemma 3.4,
once we note that by (2.19), the profile function of c−1

d,α|z|d+αq1(z), namely

m(r) = (r2/(cα
−2/α + r2))(d+α)/2, is increasing. �

In order to prove a similar result connecting (H) and (S), one would
need some relationship between qy(z) and pt(z). For α = 1, qy(z) = py(z)
and equivalence of (H) and (S) is trivial. For α ∈ (1, 2), we conjecture that

ϕ(r) =
√
r Kα/2(r1/α) is completely monotone. If this is the case, then

Fqy(ξ) can be expressed as the integral average of Fpt(ξ) = e−t|ξ|α , and
so f ∈ D(LS , x) implies f ∈ D(LH , x). For α ∈ (0, 1) one might expect
the converse; however, it is unclear whether Fpt(ξ) can be expressed as an
integral average of Fqy(ξ).

Conjecture 3.1. For α ∈ (1, 2) the function
√
rKα/2(r1/α) is com-

pletely monotone in r ∈ (0,∞).

As in Lemma 3.3, the inclusions in Lemmas 3.4 and 3.5 are proper.
An example of f ∈ D(LS , x) which is not in D(LI , x) is, however, more
complicated, and we only sketch the argument.

Example 3.2. Let

f(x+ z) =
∞∑
n=1

εn|z|1+α(1[rn,(1+δn)rn](|z|) − 1[(1−δn)rn,rn](|z|)),

where, for example, rn = 2−n, δn = 4−n and εn = n8n. First of all,
f is easily proved to be integrable. Due to cancelations, the integral of
f(x+ z)|z|−d−α over z ∈ B(1+δn)rn \B(1−δn)rn is zero, and therefore∫

Rd

f(x+ z)νrn(z)dz = cd,α

∫
B(1+δn)rn\Brn

f(x+ z)|z|−d−αdz

= cd,αd|B|εnδnrn → ∞
as n → ∞. It follows that f /∈ D(LI , x). However, if m(r) denotes the
profile function of |z|d+αp1(z) and M is the supremum of |m′(r)|(1 + r1+α)
(which was shown to be finite in the proof of Lemma 3.4), then
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∣∣∣∣
∫
Rd

f(x+ z)
pt(z)

t
dz

∣∣∣∣
≤

∞∑
n=1

εn

∣∣∣∣∣
(∫

B(1+δn)rn\Brn

−
∫
Brn\B(1−δn)rn

)
|z|1+α pt(z)

t
dz

∣∣∣∣∣
=

∞∑
n=1

d|B|εn
∣∣∣∣∣
(∫ (1+δn)rn

rn

−
∫ rn

(1−δn)rn

)
m(t−1/αr)dr

∣∣∣∣∣
=

∞∑
n=1

d|B|εnrn
∣∣∣∣
∫ δn

0
(m(t−1/α(1 + s)rn) −m(t−1/α(1 − s)rn))ds

∣∣∣∣
≤

∞∑
n=1

d|B|εnrn t−1/αrnMδ2n
1 + (12 t

−1/αrn)1+α

=
∞∑
n=1

21+αd|B|Mεnδ
2
nr

1−α
n

t

(2t1/αr−1
n )1+α + 1

→ 0

as t → 0+. This proves that f ∈ D(LS, x), and a similar argument shows
that f ∈ D(LH , x). We omit the details.

Apparently an example can be given to prove that f ∈ D(LS , x) does
not imply f ∈ D(LB , x), but the author could not work out the technical
details. On the other hand, it is not true that f ∈ D(LB , x) implies f ∈
D(LS , x): pointwise convergence in (B) does not require integrability of
(1+ |z|)−d−αf(z) at infinity. For example, when d ≥ 2, the function f(x) =
x21−x22 can be proved to belong to D(LB , x) (and in fact LBf is everywhere
zero according to (B)), but due to fast growth of f at infinity, f does not
belong to D(LS , x). This is, however, the only obstacle in the proof of the
following result.

Lemma 3.6. If f ∈ D(LB , x) for some x ∈ Rd and (1+ |z|)−d−αf(z) is
integrable, then f ∈ D(LS , x) and f ∈ D(LH , x), and LBf(x) = LSf(x) =
LHf(x).

P r o o f. Recall that by the Bochner’s subordination formula (2.9),

pt(z) = t−2/α

∫ ∞

0
kr(z)η(t−2/αr)dr,

where kr(z) is the Gauss–Weierstrass kernel and η(s) is a smooth function
such that 0 < η(s) ≤ Cα min(1, s−1−α/2) for s > 0 and lims→∞ s1+α/2η(s) =
1/|Γ(−α

2 )| (see [51, Remark 14.18]). Therefore, by Fubini,
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(D) (I) (S) (B)

(̂I) (̌I) (H)

α=1

Figure 1. Relationship between pointwise definitions of
Lf(x) for f such that (1 + |z|)−d−αf(x + z) is integrable.
An arrow indicates inclusion of appropriate domains, and
an arrow with a tail indicates proper inclusion.

∫
Rd

(f(x+ z) − f(x))
pt(z)

t
dz =

∫ ∞

0
(kr ∗ f(x) − f(x))t−1−2/αη(t−2/αr)dr.

Suppose that f ∈ D(LB , x). Then, by dominated convergence,

lim
t→0+

∫
Rd

(f(x+ z) − f(x))
pt(z)

t
dz

=
1

|Γ(−α
2 )|
∫ ∞

0
(kr ∗ f(x) − f(x))r−1−α/2dr,

as desired.
A similar argument involving the identity

qy(z) =
y−2/α

|Γ(−α
2 )|
∫ ∞

0
kr(z)

1

(y−2/αr)1+α/2
exp

(
− 1

4(cα)2/αy−2/αr

)
dr,

which follows easily from the gamma integral, shows that f ∈ D(LH , x)
and LHf(x) = LBf(x) (this is a variant of a result proved in [56]). �

The proofs of pointwise results can be re-used for the corresponding
statements for norm convergence in any of the spaces L p, C0, Cbu and Cb.

Lemma 3.7. Let X be any of the spaces L p, p ∈ [1,∞], C0, Cbu

and Cb. If f ∈ D(LD,X ), then f ∈ D(LI ,X ), which in turn implies
f ∈ D(LS ,X )∩D(LH ,X ). Also, if f ∈ D(LB,X ), then f ∈ D(LS ,X )∩
D(LH ,X ). Furthermore, all definitions of Lf agree on appropriate do-
mains.

P r o o f. We only prove that f ∈ D(LI ,L
p) implies f ∈ D(LS ,L

p),
the other statements being very similar. Recall that

pt(z) = t

∫ ∞

0
νt1/αr(z)m

′(r)dr,
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where m′(r) is an absolutely integrable function, with integral 1. Denote

ϕr(x) =

∫
Rd

(f(x+ z) − f(x))νr(z)dz.

If f ∈ D(LI ,L
p), then ϕr converges to ϕ0+ = LIf in L p. By Fubini,∫

Rd

(f(x+ z) − f(x))
pt(z)

z
dz − ϕ0+(x)

=

∫ ∞

0
(ϕt1/αr(x) − ϕ0+(x))m′(r)dr,

and so, by dominated convergence,

lim
t→0+

‖1
t (Ptf − f) − ϕ0+‖p

≤ lim
t→0+

∫ ∞

0
‖ϕt1/αr(x) − ϕ0+(x)‖p|m′(r)|dr = 0,

as desired. �

4. M. Riesz formulae

In the present section we provide further links between the convergence
in various Banach spaces, which are consequences of the following identity,
discussed in detail in Section 7: for all f ∈ D(LS ,Cbu) and all y ∈ Br,

f(x+ y) = −
∫
Br

LSf(x+ z)γr(y, z)dz +

∫
Rd\Br

f(x+ z)πr(y, z)dz,

(4.1)

where

πr(y, z) =
2Γ(d2 )

απd/2Γ(α2 )|Γ(−α
2 )|

(r2 − |y|2)α/2

|z|d(|z|2 − r2)α/2
(4.2)

is the Poisson kernel of a ball Br for L, and

γr(y, z) =
Γ(d2 )

2απd/2(Γ(α2 ))2
1

|y − z|d−α

∫ (r2−|y|2)(r2−|z|2)
r2|y−z|2

0

sα/2−1

(1 + s)d/2
ds (4.3)

is the Green function of a ball Br for L (here and below, y ∈ Br and
z ∈ Rd \Br). We record that πr(y, z)dz is a probability measure, that

πr(y, z) =

∫
Br

γr(y, v)ν(z − v)dv,

and that∫
Br

γr(y, z)dz = lim
|z|→∞

πr(y, z)

ν(z)
=

Γ(d2)

α2α−1Γ(α2 )Γ(d+α
2 )

(r2 − |y|2)α/2.
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When α < d, the formulae for πr(y, z) and γr(y, z) are all essentially due
to M. Riesz, see [44, 45]. The case α ≥ d is addressed in [34], see also [5]
and the references therein. For a detailed derivation of the expression
for πr(y, z) and further properties, we refer to [39, Section IV.5] and [4,
Section V.4], while the above form of γr(y, z) was found in [5]. Formula (4.1)
for f ∈ D(LS ,C0) is a very general result, valid for all generators of Feller
semigroups, provided that πr(y, z) and γr(y, z) are replaced by appropriate
kernels, which are typically not given by closed-form expressions, see [23].

We remark that by [29, formula 3.194.1],

γr(y, z) =
Γ(d2 )(r2 − |y|2)α/2(r2 − |z|2)α/2

2α−1απd/2(Γ(α2 ))2rα|y − z|d

× 2F1

(
d

2
,
α

2
; 1 +

α

2
; −(r2 − |y|2)(r2 − |z|2)

r2|y − z|2
)
.

For y = 0, when α �= d, by [29, formula 9.132.1],

γr(0, z) =
cd,−α

|z|d−α
− Γ(d2)

2α−1(d− α)πd/2(Γ(α2 ))2

× (r2 − |z|2)α/22F1

(
d

2
, 1;

d− α

2
;
|z|2
r2

)
.

Since 2F1(12 ,
1
2 ; 1; z) = z−1/2 arsinh z1/2, if α = d (and so α = d = 1),

γr(0, z) =
1

π
arsinh

√
r2 − |z|2
|z| .

Similar expressions can be given for general y ∈ Br.
In fact we do not need the explicit expressions for πr and γr; we are

satisfied with the existence of πr(0, z) and γr(0, z) such that (4.1) holds
with y = 0, and the identity

ν̃r(z) =

(∫
Br

γr(0, v)dv

)−1

πr(0, z), (4.4)

with ν̃r(z) defined by (2.5). As remarked above, the appropriate kernels
πr and γr exist for every generator of a Feller semigroup, and (4.4) can
be taken as the definition of ν̃r(z). Therefore, the following result extends
easily to much more general (at least translation-invariant) generators of
Feller semigroups.

Lemma 4.1. Let X be any of the spaces L p, p ∈ [1,∞), C0 or Cbu.
If f ∈ D(LS ,X ), then f ∈ D(LD,X ), and LSf = LDf .

P r o o f. When X = C0 or X = Cbu, the result is a direct consequence
of (4.1) and uniform continuity of Lsf : we have
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∫
Rd

(f(x+ z) − f(x))ν̃r(z)dz − LSf(x)

=

(∫
Br

γr(0, z)dz

)−1
(∫

Rd\Br

f(x+ z)πr(0, z)dz − f(x)

)
− LSf(x)

=

(∫
Br

γr(0, z)dz

)−1 ∫
Br

(LSf(x+ z) − LSf(x))γr(0, z)dz,

and so

sup

{∣∣∣∣
∫
Rd

(f(x+ z) − f(x))ν̃r(z)dz − LSf(x)

∣∣∣∣ : x ∈ Rd

}

≤ sup{|LSf(x+ z) − LSf(x)| : x ∈ Rd, z ∈ Br}.
(4.5)

The right-hand side converges to 0 as r → 0+, which proves the result for
X = C0 or X = Cbu.

Suppose that X = L p for some p ∈ [1,∞). Let gε be a smooth
approximate identity: gε(z) = ε−dg(ε−1z), where g is smooth, g(z) ≥ 0,∫
Rd g(z)dz = 1 and g(z) = 0 for z /∈ B. Let f ∈ D(LS ,L

p), and define
fε = f ∗ gε. By Fubini

1
t (Ptfε − fε) − LSf ∗ gε = (1t (Ptf − f) − LSf) ∗ gε.

Since the convolution with gε, as an operator on L p, has norm ‖gε‖1 = 1,
we have

‖1
t (Ptfε − fε) − LSf ∗ gε‖p ≤ ‖1

t (Ptf − f) − LSf‖p,
and the right-hand side converges to 0 as t → 0+. Therefore, we have
fε ∈ D(LS ,L

p) and LSfε = LSf ∗ gε.
In the above expressions LS is defined by (S), with the limit in L p. Ob-

serve, however, that fε ∈ C∞
0 , and hence, by Lemma 3.2, fε ∈ D(LS ,C0).

Since the limits in L p and C0 coincide, we may write LSfε = LSf ∗ gε,
where LSfε is defined by (S) with the limit in C0, while LSf is defined
by (S) with the limit in L p.

Our goal is to prove an L p analogue of (4.5). As in the derivation
of (4.5), we have∫
Rd

∣∣∣∣
∫
Rd

(fε(x+ z) − fε(x))ν̃r(z)dz − LSfε(x)

∣∣∣∣
p

dx

=

∫
Rd

∣∣∣∣∣
(∫

Br

γr(0, z)dz

)−1 ∫
Br

(LSfε(x+ z) − LSfε(x))γr(0, z)dz

∣∣∣∣∣
p

dx.
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By the Minkowski integral inequality,∫
Rd

∣∣∣∣
∫
Rd

(fε(x+ z) − fε(x))ν̃r(z)dz − LSfε(x)

∣∣∣∣
p

dx

≤
(∫

Br

γr(0, z)dz

)−1 ∫
Br

(∫
Rd

|LSfε(x+ z) − LSfε(x)|pdx
)
γr(0, z)dz

≤ sup

{∫
Rd

|LSfε(x+ z) − LSfε(x)|pdx : z ∈ Br

}
.

Recall that fε = f ∗ gε and LSfε = LSf ∗ gε, and that ‖gε‖1 = 1. Thus,∫
Rd

∣∣∣∣
∫
Rd

(fε(x+ z) − fε(x))ν̃r(z)dz − LSfε(x)

∣∣∣∣
p

dx

≤ sup

{∫
Rd

|LSf(x+ z) − LSf(x)|pdx : z ∈ Br

}
.

(4.6)

In the left-hand side of (4.6), fε converges in L p to f as ε → 0+, while
LSfε converges in L p to LSf . Since ν̃r ∈ L 1, the convolution with ν̃r is
a continuous operator on L p. Therefore, passing to the limit as ε → 0+

in (4.6), we obtain∫
Rd

∣∣∣∣
∫
Rd

(f(x+ z) − f(x))ν̃r(z)dz − LSf(x)

∣∣∣∣
p

dx

≤ sup

{∫
Rd

|LSf(x+ z) − LSf(x)|pdx : z ∈ Br

}
.

This is the analogue of (4.5) that was needed: the right-hand side of the
above estimate converges to 0 as r → 0+. Indeed, when z → 0, LSf(x+ z)
converges in L p to Lsf(x) (as a function of x). It follows that

lim
r→0+

∫
Rd

∣∣∣∣
∫
Rd

(f(x+ z) − f(x))ν̃r(z)dz − LSf(x)

∣∣∣∣
p

dx = 0,

as desired. �

As a direct consequence of Lemmas 3.7 and 4.1, we obtain the following
interesting statement, which appears to be partially new.

Lemma 4.2. Let X be any of the spaces L p, p ∈ [1,∞), C0 or
Cbu. Then the following conditions are equivalent: f ∈ D(LD,X ); f ∈
D(LI ,X ); f ∈ D(LS ,X ), and LDf = LIf = LSf .

When X = C0, the equivalence of (S) and (D) in the above proposition
is a standard (and general) result, see [23, Theorem 5.5]. Equivalence of (S)
and (I) is also known, at least when X = L p and p ∈ [1, dα ), through the
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inversion of Riesz potential operators, see [47, Theorem 16.5 and Section 17]
and [49, Theorems 3.22 and 3.29].

5. Norm convergence

In this section we collect other results which connect various definitions
of Lf for f in L p, C0 and Cbu. Combined with Lemma 4.2, they prove the
first part of Theorem 1.1.

Lemma 5.1. The conditions f ∈ D(LS ,L
2) and f ∈ D(LQ,L

2) are
equivalent, and LSf = LQf .

P r o o f. By dominated convergence theorem, the quadratic forms cor-
responding to 1

t (I − Pt), namely

Et(f, f) =

∫
Rd

(∫
Rd

(f(x) − f(x+ z))
pt(z)

t
dz

)
f(x)dx

=
1

2

∫
Rd

∫
Rd

|f(y) − f(x)|2 pt(y − x)

t
dydx,

converge to the quadratic form E , defined by (2.6). The convergence of
Et(f, f) is in fact monotone, as can be easily seen using Plancherel’s theorem

and monotonicity of 1
t (1 − e−t|ξ|α) in t > 0.

If 1
t (Ptf−f) converges in L 2 to LSf as t→ 0+, then Et(f, f) converges

to − ∫Rd LSf(x)f(x)dx, and so f ∈ D(E). Furthermore, for any g ∈ D(E)

(in fact, for any g ∈ L 2), Et(f, g) converges to − ∫Rd LSf(x)g(x)dx, and it

follows that f ∈ D(LQ,L
2).

The operator LQ defined by (Q), with domain D(LQ,L
2), is thus an

extension of LS defined by (S), with domain D(LS,L
2). Since −LQ is

non-negative definite, λI − LQ is injective for any λ > 0. It follows that
D(LQ,L

2) is equal to D(LS ,L
2). �

Lemma 5.1 is a special case of a general result in the theory of Dirichlet
forms, see [26, Sections 1.3 and 1.4].

Lemma 5.2. Suppose that p ∈ [1, 2]. Then f ∈ D(LS ,L
p) if and only

if f ∈ D(LF ,L
p), and LSf = LF f .

P r o o f. Let 1
p + 1

q = 1 and suppose that f ∈ D(LS ,L
p). Then

F (1t (Ptf − f))(ξ) = 1
t (e−t|ξ|α − 1)Ff(ξ) converges as t → 0+ both in L q

(because the Fourier transform is a bounded operator from L p to L q) and
pointwise. The two limits must coincide, that is, F (LSf)(ξ) = |ξ|αFf(ξ),
as desired.
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As in the proof of Lemma 5.1, it follows that the fractional Laplace
operator LF defined by (F), with domain D(LF ,L

p), is an extension of
LS defined by (S), with domain D(LS ,L

p). Clearly, λI−LF is injective (it
is a Fourier multiplier with symbol λ+ |ξ|α). It follows that D(LF ,L

p) =
D(LS ,L

p). �

Extension to p ∈ (2,∞) requires the distributional definition.

Lemma 5.3. Let X be any of the spaces L p, p ∈ [1,∞), C0 or Cbu.
Then f ∈ D(LS ,X ) if and only if f ∈ D(LW ,X ), and LSf = LW f .

P r o o f. Suppose that f ∈ D(LS ,X ) and let L̃ be the Schwartz distri-
bution with Fourier transform −|ξ|α, as in (W). We claim that if ϕ,ψ ∈ S ,
then

(L̃ ∗ f) ∗ (ϕ ∗ ψ) = (L̃ ∗ ϕ) ∗ (f ∗ ψ)

=

(
lim
t→0+

1
t (pt ∗ ϕ− ϕ)

)
∗ (f ∗ ψ)

= lim
t→0+

(
1
t (pt ∗ ϕ− ϕ) ∗ (f ∗ ψ)

)
= lim

t→0+

(
1
t (pt ∗ f − f) ∗ (ϕ ∗ ψ)

)
=

(
lim
t→0+

1
t (pt ∗ f − f)

)
∗ (ϕ ∗ ψ).

Indeed, the first equality is the definition of the convolution of Schwartz
distributions (and L̃ and f are convolvable, because L̃ ∗ ϕ is integrable

and f ∗ ψ is bounded). For the second one, observe that both L̃ ∗ ϕ and
limt→0+

1
t (pt∗ϕ−ϕ) (the limit in L 1) have Fourier transforms −|ξ|αFϕ(ξ).

To prove the third equality, note that 1
t (pt ∗ ϕ − ϕ) converges in L 1, and

f ∗ ψ ∈ L ∞. The fourth equality follows by Fubini: pt, ϕ, ψ ∈ L 1 and
f ∈ L 1 + L ∞. Finally, the fifth one is a consequence of convergence of
1
t (pt ∗ f − f) in X and ϕ ∗ψ ∈ L q, where 1

p + 1
q = 1 (we take p = ∞ when

X is C0 or Cbu).
As in the proof of Lemmas 5.1 and 5.2, the weak fractional Laplace

operator LW defined by (W), with domain D(LW ,X ), is an extension of
LS defined by (S), with domain D(LS ,X ). Since the Fourier transform of
LW f is −|ξ|αFf(ξ) (note that the definition of multiplication here is not
obvious, because Ff is a distribution; we omit the details), λI − LW is
injective. Therefore, D(LW ,X ) = D(LS ,X ). �

Lemma 5.3 is rather well-known, as well as its extension to general
translation-invariant generators of Markov semigroups (that is, generators
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of Lévy processes), see [38, Proposition 2.5]. The first part of the argument,
after obvious modification, gives the following result.

Lemma 5.4. Let X be any of the spaces L p, p ∈ [1,∞), C0 or Cbu.
Then f ∈ D(LH ,X ) implies f ∈ D(LW ,X ), and LHf = LW f .

Finally, we recall, without proof, two results. The first one is a special
case of a general theorem in the theory of fractional powers of dissipative
operators.

Theorem 5.1 ([41, Theorems 6.1.3 and 6.1.6]). Let X be any of
the spaces L p, p ∈ [1,∞), C0 or Cbu. Then the following conditions are
equivalent: f ∈ D(LS ,X ); f ∈ D(LB ,X ); f ∈ D(LB̂ ,X ). Furthermore,
LSf = LBf = LB̂f .

The other one is the inversion formula for the Riesz potential operators.

Theorem 5.2 ([49, Theorem 3.22]). Suppose that p ∈ [1, dα). Then
f ∈ D(LR,L

p) if and only if f ∈ D(LI ,L
p), and LRf = LIf .

Partial extensions of the above result (in the sense of distributions) to
L p for p ∈ [ dα ,∞) can be found in [49, Section 7.1]. It is also of interest
to study f ∈ L p for which Lf ∈ L q with different p and q, see [49,
Sections 7.1, 7.3 and 7.4].

The results of this section, together with Lemma 4.2, prove the first
part of Theorem 1.1, which we state more formally below.

Theorem 5.3. Let X be any of the spaces L p, p ∈ [1,∞), C0 or Cbu.
Then the following conditions are equivalent:

• f ∈ D(LF ,X )
(when X = L p, p ∈ [1, 2]);

• f ∈ D(LW ,X );
• f ∈ D(LB,X );
• f ∈ D(LB̂,X );
• f ∈ D(LI ,X );

• f ∈ D(LD,X );
• f ∈ D(LQ,X ) (when X = L 2);
• f ∈ D(LS ,X );
• f ∈ D(LR,X )
(when X = L p, p ∈ [1, dα));

• f ∈ D(LH ,X ).

In addition, if f ∈ C 1 and f ∈ D(LÎ ,X ), or if f ∈ D(LǏ ,X ), then f
satisfies all of the above conditions. Finally, all corresponding definitions
of Lf agree.
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6. Further results

In this section we collect results which relate the pointwise and norm
convergence in various definitions of L on L p, C0 and Cbu.

It is a standard result that if f ∈ C0, the limit in (S) exists for all
x, and LSf(x) (defined pointwise) is a C0 function, then in fact the limit
in (S) is uniform; in other words, if f ∈ D(LS , x) for all x and LSf(x) is

in C0, then f ∈ D(LS ; C0). Indeed, the operator L̃ defined by (S) for those
f ∈ C0, for which a pointwise limit in (S) exists for all x and defines a
C0 function, is an extension of L (with domain D(LS ,C0)) which satisfies
the positive maximum principle, and hence it is equal to L. Exactly the
same argument, based on Proposition 2.1, proves the corresponding result
for Cbu.

By Theorem 5.3, the above argument extends to pointwise convergence
in other definitions as well, thus proving the next part of Theorem 1.1,
where everywhere pointwise convergence is discussed. For clarity, the result
is formally stated below.

Theorem 6.1. Let X be either C0 or Cbu. Then each of the equivalent
conditions of Theorem 5.3 is equivalent to each of the following conditions:

• f ∈ X , f ∈ D(LB , x) for all x and LBf ∈ X ;
• f ∈ X , f ∈ D(LI , x) for all x and LIf ∈ X ;
• f ∈ X , f ∈ D(LD, x) for all x and LDf ∈ X ;
• f ∈ X , f ∈ D(LS , x) for all x and LSf ∈ X ;
• f ∈ X , f ∈ D(LH , x) for all x and LHf ∈ X .

Furthermore, all corresponding definitions of Lf agree.

The following example shows that continuity of Lf is essential: there is
a function f ∈ C0 such that LSf(x) exists for all x, but it is not a continuous
function of x.

Example 6.1. Let g(x) = e−|x|2x1/|x|, where x = (x1, x2, . . . , xd).
Furthermore, let λ > 0 and f = Uλg = uλ ∗ g, where Uλ is the λ-resolvent
operator and uλ is its kernel function (see Section 2.6). Then f ∈ C0 and
f ∈ D(LS ,L

1). Furthermore, f is smooth except at 0, and so LSf is
defined both as a limit in L 1 and pointwise for x ∈ Rd \ {0}. These two
limits coincide almost everywhere, and, by continuity of g, everywhere in
Rd \ {0}. It follows that with LSf(x) defined pointwise,

LSf(x) = λUλg(x) − (λI − LS)Uλg(x) = λf(x) − g(x)

for all x ∈ Rd \ {0}. Since f(−x) = −f(x), we also have LSf(0) = 0. It
follows that f ∈ C0 and f ∈ D(LS , x) for all x, but LSf /∈ C0, and therefore
f /∈ D(LS ,C0).
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When α ∈ (1, 2), also continuity of f is essential, as indicated by the
following surprising example: there is a function f such that LSf(x) exists
for all x ∈ Rd and is everywhere zero, but nevertheless f is not continuous.

Example 6.2. Let α ∈ (1, 2) and f(x) = |x1|α−2 sign x1, where x =
(x1, x2, . . . , xd). Then f is locally integrable, and we claim that LDf(x) = 0
for all x. Indeed, since f(x + z) = −f(x − z) when x1 = 0, we have
LDf(x) = 0 when x1 = 0. Furthermore, g(x) = |x1|α−1 is known to satisfy
LDg(x) = 0 when x1 �= 0, and f(x) = ∂

∂xd
g(x). Our claim follows by an

appropriate application of dominated convergence, we omit the details. In
particular, LSf(x) = 0 for all x. However, f is not continuous, and clearly
f /∈ D(LS ,Cbu).

Apparently, the above example in fact describes the worst case: if f is
more regular than above, we conjecture that in fact f is continuous.

Conjecture 6.1. Suppose that any of the following conditions is
satisfied:

• α ∈ (0, 1] and f is locally integrable;
• α ∈ (1, 2), q = 1

2−α and |f |q is locally uniformly integrable;

• α ∈ (0, 2], f is locally integrable and f ≥ 0.

If f ∈ D(LS , x) for all x ∈ Rd and LSf(x), defined pointwise by (S), is a
bounded uniformly continuous function, then f is uniformly continuous and
the convergence in (S) is uniform. Furthermore, there is a linear function
g such that f − g ∈ D(LS ,Cbu).

Almost everywhere the convergence for functions in the L p domain
follows by standard methods. The following result for p ∈ [1, dα ) (and for
LI , not LS; however, see Lemma 7.1 below for a version for LD, LI and
LH) is proved in [49, Theorem 3.24].

Lemma 6.1. Let p ∈ [1,∞). If f ∈ D(LS ,L
p), then f ∈ D(LS , x) for

almost all x, and the pointwise limit in (S) is equal almost everywhere to
the L p limit in (S).

P r o o f. Let λ > 0 and g = λf − LSf , so that f = Uλg. Then

1
t (Ptf − f) − LSf = 1

t (1 − e−λt)Ptf + 1
t (e−λtPtUλg − Uλg) + (λf − g)

= 1
t (1 − e−λt)Ptf − 1

t

∫ t

0
e−λsPsgds + (λf − g).
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As a corollary of the Lebesgue differentiation theorem, Ptf converges almost
everywhere to f as t → 0+ and Psg converges almost everywhere to g as
s→ 0+. Hence, the right-hand side of the above formula converges almost
everywhere to 0 as t → 0+; here we use the fact that the integral in the
right-hand side defined pointwise coincides with the Bochner’s integral in
L p. �

The converse is not true: for any p ∈ [1,∞) there is a function f ∈ L p

such that f ∈ D(LS , x) for almost all x and and LSf(x), defined pointwise
by (S), is a L p function, but f is not in D(LS ,L

p).

Example 6.3. There is a positive measure μ, supported in a com-
pact set K of Lebesgue measure zero, such that f = uλ ∗ μ is in L 1 and
L ∞ (if α < d, then, for example, K can be an arbitrary set of posi-
tive α-capacity and Lebesgue measure 0, and μ its equilibrium measure,
see [39, Section II.1]). Since LSuλ(x) = λuλ(x) for x �= 0, it follows that
LSf(x) = λf(x) for x ∈ Rd \ K. However, f is not in D(LS ,L

p), for
otherwise we would have λf − LSf = 0, and so f = Uλ(λf − LSf) = 0,
a contradiction with f being positive everywhere.

The convergence to an L p function everywhere is a different problem,
see Conjecture 6.1.

Regularity results for functions in D(LS ,L
p) (and also in spaces of

Hölder continuous functions or in Besov spaces) follow easily from the iden-
tification of D(LS ,L

p) with the space of Bessel potentials of L p functions
(see [49, Theorem 7.16]), and the properties of the latter (see [55, Chap-
ter V]). We illustrate these results with the following simple statement,
accompanied with a short proof. Note that by using the weak Young’s
inequality, one can slightly refine the last statement.

Proposition 6.1. Let 1 ≤ p < p′ ≤ s′ ≤ ∞ and 0 < r < R < ∞ or
r = R = ∞. Suppose that f ∈ D(LS ,L

p).

(a) If LSf is continuous at some x, then f is continuous at x.

(b) If 1B(x,R)LSf ∈ L p′ and p′ > d
α , then f is uniformly continuous in

B(x, r).

(c) If 1B(x,R)LSf ∈ L p′ and 1
s′ >

1
p′ − α

d , then 1B(x,r)f ∈ L s′ .

Here we denote B(x,∞) = Rd.

P r o o f. Clearly, (a) is a special case of (b), so it suffices to prove (b)
and (c). We consider these two statements simultaneously, assuming that
s′ = ∞ in (b).
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Let λ > 0 and g ∈ L p, and suppose that g1 = 1B(x,R)g is in L p′ .

Observe that uλ ∈ L q′ , where 1
p′ + 1

q′ = 1 + 1
s′ ; indeed, 1

q′ >
d−α
d . By

Young’s inequality, g1 ∗ uλ ∈ L s′ , and g1 ∗ uλ ∈ Cbu when s′ = ∞.
Define g2 = 1Rd\B(x,r)g = g − g1. When r = R = ∞, then g2 = 0.

Suppose that 0 < r < R <∞. For y ∈ B(x, r), we have

g2 ∗ uλ(y) = g2 ∗ (1Rd\B(0,R−r)uλ)(y).

Furthermore, by the estimate (2.12), we have 1Rd\B(0,R−r)uλ ∈ L q, where
1
p + 1

q = 1, and hence g2 ∗ (1Rd\B(0,R−r)uλ) ∈ Cbu. We conclude that

1B(x,r)(g ∗ uλ) ∈ L s′ , and if s′ = ∞, then in addition g ∗ uλ is uniformly
continuous in B(x, r).

Suppose now that g = LSf for some f ∈ D(LS ,L
p), and in addition

1B(x,R)g ∈ L p′ . By iterating the formula

f = (λf − g) ∗ uλ = −g ∗ uλ + λf ∗ uλ,
we obtain

f = −
n∑

k=1

λk−1g ∗ u∗kλ + λnf ∗ u∗nλ

for arbitrary n ≥ 1, where u∗kλ denotes the convolution of k factors uλ.
By the first part of the proof (and iteration), for any k ≥ 1, the function

1B(x,r)(g ∗ u∗kλ ) is in L s′ , and when s′ = ∞, then in addition g ∗ u∗kλ
is uniformly continuous in B(x, r). Clearly, u∗nλ ∈ L 1. Furthermore, if

n > d
α , then Fu∗nλ (ξ) = (λ + |ξ|α)−n is integrable, and so u∗nλ ∈ L ∞.

It follows that u∗nλ ∈ L q, where 1
p + 1

q = 1, and hence f ∗ u∗nλ ∈ Cbu.

This proves that 1B(x,r)f ∈ L s′ , and when s′ = ∞, then in addition f is
uniformly continuous in B(x, r). �

7. Isotropic stable Lévy process

A detailed treatment of isotropic stable Lévy processes can be found,
for example, in [4, 8]. Here we only give an informal introduction to the
subject and discuss some benefits of the probabilistic approach.

For each starting point x there exists a stochastic process Xt, t ≥ 0,
with the corresponding probability and expectation denoted by Px and Ex,
having the following properties:

(a) Xt starts at x, that is, Px(X0 = x) = 1;
(b) Xt has stationary and independent increments, that is, Xt−Xs has

the same distribution as Xt−s−X0, and Xtn −Xsn are independent
whenever 0 ≤ s1 < t1 ≤ s2 < t2 ≤ . . .;
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(c) Xt has right-continuous paths with left limits, that is, the one-sided
limits Xt+ and Xt− exist and Xt+ = Xt for all t;

(d) the distribution of Xt under Px is equal to pt(x+ z)dz.

We remark that a process satisfying conditions (a) through (c) is said to be
a Lévy process. A process Xt is said to be a Feller process if its state space
is a locally compact metrisable space, it satisfies (a) and (c), and also the
following two conditions (which are weaker than (b)): Xt has the Markov
property, and the transition operators Ttf(x) = Exf(Xt) form a strongly
continuous semigroup on C0. A process Xt is isotropic if it is invariant
under orthogonal transformation of the state space. Finally, Xt is stable if
the process cXt under Px has the same law as the process Xcαt under Pcx.

A random time τ is said to be a Markov time for Xt if the event {τ < t}
is measurable with respect to the (appropriately augmented) σ-algebra of
sets generated by the family of random variables {Xs : s ∈ [0, t]}; intuitively
this means that in order to determine whether τ < t it suffices to see the
path of the process up to time t. It is known that first exit times of open
sets:

τD = inf{t ≥ 0 : Xt /∈ D}
are Markov times (in fact this is true whenever D is a Borel set).

By (d), the transition operators of Xt are the operators Pt introduced
in Section 2.6, that is, Exf(Xt) = Ptf(x). Therefore, by Fubini, the
λ-potential operators of Xt are the λ-resolvent operators Uλ:

Uλf(x) =

∫ ∞

0
e−λtPtf(x)dt = Ex

∫ ∞

0
e−λtf(Xt)dt.

Below we state Dynkin’s formula, one of the fundamental results in the
theory of Markov processes, in a version valid for an arbitrary Feller process.
For non-random time τ it reduces to the well-known formula

Ptf = f +

∫ t

0
PsLSfds.

Its full strength is, however, presented when τ is the first exit time of a set.

Theorem 7.1 (Dynkin’s formula, [23, Theorem 5.1]). If τ is a Markov
time, λ ≥ 0, g is Borel measurable and

f(x) = Ex

∫ ∞

0
e−λtg(Xt)dt,

then for all x for which the integral in the right-hand side of the above
formula is absolutely convergent,
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Ex(e−λτf(Xτ )) = f(x) −Ex

∫ τ

0
e−λsg(Xs)ds. (7.1)

In particular, if λ > 0, f ∈ D(LS ,Cbu) and λ > 0, then for all x,

Ex(e−λτf(Xτ )) = f(x) −Ex

∫ τ

0
e−λs(λI − LS)f(Xs)ds. (7.2)

If in addition Exτ < ∞ (or, more generally, if Ex(
∫ τ
0 |LSf(Xs)|ds) < ∞),

then the same formula holds with λ = 0, that is,

Exf(Xτ ) = f(x) + Ex

∫ τ

0
LSf(Xs)ds. (7.3)

S k e t c h o f P r o o f. Formula (7.1) follows by splitting the integral
defining Uλg(x) into

∫ τ
0 and

∫∞
τ , and applying the strong Markov property

for the latter one; we omit the details. If f ∈ D(LS ,Cbu), then f = Uλg
for g = λf − Lf , and so formula (7.2) is merely a reformulation of (7.1).
Formula (7.3) follows by dominated convergence. �

The identity (4.1) is simply the Dynkin’s formula (7.3) applied to the
first exit time from a ball B(x, r), together with explicit expressions for the
expectation of f(Xτ ) and

∫ τ
0 g(Xs)ds:

Exf(XτB(x,r)
) =

∫
Rd\Br

f(x+ z)πr(0, z)dz,

Ex

∫ τB(x,r)

0
g(Xs)ds =

∫
Br

g(x+ z)γr(0, z)dz,

where the Poisson kernel πr of a ball is given by (4.2), and the Green
function γr of a ball is given by (4.3).

We remark that for general Feller processes, ExτD < ∞ provided that
D is a sufficiently small neighbourhood of x and Xt is not constantly equal
to x under Px (that is, x is not an absorbing state). In our case in fact
ExτD <∞ for all bounded D.

The Dynkin characteristic operator, defined by the formula

LDf(x) = lim
r→0+

Exf(XτB(x,r)
) − f(x)

ExτB(x,r)
(7.4)

for all functions f for which the limit exists, is a way to localize the defini-
tion of LS for a general Feller process. In our case, (7.4) reduces to (D). The
Dynkin characteristic operator is particularly useful when the state space is
not the full space Rd and distribution theory cannot be used: by a general
result, LD defined by (7.4) is an extension of LS with domain D(LS ,C0),
and if f ∈ C0 and LDf ∈ C0 (with LDf defined pointwise by (7.4)), then
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in fact f ∈ D(LS ,C0). We have seen, however, that even for the fractional
Laplace operator in the full space Rd the Dynkin characteristic operator is
a useful concept: it provided a convenient way to prove the equivalence of
the singular integral and semigroup definitions of L.

Using probabilistic methods, one immediately obtains the following sim-
ple and well-known, but quite useful result, which is a pointwise version of
formula (2.13).

Proposition 7.1. If α < d, |x − y|α−dg(y) is absolutely integrable
in y ∈ Rd, and g is continuous at x (or, more generally, x is a Lebesgue
point of g), then Iαg is in D(LD, x), and LDIαg(x) = −g(x) (where Iα
is the Riesz potential operator, that is, the 0-resolvent operator U0 of the
semigroup Pt). Consequently, a similar statement holds true for LI , LS

and LH .

P r o o f. By Lemmas 3.3, 3.4 and 3.5, it suffices to prove the result for
LD. By the assumption, the integral f(y) = Iαg(y) = Ey

∫∞
0 g(Xs)ds is ab-

solutely convergent when y = x, and so we may use Dynkin’s formula (7.1)
with λ = 0. It follows that

LDf(x) = lim
r→0+

Exf(XτB(x,r)
) − f(x)

ExτB(x,r)

= − lim
r→0+

1

ExτB(x,r)
Ex

∫ τB(x,r)

0
g(Xs)ds

= − lim
r→0+

1

E0τB
E0

∫ τB

0
g(x + rXt)dt

= − lim
r→0+

(∫
B
γ1(0, y)dy

)−1 ∫
B
g(x+ ry)γ1(0, y)dy.

If g is continuous at x, or if x is a Lebesgue point of g, then the limit in
the right-hand side is equal to g(x), as desired. �

We conclude this article with another application of the probabilistic
method, which proves the last statement of Theorem 1.1. It is a version of
Lemma 6.1 for the Dynkin’s definition LD of the fractional Laplace opera-
tor.

Lemma 7.1. Let p ∈ [1,∞). If f ∈ D(LS ,L
p), then f ∈ D(LD, x),

f ∈ D(LI , x), f ∈ D(LS , x) and f ∈ D(LH , x) for almost all x, and for all
x at which LSf is continuous. Furthermore, the pointwise limits in (D),
(I), (S) and (H) are equal almost everywhere to the L p limit in (S).
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P r o o f. As before, by Lemmas 3.3, 3.4 and 3.5, it suffices to prove
the result for LD. Let λ > 0, f ∈ D(LS ,L

p) and g = LSf , so that
f = Uλ(λf − g). Observe for almost all x, the integrals defining Uλf(x) =
Ex

∫∞
0 e−λtf(Xt)dt and Uλg(x) = Ex

∫∞
0 e−λtg(Xt)dt are absolutely con-

vergent for all λ > 0. For such a point x and for r > 0, by Dynkin’s
formula (7.1),

Exf(XτB(x,r)
) − f(x)

ExτB(x,r)
=

Ex((1 − e−λτB(x,r))f(XτB(x,r)
))

ExτB(x,r)

− 1

ExτB(x,r)
Ex

∫ τB(x,r)

0
e−λs(λf − g)(Xs)ds.

In particular, the integrals in the right-hand side are absolutely convergent.
Consider the limit λ → 0+. In the former integral in the right-hand side,
1 − eλτB(x,r) decreases to 0, and so the integral converges to 0. The latter
integral is a convolution of λf − g with a positive kernel function, which
increases as λ → 0+ to the integrable kernel function γr(0, z). It follows
that for almost all x one can pass to the limit under the integral sign, and
hence, as in the proof of Proposition 7.1,

Exf(XτB(x,r)
) − f(x)

ExτB(x,r)
=

1

ExτB(x,r)
Ex

∫ τB(x,r)

0
g(Xs)ds

=

(∫
B
γ1(0, y)dy

)−1 ∫
B
g(x+ ry)γ1(0, y)dy.

By Lebesgue’s differentiation theorem, for almost all x the right-hand side
converges to g(x) as r → 0+, as desired.

Finally, note that every time in the above argument a condition is
satisfied for almost all x, it is also satisfied for all x at which f and g are
continuous. Furthermore, by Proposition 6.1, continuity of g at some x
implies continuity of f at x. �
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