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Simple Summary: Plastids are semi-autonomous plant organelles which play critical roles in photo-
synthesis, stress response, and storage. The plastid genomes (plastomes) in angiosperms are relatively
conserved in quadripartite structure, but variable in size, gene content, and evolutionary rates of
genes. The genus Crassula L. is the second-largest genus in the family Crassulaceae J.St.-Hil, that
significantly contributes to the diversity of Crassulaceae. However, few studies have focused on
the evolution of plastomes within Crassula. In the present study, we sequenced ten plastomes of
Crassula: C. alstonii Marloth, C. columella Marloth & Schönland, C. dejecta Jacq., C. deltoidei Thunb.,
C. expansa subsp. fragilis (Baker) Toelken, C. mesembrianthemopsis Dinter, C. mesembryanthoides (Haw.)
D.Dietr., C. socialis Schönland, C. tecta Thunb., and C. volkensii Engl. Through comparative studies,
we found Crassula plastomes have unique codon usage and aversion patterns within Crassulaceae.
In addition, genomic features, evolutionary rates, and phylogenetic implications were analyzed
using plastome data. Our findings will not only reveal new insights into the plastome evolution of
Crassulaceae, but also provide potential molecular markers for DNA barcoding.

Abstract: The genus Crassula is the second-largest genus in the family Crassulaceae, with about
200 species. As an acknowledged super-barcode, plastomes have been extensively utilized for plant
evolutionary studies. Here, we first report 10 new plastomes of Crassula. We further focused on the
structural characterizations, codon usage, aversion patterns, and evolutionary rates of plastomes.
The IR junction patterns—IRb had 110 bp expansion to rps19—were conservative among Crassula
species. Interestingly, we found the codon usage patterns of matK gene in Crassula species are unique
among Crassulaceae species with elevated ENC values. Furthermore, subgenus Crassula species have
specific GC-biases in the matK gene. In addition, the codon aversion motifs from matK, pafI, and rpl22
contained phylogenetic implications within Crassula. The evolutionary rates analyses indicated all
plastid genes of Crassulaceae were under the purifying selection. Among plastid genes, ycf1 and ycf2
were the most rapidly evolving genes, whereas psaC was the most conserved gene. Additionally, our
phylogenetic analyses strongly supported that Crassula is sister to all other Crassulaceae species. Our
findings will be useful for further evolutionary studies within the Crassula and Crassulaceae.

Keywords: Crassula; Crassulaceae; plastome; codon usage; codon aversion; DNA barcoding;
evolutionary rates; phylogeny

1. Introduction

The family Crassulaceae comprises approximately 1400 species in 34 genera and three
subfamilies (Crassuloideae Burnett, Kalanchoideae A. Berger, and Sempervivoideae Arn.) [1–7].
These subfamilies can be further subdivided into seven major clades: Crassula (Crassuloideae),
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Kalanchoe (Kalanchoideae), and the other five clades (Sempervivum, Leucosedum, Aeonium,
Acre, and Telephium), which form the largest subfamily Sempervivoideae [3–6,8]. The genus
Crassula, with about 200 accepted species, is the only unique genus in the clade Crassula, the
second-largest genus of Crassulaceae, and significantly contributes to the diversity of Crassu-
laceae [3,9,10]. Previous taxonomic revision of Crassula recognized two subgenera: Crassula L.
and Disporocarpa Fischer & C.A. Mey. [7,11,12]. The monophyly of the subgenus Crassula
was well supported in two recent molecular phylogenetic studies [9,10]. Nevertheless, the
monophyly of subgenus Disporocarpa is still controversial [9,10]. Thus, more evidence and
further investigations are required to clarify the phylogenetic relationships of Crassula.

Plastids are semi-autonomous plant organelles which have many vital functions, such
as photosynthesis, stress response, and storage [13]. In angiosperms, the plastid genome
(plastome) generally exhibits a conserved quadripartite circular structure with a size of
120–170 kb, comprising two single copy regions (larger and small regions, namely LSC
and SSC, respectively) and two inverted repeat regions (IRs) [14–16]. Owing to the low
level of recombination, uniparental inheritance, and without interference from paralogs,
plastome has been extensively utilized as a super-barcode for plant species identification
and evolutionary studies [17–24]. Due to the rapid development and widespread applica-
tion of high-throughput sequencing technologies (such as Illumina, PacBio, and Nanopore
sequencing technologies), an increasing number of complete Crassulaceae plastomes (more
than 70 sequences) have been deposited in public databases. However, within the Crassula,
only one plastome has been reported to date [6]. The lack of plastome data has limited the
progress in investigating the evolutionary history of Crassula. Therefore, more plastome
data from Crassula are needed to address this issue.

Codon usage bias (CUB), indicating the preferential utilization of synonymous codons
in protein-coding genes (PCGs), has evolved via combined effects of genetic drift, muta-
tion, and natural selection [17,25–28]. Owing to different species having diverse codon
usage patterns, investigations of CUB can reveal phylogenetic relationships between
species [17,25–28]. Codon aversion is defined as the codon which is not used in a cer-
tain gene [29–31]. The codon aversion motif is phylogenetically conserved in some
lineages [29–31]. Interestingly, our recent reports in Macaronesian species (Crassulaceae)
and Bletilla Rchb.f. species (Orchidaceae Juss.) have suggested that plastid CUB and codon
aversion patterns might harbor phylogenetic signals [17,26]. Therefore, the analyses of
plastid genes in codon-usage aspects might broaden our understanding of the phylogeny
of both Crassula and Crassulaceae.

Evolutionary rate, calculated by the ratio (dN/dS) of nonsynonymous rate (dN)
and synonymous rate (dS), can quantify the intensity of the selective force acting on a
PCG [32–34]. The evolutionary rate can also reflect the pattern of natural selection (dN/dS
value >1, =1, and <1 indicate positive, neutral, and purifying selection, respectively) [33–35].
The dN/dS values in different genes are variable, which might be influenced by many
factors, such as protein function, population size, generation time, and DNA-repair ef-
ficiency [36,37]. The dN/dS values of plastid genes have been measured in many plant
lineages, and most values were lower than 1, indicating plastid genes were mainly under
the purifying selection [13,22,38–40]. Currently, the detailed rates and patterns of plastid
genes were largely unknow in Crassulaceae. Knowledge of the evolutionary rates and
patterns will shed light on how the diversifying selection affected the plastome evolution
in Crassulaceae.

To address these issues, we newly sequenced and assembled the plastomes of ten
Crassula species (C. alstonii, C. columella, C. dejecta, C. deltoidea, C. expansa subsp. fragilis,
C. mesembrianthemopsis, C. mesembryanthoides, C. socialis, C. tecta and C. volkensii) using
Illumina sequencing technology. Together with the public data, we performed com-
prehensive analyses to investigate (1) structural characterizations of Crassula plastomes,
(2) unique CUB and codon-aversion patterns for Crassula plastomes, (3) evolutionary
rates and patterns of plastid genes of Crassulaceae, and (4) phylogenetic relationships
among Crassulaceae species. Our findings will not only shed new insights into the
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plastome evolution of Crassulaceae, but also provide potential molecular markers for
DNA barcoding.

2. Materials and Methods
2.1. Sample Collection, DNA Extraction, and Sequencing

The fresh leaf samples of ten Crassula species were collected from greenhouses of
Anhui Normal University, with the voucher codes KL01739, KL01709, KL01449, KL01646,
KL02048, KL01731, KL01444, KL01653, KL01657, and KL01688 for C. alstonii, C. columella,
C. dejecta, C. deltoidea, C. expansa subsp. fragilis, C. mesembrianthemopsis, C. mesembryanthoides,
C. socialis, C. tecta, and C. volkensii, respectively. The Plant Genomic DNA kit (Tiangen,
Beijing, China) was used for Genomic DNA extraction. Furtherly, a TruSeq DNA PCR-Free
Library Prep Kit (Illumina, San Diego, CA, USA) was employed for library construction.
Then, these libraries were sequenced using the Illumina Hiseq X Ten (Illumina, San Diego,
CA, USA) platform.

2.2. Plastome Assembly, Genome Annotation, and Comparative Genomic Analysis

All resulting high-quality clean reads were assembled by using GetOrganelle 1.7.5 [41]
with the plastome of C. perforata Thunb. (NC_053949) [6] as reference. The plastomes
were initially annotated with the online program GeSeq [42] and then checked manually.
Bowtie 2.4.1 [43] and Chloroplot [44] were utilized for the sequencing depth estimation
and the drawing of a gene map, respectively. Genome comparisons were visualized using
mVISTA [45] in Shuffle-LAGAN mode. In order to detect highly variable regions (HVRs)
among plastomes, the sliding-window nucleotide diversity (π) values were measured
in DnaSP v6.12 (window length = 600 bp, and step size = 200 bp) [46]. The contiguous
sliding windows with higher π values (π > πmean + 2 standard deviation) were merged as
a HVR [47,48]. The contraction and expansion of IR regions at the junctions of plastomes
were subsequently plotted using R package IRscope V0.1.R (Viikki Plant Science Centre,
University of Helsinki, Helsinki, Finland) [49].

2.3. Codon Usage and Aversion Indices Analyses

To investigate the codon usage indices, we used CodonW v.1.4.2 (Peden, University
of Nottingham, Nottingham, UK) to calculate the values of relative synonymous codon
usage (RSCU), and the effective number of codons (ENC) of plastid genes (length ≥300 bp)
among 87 Crassulaceae species (10 of which are new in this study, Table S1). The RSCU
value for a codon represents the observed frequency divided by the expected frequency
(RSCU >1 implies a codon use higher than expected, and vice versa) [50]. The RSCU
heatmap was rendered using TBtools 1.098 [51]. In addition, the ENC values, ranging from
20 (extreme bias) to 61 (no bias), quantify the level of CUB of synonymous codons [52].
Furtherly, the parity rule 2 (PR2) plot was performed according to the two formulas: GC-
bias = [G3/(G3 + C3)|4] and AT-bias = [A3/(A3 + T3)|4] (“|4” means 4-fold degenerate
synonymous codons, and G3, C3, A3 and T3 denotes nucleotide composition at the 3rd
codon sites, respectively) [53,54]. The points lying at the centre of plot (AT bias = 0.5 and
GC bias = 0.5) indicate no bias, whereas the off-centred points reflect the direction and
extent of bias [53,54]. Moreover, the codon aversion motifs harboring strong phylogenetic
implications were identified by using CAM v.1.02 [31].

2.4. Nucleotide Substitution Rate Analyses

The 79 PCGs from 87 species of Crassulaceae were employed to evaluate the evo-
lutionary rates (Table S1). The percentage of variable sites (PV) and average π values
were measured with DnaSP v6.12 (Departament de Genètica, Universitat de Barcelona,
Barcelona, Spain) [46]. The nucleotide substitution rates, including dN, dS, and dN/dS,
were inferred with PAML v4.9 [55] under F3X4 and M0 model.
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2.5. Phylogenetic Implications Analyses

Phylogenetic relationships among 87 Crassulaceae species were inferred by maximum-
likelihood (ML) and Bayesian inference (BI) methods, based on 79 PCGs (Data S1). Recent
studies of Lu et al. [9] and Bruyns et al. [10] revealed a sister relationship between Cras-
sulaceae and Haloragaceae R.Br. Therefore, two species of Haloragaceae (Myriophyllum
aquaticum (Vell.) Verdc., NC_048889 and Myriophyllum spicatum L., NC_037885) were se-
lected as outgroups. Multiple sequence alignments were generated using MAFFT v7.505
in PhyloSuite v1.2.1 with codon model [56]. The best-fit nucleotide substitution models
were evaluated with ModelTest-NG v0.1.7 [57]. Subsequently, we employed RAxML-NG
1.1 [58] and MrBayes v3.2.7a [59] for ML and BI analyses, respectively. For ML analyses, the
reliabilities were assessed with 1000 bootstrap replicates, and the convergence was evalu-
ated by using parameter “–bsconverge” in RAxML-NG package (Computational Molecular
Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany). For
BI analyses, four independent Markov chains and two independent runs (running for
10,000,000 generations, and sampling every 1000 generations) were conducted, with Tracer
1.7.1 (Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK) [60] for
the convergence. After discarding the first 25% trees as burn-in, the remaining 75% trees
were used to estimate the consensus tree and Bayesian posterior probabilities.

3. Results
3.1. Plastome Organizations and Structural Features

Based on bowtie2 mapping, totally 3,246,461, 1,740,232, 3,915,950, 2,632,260, 2,801,895,
504,972, 5,440,628, 3,398,113, 1,877,288 and 1,530,319 paired reads were mapped to the
plastomes of C. alstonii (coverage: 3344.02×), C. columella (coverage: 1762.18×), C. dejecta
(coverage: 4020.78×), C. deltoidei (coverage: 5284.33×), C. expansa subsp. fragilis (coverage:
5796.17×), C. mesembrianthemopsis (coverage: 1010.16×), C. mesembryanthoides (coverage:
5557.15×), C. socialis (coverage: 3486.98×), C. tecta (coverage: 1918.07×), and C. volkensii
(coverage: 3161.69×), respectively. The new complete plastomes of ten species of Crassula
(accession numbers: OP729482–OP729487 and OP882297–OP882300) were typical circular
and quadripartite biomolecules (Figure 1), with sizes ranging from 144,855 bp to 146,060 bp.
These plastomes contains LSC (78,303–79,707 bp), SSC (16,568–16,871 bp), and IR (24,810–
24,878 bp). The overall GC contents of Crassula plastomes were between 37.73% and 38.32%.
Notably, the GC contents of IR regions (42.93–43.15%) were found to be higher than those
of in the LSC (35.75–36.51%) and SSC regions (31.67–32.40%). In addition, these plastomes
contain 134 genes, including 85 PCGs, 37 tRNA genes, 8 rRNA genes and 4 pseudogenes.
Among these genes, 6 PCGs, 7 tRNA genes, 4 rRNA genes, and one pseudogene (ycf15),
were completely duplicated in the IR regions (Table 1).

Furthermore, based on the results obtained with mVISTA, in all plastomes investigated
it was found that the IR and coding regions (exons, tRNAs, and rRNAs) are more conserved
than SC and conserved non-coding regions (CNS), respectively (Figure 2). Additionally,
the results also revealed that 3 plastomes (labelled 8–10) of subgenus Disporocarpa exhibited
higher divergences than 7 plastomes (labelled 1–7) of subgenus Crassula, when compared
with the reference.
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Figure 1. Annotation map of ten new plastomes from Crassula species. Directed with arrows,
genes that are listed inside and outside of the circle are respectively transcribed clockwise and
counterclockwise. Different colors represent different functional groups.
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Table 1. Plastome characteristics of Crassula species.

Species Accession
Number

Size (bp) GC Content (%) Gene Number

Genome LSC IR SSC Genome LSC IR SSC Total PCGs tRNA rRNA Pseudo

C. alstonii † OP729482 * 145,507 79,304 24,813 16,577 37.82 35.86 42.96 31.85 134 (19) 85 (6) 37 (7) 8 (4) 4 (2)
C. columella † OP729483 * 145,554 79,332 24,827 16,568 37.83 35.86 42.95 31.86 134 (19) 85 (6) 37 (7) 8 (4) 4 (2)

C. dejecta † OP729484 * 145,870 79,495 24,859 16,657 37.73 35.76 42.93 31.67 134 (19) 85 (6) 37 (7) 8 (4) 4 (2)
C. mesembrianthemopsis † OP882297 * 146,046 79,664 24,854 16,674 37.78 35.78 42.97 31.89 134 (19) 85 (6) 37 (7) 8 (4) 4 (2)
C. mesembryanthoides † OP729485 * 146,057 79,707 24,858 16,634 37.78 35.78 42.94 31.9 134 (19) 85 (6) 37 (7) 8 (4) 4 (2)

C. perforata † NC_053949 145,737 79,465 24,810 16,652 37.75 35.75 42.97 31.77 134 (19) 85 (6) 37 (7) 8 (4) 4 (2)
C. socialis † OP729486 * 145,842 79,549 24,828 16,637 37.79 35.8 42.95 31.86 134 (19) 85 (6) 37 (7) 8 (4) 4 (2)

C. tecta † OP729487 * 146,060 79,662 24,854 16,690 37.78 35.78 42.97 31.88 134 (19) 85 (6) 37 (7) 8 (4) 4 (2)
C. deltoidea # OP882298 * 145,175 78,580 24,862 16,871 38.13 36.25 43.08 32.32 134 (19) 85 (6) 37 (7) 8 (4) 4 (2)

C. expansa subsp. Fragilis # OP882299 * 144,969 78,449 24,856 16,808 38.30 36.51 43.14 32.4 134 (19) 85 (6) 37 (7) 8 (4) 4 (2)
C. volkensii # OP882300 * 144,855 78,303 24,878 16,796 38.32 36.51 43.15 32.4 134 (19) 85 (6) 37 (7) 8 (4) 4 (2)

† These species belong to subgenus Crassula. #, These speciesbelong to subgenus Disporocarpa. *, The new plastomes were generated in this study. (n), The number of genes located on IRs.
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Figure 2. Structure comparisons of ten new Crassula plastomes using the mVISTA program.
Y-scale represents the percent identity between 50% and 100%. The labels 0 to 10 indicate C. perforata
(reference), C. alstonii, C. columella, C. dejecta, C. mesembryanthoides, C. tecta, C. mesembrianthemopsis,
C. socialis, C. volkensii, C. expansa subsp. fragilis, and C. deltoidei, respectively.

The sliding-window-based π values estimated for 11 plastomes of Crassula ranged from
0.00073 to 0.10315 (Table S2 and Data S2). The mean π value and its standard deviation
were 0.02978 and 0.01954, respectively. Thus, a total of 11 HVRs were identified with
relatively high variability (π > 0.06886) (Figure 3). These HVRs containing high π values
(0.06912–0.08653) and abundant variable sites (111–559) might be used as potential DNA
barcodes for species identification within Crassula (Table 2).
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Figure 3. Sliding-window analysis of the plastomes of 11 Crassula species (window length: 600 bp;
step size: 200 bp). x-axis: position of the midpoint of a window; y-axis: π value of each window.
Regions with higher π values (π > 0.06886) were considered as HVRs.

Table 2. The HVRs identified in the plastomes of 11 Crassula species.

HVR Coordinates Region
Size (bp) π Value Variable

Sites Annotations

HVR1 6259–8197 1939 0.07521 240 rps16–trnQ-UUG
HVR2 28,684–29,678 995 0.07427 119 petN–psbM
HVR3 29,942–31,262 1321 0.07064 182 psbM–trnD-GUC–trnY-GUA
HVR4 35,624–36,637 1014 0.06912 114 psbZ–trnG-GCC
HVR5 47,003–48,289 1287 0.08653 223 trnL-UAA–trnF-GAA–ndhJ
HVR6 55,345–56,290 946 0.07518 158 rbcL–accD
HVR7 63,273–64,156 884 0.07652 164 psbE–petL
HVR8 69,495–70,212 718 0.07133 111 clpP–psbB
HVR9 109,945–111,098 1154 0.06969 192 ndhF–rpl32–trnL-UAG
HVR10 120,441–123,490 3050 0.07259 559 rps15–ycf1
HVR11 124,303–124,908 606 0.07227 119 ycf1

In our current study, all 11 plastomes of Crassula displayed similar IR junction patterns
(Figure 4). The SSC/IRa borders are located in the coding regions of ycf1 gene, resulting
in the fragmentations of ycf1 (ycf1-fragment) in IRb regions. Moreover, ndhF genes were
discovered to occur mainly in SSC, and partly in IRb, regions. Notably, rps19 genes
are located at the LSC/IRb junctions, with extension into the IRb regions for 110 bp.
Similarly, trnH genes lie at the IRa/LSC junctions, with uniform 3 bp-sized expansions to the
IRa regions.
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represented above the block were transcribed clockwise and those represented below the block were
transcribed clockwise. “fra.” is the abbreviation of “fragment”.

3.2. Codon Usage and Aversion Patterns

To compare the patterns of codon usage and aversion between Crassula and other
Crassulaceae species, four analyses (RSCU, ENC, PR2-plot, and codon aversion motif) of
53 plastid genes (length ≥300 bp) were performed.

The overall RSCU values ranged from 0.32 (CTC or AGC) to 2.07 (TTA) among
Crassulaceae species (Table S3). Similar with other Crassulaceae species, seven taxa of
Crassula exhibited significant preference for A/T-ending codons over G/C-ending codons
in plastid genes (Figure 5). Importantly, the RSCU heatmap showed two subgenera within
the Crassula: subgenus Disporocarpa included C. expansa subsp. fragilis, C. deltoidea and
C. volkensii; subgenus Crassula consisted of the remaining eight taxa (Figure 5).

The ENC values ranged from 30.83 (ndhC in Sedum sarmentosum Bunge) to 57.74 (ndhJ in
C. volkensii and C. expansa subsp. fragilis) among Crassulaceae species (Table S4). Generally,
ENC values ≤35 indicate high codon preference [52,61,62]. The results show that most of
the ENC values (99.48%) were higher than 35, indicating a weaker bias. Most surprisingly
of all, we detected the ENC values of matK, from the Crassula clade, are significantly higher
than those of all other clades (Table S4 and Figure 6). It might prove to be a unique feature
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for Crassula species. To further verify this finding, more sampling data and comprehensive
analyses are need in future studies.
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The PR2 plots of matK and 52 other PCGs are presented in Figures 7 and S1, respec-
tively. These results indicated the nucleotide usage at the 3rd codon site of 4-fold degenerate
codons is uneven in different genes. For example, rps14, clpP, psbA, and pafII prefer to use
A/G, A/C, T/C, and T/G in 4-fold degenerate sites, respectively (Figure S1). In addition,
these unbalanced utilizations were also found in different species (Figure S1). Obviously
divergent GC-biases were observed in matK genes between species of subgenus Crassula
and others. Specifically, all GC-biases of clades from Kalanchoideae and Sempervivoideae,
plus subgenus Disporocarpa, were less than 0.5. On the contrary, all these values for the
subgenus Crassula were higher than 0.5, which might be unique characteristic for sub-
genus Crassula. Moreover, species with close relationships had identical nucleotide biases.
For example, C. alstonii and C. columella had identical AT-biases (0.4074) and GC-biases
(0.5455). Similar phenomena could also be observed in C. mesembryanthoides and C. tecta
(AT-biases = 0.4286, and GC-biases = 0.5455).

Owing to the codon aversion motifs containing phylogenetic implication, we analyzed
codon aversion patterns of genes among Crassulaceae species. Except for rpoB, rpoC2, ycf1
and ycf2, codon aversion motifs were found in the remaining 49 genes (Table S5). It is
worth noting that 27 and 16 unique codon aversion motifs were detected for species of
subgenus Crassula and subgenus Disporocarpa, respectively (Table 3), which might be used
as potential biomarkers for species identification. Further to this, 8 consensus motifs might
be considered as the feature of genus Crassula (Table 3). Moreover, the codon aversion
motifs from 3 genes (matK, pafI and rpl22) could also divide 11 species into two subgenera
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(subgenus Crassula and subgenus Disporocarpa) (Figure 8), which is congruent with results
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Table 3. The specific codon aversion motifs of Crassula within Crassulaceae.

Gene
Specific Codon Aversion Motifs

Subgenus Crassula Subgenus Disporocarpa Consensus for Genus Crassula

accD TGC
atpB TGT CGG
atpI TGT, CTG, CTA,

cemA GGG
ccsA GGC
ndhA CAT, CCG, CAG, CGG CAT, CCG CAT, CCG
ndhE CTC
ndhI TCT TCT TCT
ndhJ TGT, ACG
ndhK TGC, CAC, CTG TGC, CAC, CTG TGC, CAC, CTG
pafII AAG AAG AAG
petB AAC, AGA CAG
petD GGC GCC
psbB CGA
psbD ACG
rbcL GCG, CCC, AGG
rpl16 GAT GAT GAT
rpl20 TGT
rps3 GCG, GTC
rps4 TCT CGG
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3.3. Evolutionary Rates and Patterns

The π (0.00447–0.0914) and PV (4.91–37.52%) values of 79 plastid PCGs of Crassulaceae
species were plotted in Figure 9a. Two genes, referring to ycf1 (π = 0.0914, PV = 35.78%)
and matK (π = 0.08239, PV = 37.52%), had obviously higher π and PV values than those of
the other 77 genes, indicating they might accumulate more mutations than other plastid
genes. The detailed data are listed in Table S6.
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To further quantify the evolutionary rates of PCGs, the nucleotide substitution rates,
including dN, dS and dN/dS, were calculated (Figure 9b, Table S6). The dN values ranged
from 0 to 0.8671, with higher dN values for ycf1 (dN = 0.8671) and matK (dN = 0.7804)
than for others. Compared with dN values, the dS values had relatively wide ranges
(0.177–2.3917), resulting in corresponding dN/dS ratios (0–0.5891) of less than 1. This
finding indicates the plastid genes from Crassulaceae appear to be evolving under a
purifying selective constraint. Among 79 plastid PCGs, ycf2 is the most rapidly evolving
gene, with the highest ratio (dN/dS = 0.5891), followed by ycf1, cemA, psaI, and matK. By
contrast, psaC was the most conserved gene with the lowest ratio (dN/dS = 0).

3.4. Phylogenetic Implications

To investigate the evolutionary relationships among 87 species of Crassulaceae, phy-
logenetic analyses were performed. After a model test, GTR + G4 and GTR + I+G4 were
inferred as the optimal substitution models for most genes (the detailed models can be seen
in Table S7). As shown in Figure 10, the trees inferred from two methods displayed the
same topology.
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Ten species of Crassula that we sequenced, together with C. perforate, form the
well-supported clade Crassula, which is sister to all other Crassulaceae species (maximum
likelihood bootstrap [BS] = 100 and bayesian posterior probability [PP] = 1.00). In addi-
tion, our phylogenetic tree indicated that this monophyletic clade could be clustered into two
subgenera: subgenus Disporocarpa harbored C. volkensii, C. expansa subsp. fragilis and
C. deltoidea ([BS] = 100 and [PP] = 1.00). Subgenus Crassula included the remaining
eight Crassula species (C. alstonii, C. columella, C. dejecta, C. mesembryanthoides, C. tecta,
C. mesembrianthemopsis, C. socialis, and C. perforata) ([BS] = 100 and [PP] = 1.00).
Within subgenus Crassula, two species (C. alstonii and C. columella) were sister to six other
species (C. dejecta, C. mesembryanthoides, C. tecta, C. mesembrianthemopsis, C. socialis, and
C. perforata) ([BS] = 100 and [PP] = 1.00). Further, C. tecta and C. mesembrianthemopsis formed
the well-supported sister taxa ([BS] = 100 and [PP] = 1.00). Unfortunately, the sister group
of C. dejecta and C. mesembryanthoides had relatively weak support ([BS] = 55 and [PP] =0.69).
Due to the limited plastome data within Crassula, there are many unsolved phylogenetic
problems in this clade. Therefore, more samples are needed to solve this issue.

As expected, the six species from genus Kalanchoe Adans. and genus Cotyledon L.
formed the monophyletic clade Kalanchoe (or subfamily Kalanchoideae) ([BS] = 100 and
[PP] = 1.00). The remaining 70 species, belonging to the subfamily Sempervivoideae, can
be further grouped into 5 distinct clades: Acre, Aeonium, Leucosedum, Sempervivum,
and Telephium. In detail, 7 Sedum L. species and 3 species from other genera respectively
(Graptopetalum Rose, Echeveria DC., and Pachyphytum Link, Klotzsch & Otto) formed a
well-supported clade Acre ([BS] = 100 and [PP] = 1.0). However, it is clear from our results
that Sedum is not monophyletic, with some other taxa embedded within this genus.

In addition, 13 species from genus Aeonium Webb & Berthel. and genus Monanthes
Haw. make up the clade Aeonium ([BS] = 100 and [PP] = 1.0). Furthermore, due to
sampling in this study, only a single species form Leucosedum and Sempervivum clades,
and full resolution of relationships within these clades requires sufficient molecular se-
quences. Notably, the clade Telephium, with 45 species, consists of clusters “Rhodiola” and
“Hylotelephium” [63] ([BS] = 92 and [PP] = 1.0). Within cluster “Hylotelephium“, non-
monophyly of Orostachys Fisch. was observed. Three Orostachys species, (O. japonica
(Maxim.) A.Berger, O. minuta (Kom.) A.Berger, and O. fimbriata (Turcz.) A.Berger) belong-
ing to the Subsection Orostachys [63] ([BS] = 100 and [PP] = 1.0), were sister to Meterostachys
sikokianus (Makino) Nakai, while O. iwarenge f. magna Y.N.Lee (Subsection Appendiculata)
and three Hylotelephium H.Ohba species formed a group with strong support ([BS] = 100
and [PP] = 1.0).

4. Discussion

Ten new plastomes of Crassula were reported in the present study. Combined with
available data from public database, we conducted comprehensive analyses, including
plastome organizations, codon usage and aversion patterns, evolutionary rates, and phylo-
genetic implications.

The expansion and contraction of IR regions are common evolutionary events and
have been considered as the main mechanism for the length variation of angiosperm
plastomes [64–66]. In our study, we performed comparative analyses among Crassula
plastomes, and found that the IRb regions had uniform length (110 bp) expansions to the
rps19 gene. This 110-bp expansion had been also observed in Aeonium, Monanthes, and
most other taxa of Crassulaceae in our recent study [17]. This finding indicated that the
conserved IR organization might act as a family-specific marker for Crassulaceae species.

Interestingly, it was reported that rps19 genes were completely located in the LSC regions
in Forsythia suspensa (Thunb.) Vahl, Olea europaea Hoffmanns. & Link L., and Quercus litseoides
Dunn [67,68], and were fully encoded by the IR regions in Polystachya adansoniae Rchb.f.,
Polystachya bennettiana Rchb.f., and Dracaena cinnabari Balf.f. [69,70]. There are several
mechanisms that might explain the IR expansion and contraction [71–73]. For instance,
Goulding et al. [71] proposed that short IR expansions may occur by gene conversion events,
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whereas large IR expansions involved in double-strand DNA breaks. In order to better
reveal the mechanisms of IR expansion and contraction, more extensive investigations in
Crassulaceae and Saxifragales are required.

Investigations of codon usage patterns could reveal phylogenetic relationships be-
tween organisms [25,74]. In particular, 11 species of Crassula can be divided into two
subgenera from the RSCU heatmap, which agreed with the results of phylogenetic anal-
yses. This finding further demonstrates that RSCU values contain phylogenetic implica-
tions [75–80]. Additionally, we observed codon usage patterns are gene-specific and/or
species-specific, reflected in diversified ENC values and various distribution patterns in
PR2 plots. Interestingly, we found the codon usage patterns of matK gene in Crassula
species are unique among Crassulaceae species with elevated ENC values. Furthermore,
the GC-biases of matK gene with specific preference (>0.5) might be the particular feature
for subgenus Crassula. Due to rapid evolutionary rate, high universality, and significant
interspecific divergence, the matK gene has been broadly used in plant evolutionary studies
as one of the core DNA barcodes [9,10,81–84].

Codon aversion, a novel concept proposed by Miller et al. [29–31], is an informative
character in phylogenetics. Specifically, the codon aversion motifs in orthologous genes are
generally conserved in specific lineages [29–31]. To date, these analyses have only been
performed in a few plant plastomes [17,26]. For example, the specific codon aversion motifs
of rpoA gene could distinguish not only the two genera (Aeonium and Monanthes), but also
the three subclades of Aeonium in our recent report [17]. In this work, genus-specific and
subgenus-specific codon aversion motifs were identified for 11 Crassula species. These findings
suggest codon aversion pattern could be used as a promising tool for phylogenetic study.

Generally, the dN/dS ratios of genes could reflect the extent of selection pressures dur-
ing evolution [22]. Here, the dN/dS values of plastid PCGs ranged from 0 to 0.5891 within
Crassulaceae, indicating all plastid genes were under purifying selection. Among these
values, elevated dN/dS ratios were found for ycf1 (0.4349) and ycf2 (0.5891). Similarly, high
dN/dS ratios of these two genes were also observed in other families, such as Asteraceae
Bercht. & J.Presl [38], Mazaceae Reveal [22], and Musaceae Juss. [13]. The ycf1 gene was
related to protein translocation [85]. The ycf2 gene is necessary for cell viability, but the
detail function is still unknown [86]. Why ycf1 and ycf2 evolve relatively fast is interesting.
The possible reason put forwarded by Barnard-Kubow et al. [87] considered that relaxed
purifying selection or positive selection on ycf1, ycf2 and some other genes might result
in the development of reproductive isolation and subsequent speciation in plants. There-
fore, the results suggested that ycf1 and ycf2 might play important roles in the divergence
of Crassulaceae.

Our phylogenetic tree divided 87 species into 3 subfamilies and 7 clades. The clade
Crassula is sister to all other 6 clades, which agrees with the phylogeny reported by
Gontcharova et al. [4], Chang et al. [6], and Han et al. [17]. Furtherly, 11 Crassula species
could be furtherly divided into two subgenera, which generally accords with the mor-
phological differences (floral shape) reported by Bruyns et al. [10] (Table S8). Neverthe-
less, there are still some unsolved phylogenetic problems within Crassulaceae. The first
problem is that the plastid phylogeny of Crassula is not entirely clear due to the lim-
ited data. According to the classification proposed by Tölken [11,88], 11 and 9 sections
were respectively identified in subgenus Crassula and subgenus Disporocarpa. However,
Bruyns et al. [10] indicated that most sections were not monophyletic. Moreover, subgenus
Disporocarpa recently has been regarded as a paraphyletic group [9,10]. The second is
the genus Sedum, which is not monophyletic in our study, agreeing with the widely ac-
cepted viewpoint [3–5,89,90]. Finally, the genus Orostachys has been demonstrated to be
non-monophyletic based on plastid data, which is consistent with previous analysis based
on nuclear internal transcribed spacers (ITS) data [63]. In order to better understand the phy-
logeny of Crassula or Crassulaceae, more data are needed for the further detailed analyses.
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5. Conclusions

In the present study, 10 new plastomes of Crassula species were reported. These
plastomes exhibited identical gene content and order, and that they contained 134 genes
(130 functional gene and 4 pseudogenes). The 11 identified HVRs with relatively high
variability (π > 0.06886) might be used as potential DNA barcodes for species identification
within Crassula. The unique expansion pattern, where the IRb regions had uniform length
(110 bp) boundary expansions to rps19, might become a plesiomorphy of Crassulaceae.
According to RSCU values, the A/T-ending codons were favored in plastid genes. Most
importantly, we found the codon usage patterns of the matK gene in Crassula species are
unique among Crassulaceae species with elevated ENC values. Furthermore, subgenus
Crassula species have specific GC-biases in the matK gene. In addition, the codon aversion
motifs from matK, pafI and rpl22 contained phylogenetic implications within Crassula.
Compared with other Crassulaceae species, 27 and 16 unique codon aversion motifs were
detected for subgenus Crassula and subgenus Disporocarpa, respectively. Additionally,
the evolutionary rates analyses indicated all plastid genes of Crassulaceae were under
purifying selection. Among these genes, ycf1 (dN/dS = 0.4349) and ycf2 (dN/dS = 0.5891)
were the most rapidly evolving genes, whereas psaC (dN/dS = 0) was the most conserved
gene. Finally, our phylogenetic analyses strongly supported Crassula is sister to all other
Crassulaceae species. Our results will be benefit for further evolutionary studies within the
Crassula and Crassulaceae.
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