
Physica A 153 (1988) 97-113 

North-Holland, Amsterdam 

TEN THEOREMS ABOUT QUANTUM MECHANICAL 

MEASUREMENTS 

N.G. VAN KAMPEN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Institute for Theoretical Physics of the University, Utrecht, The Netherlands 

Received 1 July 1988 

The aim of quantum mechanics is to explain macroscopic, objectively recorded phenomena. 

Microscopic objects are measured by enabling them to interact with a macroscopic measuring 

apparatus prepared in a metastable state. Macroscopic objects, such as cats, are not above the 

laws of quantum mechanics, but owing to their enormously dense level spectrum other aspects 

than single eigenvalues and eigenfunctions are prominent. These aspects can be described in 

classical terms, such as probabilities instead of probability amplitudes. The measuring act is 

fully described by the Schrodinger equation for object system and apparatus together. The 

collapse of the wave function is a consequence rather than an additional postulate. A model is 

constructed to demonstrate these statements. It also appears that the entropies of the object 

system and the apparatus increase by the same amount, namely the entropy difference 

between the metastable initial state and the stable final state of the apparatus. 

1. Formulation of the problem 

Many a theory in physics makes use of mathematical entities that do not 

correspond to an intuitively understandable physical object. Of course intuition 

can be educated; as a consequence some of these entities, for instance energy, 

become so familiar as to be regarded as concrete objects. Others, such as the 

coordinates xF in general relativity, remain abstract without anybody worrying 

about it. A third class, however, of which entropy is an example, remains a 

source of bewilderment and controversy. The most notorious member of this 

class is the wave function #. It is an indispensable tool for quantum mechanical 

calculations, but its connection with actually observed phenomena is remote. 

This connection is the subject of the continuing debate about the foundations 

of quantum mechanics and the theory of measurement [l-4]. A huge literature 

has been provoked by the question: How exactly does the wave function $ 

relate to the phenomena that I can observe and measure? 

Meanwhile quantum mechanics is in daily use and is extremely successful in 

understanding, predicting, and computing these same phenomena. One knows 
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98 N.G. van Kampen I Ten theorems about quantum mechanical measurements 

how to handle $ so as to get concrete, observable conclusions about the 

physical world. Apparently the problem is solved in practice; the difficulties 

enter only when one starts philosophizing. This philosophizing has given rise to 

a number of “interpretations”, in which (I/ is endowed with more physical 

significance than is needed for the actual calculation of the phenomena. There 

are a number of schools with different views, including such mind-boggling 

fantasies as the many-world interpretation [5], which go far beyond the world 

of physical phenomena. 

My question is: How is it possible that, in spite of these differences of 

opinion, quantum mechanics is used in practice to obtain uncontroversial 

results? The purpose of this article is not to defend some interpretation, but to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

analyze what happens when quantum mechanics is used to obtain results that can 

be compared with experiments. This is a matter of physics; what I say is true or 

false - not the expression of a philosophical view about the deeper meanings of 

reality. 

It is not surprising that some of my conclusions are the same as those of 

Bohr [6] inasmuch as his aim too was to understand how the quantum 

mechanical formalism works. Yet in some crucial points the present description 

of the theory of measurement differs from what is usually regarded as the 

Copenhagen interpretation. A great help in elucidating the measuring process 

is the explicit model constructed in section 6. I repeat that I shall avoid all 

philosophical extrapolations of the physical facts. Znterpretationes non @ fingo. 

2. Preliminary remarks about quantum mechanics 

Theorem I: Quantum mechanics works. 

It describes and computes those phenomena for which it was invented, such 

as black body radiation and spectra; and numerous others, such as specific heat 

and superconductivity. All these phenomena are macroscopic, objective, and 

permanently recorded, for instance on a photographic plate or as a table in the 

Physical Review. Hence 

Theorem ZZ: Quantum mechanics is concerned with macroscopic phenomena, 

which are not perturbed by observation. 

The familiar stories about the influence of the observer on the system do not 

apply to real observations in a laboratory. They apply to a world of lilliputians, 

where an observer is able to aim at a single gamma quantum at a preassigned 

electron. Such stories may be helpful in exposing the difference with the 
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classical picture of particles and waves, but they are irrelevant for the 

observations as done in practice. Our purpose is merely to know how to deal 

with actually observed phenomena. 

One example of such phenomena is the diffraction of a beam of electrons 

passing through a crystal. In order to compute the observed diffraction pattern 

one makes use of a quantity $, called the “wave function of a single electron”. 

The value of [I)[ *, multiplied by the number N of electrons in the beam, is the 

observed blackening of the photographic plate. The value of [$I* for a single 

electron does occur in the calculation, but is not observed itself. One may call 

it the probability density of the electron, but that is merely a name for the 

observed blackening divided by N. 

Theorem ZZZ: The quantum mechanical probability is not observed but merely 

serves as an intermediate stage in the computation of an observable 

phenomenon, 

The old question: Does $ refer to a single system or to an ensemble? - must 

therefore be answered as follows. I,!J is a mathematical object pertaining to a 

single system; its square [$I2 may be called a single system probability. 

However, in order to confront this quantity with reality one must do observa- 

tions on a large number of similar systems, in such a way that the probability 

density materializes as an actual density. 

Not only the probability I+/*, but also the wave function $ itself occurs 

merely as a mathematical tool in the calculation of spectra, collision cross- 

sections, etc. It does not occur in the result that can be handed to the 

experimenter for comparison with the real world. This situation is similar with 

the way in which the relativistic coordinates n’ are used, and also the vector 

potential in Maxwell theory. For some reason, however, it is the wave function 

that has been the object of numerous speculations concerning its “true 

nature”. Everybody is free to speculate, but 

Theorem ZV: W hoever endows I,!I with more meaning than is needed for 

computing observable phenomena is responsible for the consequences. 

He has the duty to show that his speculations do not lead to contradictions, 

and preferably that they are of some use (other than agreement with precon- 

ceived philosophical views). If he does not succeed he should not blame 

quantum mechanics. 

Such theories are usually carefully constructed so as to reproduce the known 

results of quantum mechanics; they can therefore neither be verified nor 

falsified by experiments. One might hope that they are simpler or easier to 
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handle but actually they are usually complicated and contrived. This is 

particularly so when they fail to respect the superposition principle and as a 

result lose the tool of transforming in Hilbert space. But I digress: our purpose 

is merely to see how quantum mechanics works in practice. 

3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe measuring process according to von Neumann 

Any measuring arrangement corresponds with the measurement of an 

observable quantity represented by a Hermitian operator A. Such an operator 

has a complete set of eigenfunctions x,, with eigenvalues h,, 

AX, = Ax,, . 

For convenience we suppose that the eigenvalues are discrete and nondegener- 

ate and that the x, are normalized. Von Neumann gives the following abstract 

description of the measuring process [7]. 

(i) As long as no measurement occurs the system is described by a wave 

function G(t), which evolves according to the Schrodinger equation for the 

system. 

(ii) Suppose at t, the system is brought into contact with an apparatus for 

measuring A. Then the possible outcomes are the values A,. The probability 

for finding h, is 

pm = I(xmlv4t,>)l”~ 

(In this connection the measurement is always taken to be instantaneous, i.e., 

short on the time scale of the Schrodinger evolution.) 

(iii) If the value A, has been found by the measurement the wave function 

changes abruptly from $(t,) into x,,. This sudden reduction or collapse of the 

wave function is to be added as a new postulate to the Schrodinger quantum 

mechanics. (Incidentally, this collapse can be used to prepare a system in a 

certain state x,.) 

(iv) It is necessary that the measuring apparatus is left in a state from which 

the observer can see that the result was A m: a pointer on a dial must point at m. 

However, to read this result I need another apparatus, which by a second 

measuring process determines the position of the pointer. And this process is 

repeated and gives rise to a chain of measurements, which can end only in the 

brain of the observer, where in some mysterious way it becomes a part of the 

“gedankliche Innerleben des Individuums”. 

This is actually the conclusion of von Neumann and others [7,8]. I find it 
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hard to understand that someone who arrives at such a conclusion does not 

seek the error in his argument. Quantum mechanics is not a theory of the mind 

of an observer, but of physical, objectively recorded phenomena, see theorem 

II. The question is how $ relates to spectra or specific heats; the mind of the 

observer is irrelevant. Moreover the answer was already known to Bohr: the 

quantum mechanical measurement is terminated when the outcome has been 

macroscopically recorded. 

4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMacroscopic systems 

A macroscopic system, such as a certain amount of a gas, a crystal, or a 

pointer on a volt meter, is composed of a huge number of particles. As a 

consequence its energy levels lie inordinately dense on any energy scale used in 

the laboratory. The typical distance SE between two successive levels is much 

and much smaller than the inaccuracy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAE of the best energy measurement by 

the best experimenter. Hence such a system can never be prepared in a single 

eigenstate of the energy operator. (In fact, if it were in a single eigenstate it 

would behave as one big molecule in a stationary state; no particle could be 

seen to move!) Rather, the wave function $ of a macroscopic system is always 

a superposition of an enormous number (namely AE/6E) of eigenstates. A 

macroscopic system does obey the laws of quantum mechanics, but the familiar 

picture of individual eigenvalues and eigenstates is no longer adequate. Other 

features become prominent; they constitute the subject matter of macroscopic 

physics [9, lo]. (A loose analogy within the realm of classical theory is formed 

by statistical mechanics: A many-body system has features, such as pressure 

and temperature, which do not exist for a few particles; they are the subject 

matter of thermodynamics.) 

The wave function Cc, of a macroscopic system describes all its individual 

particles and their movements. It obeys a gigantic Schrodinger equation as long 

as the system is not perturbed, not even by a measuring apparatus. This $, 

however, is the “microstate” of the system. When an experimenter prides 

himself that he has prepared the system in a well-defined state, he refers to the 

macrostate. He does not pretend to know its Hilbert vector @, he only knows 

that it lies in a certain subspace of Hilbert space with BE/SE dimensions. 

When a macroscopic pointer indicates a macroscopic point on a dial the 

number of microscopic eigenstates involved has been estimated by Bohm [ll] 

to be 105’. When the observer shines in light in order to read the position of the 

pointer, the photons do perturb the $ of the pointer, but the perturbation does 

not affect the macrostate. The vector $ is moved around a bit in these 10” 

dimensions but its components outside the subspace remain negligible. That is 
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the reason why macroscopic observations can be recorded objectively, in- 

dependently of the observations and the observer, and may therefore be the 

object of scientific study. The lilliputian measurements of Heisenberg [12] and 

von Neumann do not apply to experiments with macroscopic systems. 

A typically macroscopic feature is the existence of thermodynamic equilib- 

rium states. Those are macrostates which the system, when left alone, will 

reach sooner or later. Certain systems possess metastable states as well, for 

example supersaturated vapor. A metastable state is a macrostate in which the 

system can reside for a long time before its ultimate transition into the stable 

equilibrium state. In many cases, however, this transition can be triggered by a 

minute perturbation, even a single microscopic particle. That is the way in 

which microscopic particles can be recorded macroscopically, as in the Wilson 

chamber, the Geiger counter and the AgBr crystals of the photographic plate. 

Theorem V: A quantum mechanical measuring apparatus consists of a macro- 

scopic system prepared in a metastable state. 

The transition from the metastable into the stable macrostate provides the 

free energy needed to make the microscopic phenomena macroscopically 

visible. It is also the reason why the measuring process is irreversible (camp. 

theorem X) and therefore permanently recorded. 

5. Schriidinger’s cat 

This much discussed paradox [13] consists of a cat locked in a black box 

together with a radioactive sample. Moreover there is a Geiger counter, which 

on being triggered by an emitted alpha particle activates a device that kills the 

cat. The argument runs as follows. After some time the whole system is in a 

superposition of two states: one in which no decay has occurred that triggered 

the mechanism and one in which it has occurred. Hence the state of the cat 

also consists of a superposition of two states. 

Icat) = allife) + bldeath) . (4 

There are two coefficients a, b (in general complex), which depend on the time 

elapsed. The state remains a superposition until an observer looks at the cat. 

Then, according to section 3, the wave function (2) collapses into either (life) 

or [death) with respective probabilities 1 aI2 and 1 b12. 

If this is not sufficiently paradoxical one may consider an observer who has a 

friend who does the experiment for him [S]. At which moment does the wave 
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function collapse, when the friend looks at the cat or when he communicates 

his finding to the observer? This quandary must be resolved by anybody who 

regards JI as a physical object rather than a tool for computing macroscopic 

phenomena. 

To make the paradoxical nature of (2) more explicit suppose that the 

observer decides to observe another quantity than the question of life and 

death, for instance the temperature of the cat (i.e., the total kinetic energy of 

its molecules). The expectation value of such a quantity G is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(G) = ~cz~~G,, + lb12Gdd + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa*bGpd + ab*G,, , 

where G,, etc. are the matrix elements of G. This expectation value is not a 

statistical average of the value G,, and G,, with probabilities 1 aI2 and 1 b12, but 

contains cross terms between life and death. 

The answer to this paradox is again that the cat is macroscopic. Life and 

death are macrostates comprising an enormous number of eigenstates 18) and 

Id) respectively. Any wave function of the cat has the form 

Icat) = c a,lC) + c b,ld) . 
e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd 

The cross terms in the expression for ( G) are 

,c, a*,b,G,, + 2 a,b:G,, . 
e,d 

(3) 

As there is such a wealth of terms, all with different phases and magnitudes, 

they mutually cancel and (3) practically vanishes. This is the way in which the 

typical quantum mechanical interference become inoperative between macro- 

states. As a result (G) now does appear as a statistical average. 

Theorem VI: The wave function of a system of a macroscopic number of 

particles gives, on measuring macroscopic quantities, results that can be de- 

scribed in terms of classical probabilities. [9] 

One remark concerning microscopic systems, such as a single elementary 

particle, must be added. In the region of high quantum numbers such a system 

behaves with respect to measurements as a macroscopic system. The reason is 

again that there are many eigenstates within the margin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAE of macroscopic 

accuracy. Readers who think that they have found a counterexample to 

theorem V, for instance the Cerenkov counter, have made use of this fact. A 

particle that betrays its position through Cerenkov radiation thereby changes 
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its microscopic $ but not its macrostate. Its energy changes by an amount zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6E 

but not AE. 

6. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA model for a measuring apparatus 

We shall construct a measuring apparatus for observing the position of an 

electron. More precisely, our apparatus will be able to tell whether the electron 

has passed through some preassigned region U in space. It could be used for 

instance in the double slit experiment to decide through which slit the electron 

has passed. We shall find that such an observation does indeed destroy the 

interference pattern. All this is a consequence of the Schriidinger equation for 

the total system, which consists of the object system, in this case the electron, 

together with the apparatus. There is no need to supplement the Schrodinger 

evolution with an additional postulate, as in the theory of von Neumann. 

Our apparatus [14] consists of an atom together with the electromagneticfield. 

The apparatus is macroscopic because of the many degrees of freedom 

embodied in the normal modes of the field*. We label the modes by their wave 

vector k and for simplicity ignore polarization. The Hilbert space of the 

apparatus is the direct product of the Hilbert space of the atom and the space 

of all possible excitations of the field modes. The stable equilibrium is the state 

with the atom and all modes in their ground states. A metastable state can be 

made by putting the atom in an excited state, for instance 2S, from which no 

transition to the ground state through emission of a photon is allowed. When, 

however, an electron appears in the neighborhood of the atom its Coulomb 

interaction distorts the 2s state so as to create a dipole moment, which makes 

the transition possible. Such a transition is irreversible and leaves a permanent 

record of the passage of the electron. For instance the emitted photon can be 

caught on a photographic plate or in a counter. One may regard the plate or 

the counter as part of the measuring apparatus if one wishes, but the crucial 

point is that, once the photon has been emitted, the presence of the electron 

has been permanently recorded. 

The only states of the apparatus that we need for our purpose are I+ ; 0) 

(atom excited, no photons) and I- ; k) ( a om t in ground state, one photon k). 

The wave function ?P of the total system (electron + apparatus) is a linear 

superposition, whose coefficients are elements of the Hilbert space of the 

electron: 

q(t) = cp(r, t)l+; 0) + C $k(r, 41-i k) . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k 

* In the model of Peres [15] the measuring apparatus is not explicitly macroscopic, but instead a 

noisy perturbation is put in by hand. 
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The photon states are orthogonal to each other and normalized. Hence the 

normalization of !P takes the form 

P, is the probability that the atom is excited and no photon present; Pk is the 

probability that the atom has emitted the photon k; and C Pk = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 - PO is the 

probability that the atom is deexcited by emission of an unspecified photon. 

The functions cp and $k do not have unit norm, nor are they orthogonal. The 

absence of cross terms in (5) is due to orthogonality 

the apparatus. 

7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe collapse of the wave function 

The Schrodinger equation for the total system is 

@@, ‘) = (’ - iv2)(P@, t, - i”(r) T U,@k(rY t, , 

i$k(r, t) = (k - $V2)rCl,(r, t) + iu(r)u,cp(r, t) . 

Here 6 = 1, 0 is the energy of the excited level of 

of the eigenfunctions of 

(6) 

(7) 

the atom, k = Ikl is the 

energy of the field modes, and - iv’ represents the kinetic energy of the 

electron, its mass being set equal to unity. Furthermore uk is the product of a 

coupling constant, a normalization factor of the field mode zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk, and a damping 

factor that prevents interaction with modes whose wavelength is shorter than 

the diameter of the atom. Finally, U(T) is the dipole matrix element created by 

an electron at distance r, the atom being located at r = 0. The function U(T) is 

appreciable only in some neighborhood U of the atom, and practically zero 

outside. 

The coupled equations (6), (7) h ave to be solved with the initial condition 

for t+ - 03: first Gk(t) = 0 for all k; and secondly rp(r, t) is in this limit a given 

incident wave packet, 

(P(I-, t) = 
I 

c(p) eiP’r-iE’ dp , 

We want to know the functions cp 

for t+ + 00. We shall then know zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E=ip2+t. (8) 

and t+Qk after the passage of the electron, i.e. 
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1 cp(r, t)l* = probability for finding the electron at r without having triggered 

the measuring apparatus; 

I&(‘, t)j2 = probability for finding the electron at r having triggered the atom 

into emitting a photon k. 

The collapse of the wave function can be deduced without actually solving 

eqs. (6), (7). For that purpose write (7) in the form 

It appears that the function eikt&(r, t) obeys a Schrodinger equation with a 

source term. Since & vanishes for t-+ - 00 it follows that the solution of (9) 

consists of a wave emanating from the source. This source is confined to the 

neighborhood U. Hence +Gk(r, t) is a Schrodinger wave that fans out from the 

neighborhood where the electron has betrayed its presence by triggering the 

measuring apparatus. This is the collapse of the wave function: when the 

apparatus has observed the electron to be in U the electron wave function is no 

longer the initial cp but is replaced by a J/k. Thus the collapse is not an 

additional postulate and has nothing to do with a change of my knowledge or 

some such anthropomorphic consideration. 

Theorem VII: The collapse of the wave function of the object system is a 

consequence of the Schrtidinger equation for the total system (i.e., object system 

and measuring apparatus together). 

When a measurement has occurred the total wave function P has obtained 

components outside the original subspace of the apparatus (which consisted of 

the single vector I+; 0)). The coefficients of these new components are 

functions of the electron variables and constitute the new electron wave 

function. If one looks at the electron by itself rather than as a part of the total 

system one gets the impression that its wave function cp has miraculously 

collapsed into ICI,. 

Consider the two-slit experiment and put the observing atom in the upper 

slit. If it is not triggered into emitting a photon, the electron is still described 

by the function cp, which goes through both slits. The electron is not observed 

and the interference pattern is undisturbed. If, however, a photon k is emitted 

by the atom, the electron is described by the wave function &, which fans out 

from the upper slit and therefore produces no interference pattern. In this case 

the electron has betrayed its passage through the upper slit and the interfer- 

ence is destroyed - in agreement with the famous discussion by Bohr [6]. 

In discussing this example I have used the traditional language of a single 
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electron and its probability distribution. The same result can be formulated 

operationally in agreement with theorem III. The actual experiment consists in 

shooting a succession of electrons at the two slits. For each single electron I 

write down its position on the receiving screen and record whether or not a 

photon has been emitted. After finishing the experiment I sit down at my desk 

with my notes, collect the events without photon and mark their positions on a 

piece of paper. The marks will produce an interference pattern. When I do the 

same for the events that were accompanied by a photon no interference 

appears on the paper. 

If the atom were absent the wave function of the electron would be the cp 

given by (8), modified by the boundary conditions on the two-slit screen. In the 

presence of the atom cp is the solution of the coupled equations (6), (7) with 

the same boundary conditions and with (8) as initial condition. These two 

functions cp are not quite the same; the apparatus influences the electron even 

without detecting it. The interference pattern we obtained by selecting the 

undetected electrons is not quite the same as the one obtained when no 

attempt is made to detect them. The physicist says that the atom is polarizable, 

or that it makes a virtual transition to the ground state. If one wants the 

electron to be able to act on the measuring apparatus one cannot avoid a 

reaction. Yet the fact that an apparatus affects the wave function of the object 

system even when the measurement is not successful has caused some debate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

W921. 

8. Probability and density matrix 

The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAclassical probability of some feature of a system is defined as the number 

of elementary states that have that feature, divided by the total number of 

possible elementary states. The elementary states are supposed to have equal 

probabilities, or else to have given a priori probabilities. Probability calculus is 

merely the technique of transforming one probability distribution into another. 

The physical input is the specification of the elementary states and their a priori 

probabilities. This input depends on my knowledge - or rather lack of knowl- 

edge - because actually the system can be in no more than one state. If I have 

cast two dice without looking, the probability that the total number of points 

equals 10 is &; the moment I look at one die the probability jumps to either 0 

or a, depending on what I see; and once I have looked at both the probability 

is 0 or 1. 

Quantum mechanical probabilities, however, are equal to I~/J[’ by definition, 

see section 2. They are not defined by means of an underlying set of possible 

states (which, by the way, would also require a postulate about a priori 
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probabilities). There is no cogent reason to insist that it should be possible to 

interpret them in this classical way. Obstinate attempts to construct such a 

“stochastic interpretation” have not met with success [17]. At any rate they are 

irrelevant for our purpose of understanding how quantum mechanics works in 

practice. 

Both kinds of probability distibutions are needed to describe an ensemble of 

quantum systems. For convenience take an ensemble of particles. Each particle 

is supposed to be in a state described by one of the wave functions of a set 

x,(r) (normalized but not necessarily orthogonal). Let the fraction of all 

particles in each x, be P,,. Then if I pick at random one of the particles the 

probability to find it at r is 

More generally, if A(rlr’) represents a one-particle operator the ensemble 

average of its quantum expectation value is 

(A) = c P, /I xE(r)A(rlr’)x,(r’) dr dr’ . 
n 

(10) 

To write this in a more convenient way one defines the density matrix 

drlr’) = F zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP,x,(r)xE (4 . (11) 

Then (10) can be written as an operator equation, 

(A)=TrpA. 

The density matrix is a convenient way to express the properties of a quantum 

ensemble, but it conceals the separate roles of the classical and quantum 

mechanical probabilities. 

Theorem VIII: Density matrices are classical probability distributions over 

quantum mechanical states; they therefore depend on the available knowledge. 

Incidentally, some authors regard p as the true quantum mechanical state. 

The special density matrices that can be written as a product 

drlr’) = +WlCr*W (12) 

are then called pure states. They correspond to our states I,!J. All other p are 
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mixed states, that is what we would call the states of an ensemble. These 

authors should not be surprised that their quantum systems have states that 

depend on the author’s knowledge. 

9. Application to the measurement process 

Suppose the measurement process of section 3 is applied to a particle in a 

state +(r). Before measurement the density matrix has the form (12). After the 

measurement is performed, but before I look at the result, the density matrix is 

P, being given by (1). After I have looked and found a certain result A, the 

density matrix is reduced to p2(rlr’) = x,(r)xz(r’). This reduction of p1 to p2 is 

classical and not more mysterious than the reduction of the probability 

distribution of the dice upon looking at them. 

The reduction of p into pl, however, is due to the collapse of the wave 

function caused by the interaction with the measuring apparatus. This can be 

shown explicitly for the model in section 6. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA be an operator acting on the 

electron alone. Its expectation value in the state (4) is 

(13) 

This cannot be written as the expectation value of A in an electron wave 

function, but only by means of a density matrix in the electron space: 

(WA1 W) = Tr 0, 

where 

This shows that after a measurement the object system cannot be described by 

a 1(1 but only by a p, as if it were an ensemble. The reason is that it is still part 

of the total system, which includes the apparatus whose state is here left 

unspecified. 

If one does look at the apparatus and finds that no photon has been emitted, 

the electron does have a wave function, namely q(r); or properly normalized, 

camp. (5) 
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If one looks and finds a photon k the wave function and density matrix of the 

electron are 

However, our measurement consisted in determining the position of the 

electron. This is done by determining whether or not a photon is produced, 

regardless of the k of the photon. If one sees no photon the electron is 

described by (15), as before. But if one sees an unspecified photon the electron 

density matrix is 

(17) 

In our model the large number of photon states k served to simulate the 

macroscopic nature of the measuring apparatus. It is therefore an essential 

feature that one cannot distinguish between different photons k. (Even if one 

can experimentally determine their directions within a certain margin there is 

still a practically infinite number of them.) Hence (17) is the proper description 

of the electron after it has been observed to pass through U. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

10. Entropy 

Classical probability theory associates with a distribution {P,} a number 

s=-CPJogP,, 
n 

(18) 

called the entropy of the distribution. Similarly quantum mechanics associates 

with every density matrix an entropy 

S=-Trplogp. 

This expression is the same as (18) in the case that p has the form (11) with 

orthonormal x,. By construction S is nonnegative and zero only if p is a pure 

state as in (12). We emphasize that entropy is defined as a property of 

probability distributions and therefore depends on our knowledge. Only in 

statistical mechanics is the entropy a state function, because every macroscopic 

equilibrium state is identified with a prescribed distribution. 
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We apply the entropy concept to our model for the measuring process. First 

of all one sees immediately: 

Theorem IX: The total system is described throughout by the wave vector W and 

has therefore zero entropy at all times. 

This ought to put an end to speculations about measurements being respons- 

ible for increasing the entropy of the universe. (It won’t, of course.) 

Secondly, before the measuring operation the electron itself is described by a 

vector in its own Hilbert space, viz. (S), and has therefore also zero entropy. 

The apparatus has zero entropy as well since it is in the pure state I+ ; 0). (This 

is a special feature of our simple example; usually one does not have complete 

knowledge of the prepared state of the apparatus.) 

After the measurements, if I do not look at the outcome, the entropy is the 

one associated with the density matrix (14). If I do look and find no photon the 

electron is in the pure state 9 with zero entropy. If I look and find an 

unspecified photon the entropy is the one associated with (17). 

To compute this entropy we note that it can be expressed in the eigenvalues 

pu, of the matrix (17) by 

s=-Cf-Ql~gPv. (19) 
Y 

The equation for the eigenvalues p and corresponding eigenfunctions t(r) is 

d(r) = _/ p,(rlr’)S(r’) dr’ = Cl- pJ1 T rclk(r) 1 Icr:(r’)Kr’> dr’ . (20) 

Multiply this equation with @i,(r) and integrate 

Here 

ffk = rLi (Mr) dr 

and 

Mkfk = (1 - P,-,)r _/ $,,*,(r)ek(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdr . 

(21) 

Thus the eigenvalues of (20) are also eigenvalues of M,.,. (This is not true for 



112 N.G. van zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKampen I Ten theorems about quantum mechanical measurements 

those s(r) for which all (Ye vanish, but in that case the eigenvalue p of (20) is 

also zero and does not contribute to the entropy (10) anyway.) Hence the CL, in 

(19) may be taken to be the eigenvalues of M. Incidentally, it follows that one 

might write S = -Tr M log M. 

We shall now prove that this is equal to the increase of the entropy of the 

measuring apparatus. We start from the density matrix of the total system after 

the emission of an unspecified photon has been observed: 

The density matrix of the apparatus is obtained by taking the trace over the 

electron states, 

This is an operator in the space of one-photon states. Its eigenvalues are easily 

obtained with the aid of the orthonormality of the photon states ( - ; k) . They 

turn out to be identical with the eigenvalues p,, of the matrix M found in (21). 

Theorem X: The measurement operation increases the entropies of the object 

system and of the apparatus by equal amounts. 

This increase is due to the incomplete specification of their final states. It is 

equal to the thermodynamic entropy difference between the stable and meta- 

stable macrostates of the apparatus. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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