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Introduction

As studies grow in scale and complexity, it has become increasingly difficult to provide clear

descriptions and open access to the methods and data needed to understand and reproduce

computational research. Numerous papers [1–3], including several in the Ten Simple Rules

collection [4,5], have highlighted the need for robust and reproducible analyses in computa-

tional research, described the difficulty of achieving these standards, and enumerated best

practices. We aim to augment this existing wellspring of advice by addressing the unique chal-

lenges and opportunities that arise when using computational notebooks, especially Jupyter

Notebooks, for research [6].

Reproducibility, the scientific standard that others should be able to recreate your results,

requires at a minimum that “data and the computer code used to analyze [that] data be made

available to others” [2]. Achieving even this minimum standard typically requires both

machine-readable descriptions of the data, software, dependencies, and computational envi-

ronment involved (for example, hardware or cloud configuration), as well as human-readable

documentation describing how all these pieces fit together. Whereas analysts previously kept

code, documentation, and results in separate files, they increasingly use computational note-

books such as Jupyter Notebooks and R Notebooks to both perform analyses and combine

code, results, and descriptive text in a single “computational narrative” to be read and rerun by

others [7,8]. This ability to combine executable code and descriptive text in a single document

has close ties to Knuth’s notion of “literate programming” [9] and has convinced many

researchers to switch to computational notebooks from other programming environments.

Jupyter Notebooks in particular have seen widespread adoption: as of December 2018, there

were more than 3 million Jupyter Notebooks shared publicly on GitHub (https://www.github.

com) [10], many of which document academic research [11].

The interactive and narrative nature of computational notebooks presents unique opportu-

nities for performing and sharing computational research. With some forethought, they can

provide not only richly detailed descriptions of analyses but also interactive computing
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environments for replicating, exploring, and extending them. Yet, as with other computing

environments, using notebooks for research requires special care. Interactively running and

editing code in notebooks can delete key steps or introduce “hidden state” that confounds

analyses and confuses readers [12]. Analyses documented in notebooks cannot be easily rerun

if users do not first freeze their dependencies, share their data, and adequately describe their

computing environment [13]. And many notebooks lack sufficient descriptive text to guide

readers in using them [11,14].

The explosive growth of computational notebooks provides a unique opportunity to sup-

port computational research, but care must be taken when performing and sharing analyses in

notebooks. Given these opportunities and challenges, we have compiled a set of rules, tips,

tools, and example notebooks to help guide Jupyter Notebook authors. While we focus on a

few core uses of Jupyter Notebooks observed in our own research, many of these rules can be

applied to other computational notebooks and use cases. In Fig 1, we give a preview of the

rules applied at different phases of the notebook development cycle. Whether you use note-

books to track preliminary analyses, to present polished results to collaborators, as finely tuned

pipelines for recurring analyses, or for all of the above, following this advice will help you write

and share analyses that are easier to read, run, and explore.

Rule 1: Tell a story for an audience

One key benefit of using Jupyter Notebooks is being able to interleave explanatory text with

code and results to create a computational narrative [7]. Rather than only keep sporadic notes,

use explanatory text to tell a compelling story that has a beginning that introduces the topic, a

middle that describes your steps, and an end that interprets the results. Describe not just what

Fig 1. Iterative workflow for applying the 10 simple rules to the creation of Jupyter Notebooks. The cycle describes
three overlapping phases of developing a well-documented and functional Jupyter Notebook. First, we organize and
document the notebook (Rules 1–3). Second, the code is developed following the rules proposed here about quality
standards (Rules 4–7). Finally, the notebook is made available, along with its data (Rule 8), in a manner encouraging
public exploration and contribution (Rules 9–10).

https://doi.org/10.1371/journal.pcbi.1007007.g001
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you did but why you did it, how the steps are connected, and what it all means. It is okay for

your story to change over time, especially as your analysis evolves, but be sure to start docu-

menting your thoughts and process as early as possible.

How you tell the story will depend on your goal and audience. Do you plan to share your

notebook with a nontechnical colleague in your lab, analysts at another lab, readers of a partic-

ular journal, or the general public? You may need different kinds and levels of explanation for

each audience. In any case, remember that your primary audience will most likely be your

future self. Is your explanation clear enough that you will be able to understand and reproduce

the analysis a month from now? People often overestimate what they will be able to remember

in the future, so err on the side of overexplaining. If you won’t be able to recreate your own

analysis in the near future, how could anyone else?

Rule 2: Document the process, not just the results

Computational notebooks’ interactivity makes it quick and easy to try out and compare differ-

ent approaches or parameters—so quick and easy that we often fail to document those interac-

tive investigations at the time we perform them. Thus, the advice long provided regarding

paper lab scientific notebooks becomes even more critical: make sure to document all your

explorations, even (or perhaps especially) those that led to dead ends. These comments will

help you remember what you did and why. You can always remove these comments later if

turning your notebook into a pipeline (see Rule 7) or preparing to share it with a wider audi-

ence (Rule 1), who may prefer to see a concise presentation of results rather than a detailed lab

notebook.

Many notebook users wait to add such explanatory text until the end of an analysis, after

they have a solid result. Don’t wait—by that point you may have forgotten why you chose a

particular parameter value, where you copied a block of code from, or what you found interest-

ing about an intermediate result. If you do not have time to fully document what you are

doing or thinking in the moment, leave short descriptive notes to remind yourself what to add

when you get to a good stopping point. While the code needed to reproduce the analysis may

be automatically captured in your notebook, the reasoning and intuition may not. It is okay if

the story in your notebook changes over time; you should still tell a story from the very begin-

ning, even if you don’t know the ending yet.

Clean, organize, and annotate your notebook after each experiment or meaningful chunk

of work and do all your cleaning in the notebook. For example, when preparing to publish,

avoid manually tweaking figures with desktop publishing tools and instead use plotting librar-

ies with the notebook to produce publication-ready versions of figures and other artifacts to be

used in manuscripts. Make sure you include your name as well as contact information for

yourself and a future contact in your lab that can answer basic questions about the code. Docu-

menting the beginning and end date of your analysis is also a good idea and can highlight the

effort that you have put into the development of the notebook.

Rule 3: Use cell divisions to make steps clear

Notebooks are an interactive environment, so it is very easy to write and run one-line cells.

This supports experimentation but can leave your notebooks messy and full of short fragments

that are hard to follow. Instead, try to make each cell in your notebook perform one meaning-

ful step of the analysis that is easy to understand from the code in the cell or the surrounding

markdown description. Modularize your code by cells and label the cells with markdown

above the cell. Think of each cell as being one paragraph, having one function, or accomplish-

ing one task (for example, create a plot).
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Avoid long cells (we suggest that anything over 100 lines or one page is too long). Put low-

level documentation in code comments. Use descriptive markdown headers to organize your

notebook into sections that can be used to easily navigate the notebook and add a table of con-

tents. Split long notebooks into a series of notebooks and keep a top-level index notebook with

links to the individual notebooks. Using clear cell and notebook divisions will make your anal-

ysis much easier to read.

Rule 4: Modularize code

It is always good practice to avoid duplicate code, but in notebooks, it is especially easy to copy

a cell, tweak a few lines, paste the resulting code into a new cell or another notebook, and run

it again. This form of experimentation is expedient but makes notebooks difficult to read and

nearly impossible to maintain if you want to change the functionality of or fix a bug in the cop-

ied code. Instead, wrap code you are about to copy and reuse in a function, which you can

then call from as many cells as desired. If you are going to reuse the code in other projects or

notebooks, consider turning it into a module, package, or library.

Not only does modularization save space, support maintenance, and ease debugging, it also

makes it easier to add interactivity. For example, you can tie widgets (ipywidgets, https://

ipywidgets.readthedocs.io/en/stable/) to functions to support exploration of different parame-

ter values or support interaction with visualizations without needing to modify the code. This

is one way you can design your notebook to be explored (Rule 9).

Rule 5: Record dependencies

Rerunning your analysis in the future will require accessing not only your code but also any

module or library that your code relied on. As is best practice across computational science,

manage your dependencies using a package or environment manager like pip or Conda. These

enable you to download modules and libraries, specify the version of each you want to use in

your analysis, and even generate files such as Conda’s environment.yml or pip’s requirements.

txt that concisely describe all of your dependencies. These files can be used by tools such as

Binder or Docker to generate a “container” that other researchers can use to reproduce your

analysis using the same versions of every module and library as you did. Always conduct your

work in an environment created only from these dependencies to ensure you do not add

undocumented dependencies.

As an extra precaution in notebooks, you can explicitly print out your dependencies using a

notebook extension such as watermark (https://github.com/rasbt/watermark). Listing the ver-

sions of critical dependencies in the notebook itself (best done at the bottom) will ensure that,

if used in isolation from its environment, the notebook still contains critical information to

help readers run it.

Rule 6: Use version control

Version control is a critical adjunct to notebook use because the interactive nature of note-

books makes it easy to accidentally change or delete important content. Furthermore, since

notebooks contain code and code inevitably contains bugs, being able to determine the history

of when a given bug you have discovered was introduced to the code versus when it was fixed

—and thus what analyses it may have affected—is a key capability in scientific computation.

Consult the Ten Simple Rules paper by Perez-Riverol and colleagues [15] on how to take

advantage of Git and GitHub for version control generally. Also follow best practices for orga-

nizing your repository for easy version control, for example, http://drivendata.github.io/

cookiecutter-data-science/.
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However, be aware that Jupyter Notebooks store both code and extensive metadata about

each cell as a text file in the JavaScript Object Notation (JSON) format. Version control sys-

tems compare differences in these JSON files, not differences in the user-friendly notebook

graphical user interface (GUI). Because of this, reported differences between versions of a

given notebook are usually difficult for users to find and understand because they are

expressed as changes in the abstruse JSONmetadata for the notebook. One way to address this

issue is to use a notebook-specific diffing tool like nbdime that understands notebook structure

and presents differences in meaningful ways (https://github.com/jupyter/nbdime). Another

approach is to convert your notebook to a more version-control–friendly filetype such as .py

before committing changes.

Rule 7: Build a pipeline

Notebooks documenting initial, exploratory investigations will rarely be widely generalizable,

but once a stable analysis approach has been identified, a well-designed notebook can be gen-

eralized into a pipeline that easily repeats that analysis using different input data and parame-

ters. With this end in mind, design your notebook from the beginning to allow such future

repurposing. Place key variable declarations, especially those that will be changed when doing

a new analysis, at the top of the notebook rather than burying them somewhere in the middle.

Perform preparatory steps, like data cleaning, directly in the notebook and avoid manual

interventions.

Because notebooks’ interactivity make them vulnerable to accidental overwriting or dele-

tion of critical steps by the user, if your analysis runs quickly, make a habit of regularly restart-

ing your kernel and rerunning all cells to make sure you did not accidentally delete a step

while cleaning your notebook (and if you did, retrieve the code for it from version control).

Restarting your kernel and running all cells is also a good final test of results. To allow partial

execution of complex analyses, break long notebooks into smaller notebooks that focus on one

or a few analysis steps. Then, ensure that each notebook stores serialized versions of key inter-

mediate results to disk for subsequent notebooks to use.

Once a notebook has been developed, it can be parameterized with a tool such as papermill

(https://github.com/nteract/papermill). Such notebooks can be used not only interactively but

also as command-line tools that can be executed automatically—a great boon for pipelines!

Consider linking your analysis pipeline steps via a Makefile or similar tool that allows for com-

plete noninteractive execution of the entire pipeline, either in full or partial steps. Such auto-

mation also supports code quality techniques like software testing; consider testing your

workflows from end to end each time a change is committed by integrating your repository to

a Continuous Integration system (for example, https://travis-ci.org/). Last but not least, be

aware that pipeline notebooks will almost certainly have a very different story (Rule 1) than the

initial analyses that engendered them! Remember to remove any introduction, interpretation,

or conclusion text that is not universally applicable to different inputs and results and instead

replace it with guidance for the pipeline user on how to run and interpret its (potentially

novel) results.

Rule 8: Share and explain your data

Having access to a clearly annotated notebook is of little use to those wanting to reproduce or

extend your results if the underlying data are locked away. Strive to make your data or a sam-

ple of your data publicly available along with the notebook. While sharing your data takes care-

ful planning, notebooks make it easy to provide a description of your input data and upstream

processing steps, which are essential for interpreting results.
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Ideally, you will share your entire data set alongside your notebooks. We realize many data

sets are too large or too sensitive to share this way. In these cases, consider breaking down

large and complex data sets into tiers such that, even if the raw data are prohibitively large to

include alongside your published notebooks or are constrained by privacy or other access

issues, reproducibility and interpretability isn’t lost. You can host public copies of medium-

sized, anonymized data in a variety of hosting services (for example, figshare [https://figshare.

com/], zenodo [https://zenodo.org/]), and include further processed data sets alongside the

notebooks in the final repository. To uniquely and permanently identify data sets, these host-

ing services provide Digital Object Identifiers (dois). This tiered approach both provides public

confidence and allows others to reproduce and reuse the latter stages of an analysis even with-

out access to the full, raw data set.

Rule 9: Design your notebooks to be read, run, and explored

If you have followed the previous rules, your notebooks should capture your entire process

and be easy to read. But how will others access, run, and explore them? There are a number of

ways you can support others’ reuse of your notebooks. First, store your notebooks in a public

code repository with a clear README file and a liberal open source license (https://

opensource.org/licenses) granting permission to reuse your code.

Read: Beyond granting permission to reuse your notebook, consider how you can leverage

the unique structure of notebooks to support reading. At the very least, leave static HTML/

PDF versions of all notebooks stored in the final version of the repository accompanying a

publication. If, in 20 years, all other execution technology fails, these are likely to still provide a

readable archival record, and with a full dependences list, future users are more likely to be

able to recreate the compute environment. You can also use Nbviewer (https://nbviewer.

jupyter.org/) to provide static views of your executed notebook online without needing to con-

vert it to a PDF/HTML document first. GitHub uses this service to render any notebooks on

their site, so pushing a notebook to GitHub is another good way to make static views easily

available. In both cases, you can point collaborators to a URL where they can read through

your notebook online.

Run: To support others running your notebooks, you can use Binder [16] to provide a zero-

install environment to run your notebooks in the cloud (https://mybinder.org/). Binder

enables community members to rerun your notebook online without needing to install Jupyter

Notebook or Jupyter Lab on their own machine. More generally, you can create a portable

containerized environment, for example, a Docker image (https://docs.docker.com/), or create

a dependency description file (see Rule 3) so future users of your notebook can more easily

replicate your computing environment when rerunning your notebook.

Explore: Beyond simply replicating the analysis in your notebook, consider how you can

design your notebook so future users can tweak and explore your analysis. Consider using ipy-

widgets (https://ipywidgets.readthedocs.io/en/stable/) to enable future users to change param-

eters using graphical elements such as dropdowns and sliders rather than tweaking code.

Beyond enabling future users to change parameters or insert their own data set, consider how

they might want remix or reuse portions of your notebook (perhaps only the data cleaning or

plotting steps) and use cell-structure and functions to make it easier to extract these sections

(Rule 7).

Rule 10: Advocate for open research

Clearly, the mere use of a computational notebook does not guarantee others will be able to

read, run, or explore your analysis. If the convenience and interactivity of this technology has
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convinced you to adopt it, take the next step and become an advocate in your lab or workplace

in promoting its effective use. Ask lab-mates or colleagues to try to run one of your notebooks

and then listen when they explain any difficulties. Try to run their notebooks and let them

know if you hit snags. Commit yourself to robust and reproducible analyses as key element of

all your research group’s computational work, not a phase performed after an analysis is com-

plete or an afterthought triggered by journal or reviewer demands.

Annotated notebooks

To demonstrate the 10 rules, we have created a Git Repository with annotated example note-

books (https://github.com/jupyter-guide/ten-rules-jupyter). Following Rule 9, read, run, and

explore these notebooks. In addition, we have created a repository (https://github.com/

jupyter-guide/jupyter-guide) to crowdsource more technical and in-depth tutorials and to

keep up with the rapidly evolving Jupyter ecosystem. We encourage you to contribute and

share your experiences and know-how following Rule 10.

Conclusions

Robust and reproducible analyses lie at the heart of science, and several papers have already

provided excellent general advice for how to perform and document computational science.

However, the advent of computational notebooks presents new opportunities and challenges,

both easing precise documentation of complex workflows, and complicating it by means of

interactivity. We present 10 simple rules for writing and sharing analyses in Jupyter Note-

books, focusing on annotation of the analysis, organization of code, and ease of access and

reuse. Informed by our experience, we hope they contribute to the ecosystem of individuals,

labs, publishers, and organizations using notebooks to perform and share computational

research.
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