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With the aging population, prevalence of neurodegenerative diseases is increasing, thus

placing a growing burden on individuals and the whole society. However, individual rates

of aging are shaped by a great variety of and the interactions between environmental,

genetic, and epigenetic factors. Establishing biomarkers of the neuroanatomical aging

processes exemplifies a new trend in neuroscience in order to provide risk-assessments

and predictions for age-associated neurodegenerative and neuropsychiatric diseases at

a single-subject level. The “Brain Age Gap Estimation (BrainAGE)” method constitutes

the first and actually most widely applied concept for predicting and evaluating individual

brain age based on structural MRI. This review summarizes all studies published within

the last 10 years that have established and utilized the BrainAGE method to evaluate the

effects of interaction of genes, environment, life burden, diseases, or life time on individual

neuroanatomical aging. In future, BrainAGE and other brain age prediction approaches

based on structural or functional markers may improve the assessment of individual

risks for neurological, neuropsychiatric and neurodegenerative diseases as well as aid

in developing personalized neuroprotective treatments and interventions.

Keywords: brain age estimation, biomarker, intervention, metabolic health, MRI, neurodegeneration,

neurodevelopment, psychiatric disorders

INTRODUCTION

With population growth and prolonged lifespan, the numbers of individuals with a range
of (non-fatal, but) disabling disorders, including neurodegenerative diseases such as cognitive
decline and dementia, are rising (1). Understanding the links between brain aging processes and
neurodegenerative disease mechanisms is an urgent priority for health systems in order to establish
effective strategies to deal with the rising burden. Aging is broadly defined as a time-dependent
functional decline, driven by a progressive accumulation of cellular damage throughout life (2)
and changes in intercellular communication (3–6). Aging is also a vastly complex process, which is
individually modified by manifold genetic and environmental influences (5).

The assessment of the individual’s “biological age” was recently promoted, resulting from
the interaction of genes, environment, lifestyle, health, and life time, in order (i) to identify
subject-specific health characteristics as well as subject-specific risk patterns for various age-related
diseases based on pre-established reference curves for healthy aging, and (ii) to develop and
monitor (clinical) interventions that are personally tailored based on “biological age” instead of
chronological age (7). Several cell-, tissue- or function-based biomarkers that measure differences
in the individual aging processes have been developed recently in order to identify and predict
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individual risks for age-associated diseases and mortality [for
recent reviews see (8, 9)], as well as to improve intervention
and treatment strategies (2, 5), including DNA methylation
status, measuring the accumulation of genetic damage (7,
10, 11), telomere length, assessing telomere attrition (12–16),
physical fitness, and allostatic load as a measure for physical,
physiological, and metabolic health etc. (17, 18).

Structural brain maturation/aging in humans is characterized
by region-specific, non-linear patterns of very well-coordinated
and sequenced occurrences of progressive and regressive
processes (19) / atrophy (20, 21), respectively, demonstrating
robust patterns of alterations (22, 23), where some brain regions
are showing greater alterations than others. With the advent
of non-invasive methods of in vivo brain imaging, especially
magnetic resonance imaging (MRI), and the availability of
sophisticated computational methods for processing and
analyzing MRI data, cross-sectional as well as longitudinal
neuroimaging studies on brain structure and function are
increasingly contributing to a more profound understanding of
healthy as well as diseased structural brain maturation and aging
for recent reviews see (8, 9).

As research increasingly focuses on the interplay between
aging and disease, a growing body of research utilizes
neuroimaging to develop a biomarker of individual brain
health, so-called “brain age.” Lately, data-driven learning
methods, including cross-validation, pattern classification, and
regression-based predictive analyses, exemplify a new trend in
biomedical and neuroscientific research, allowing measurements
and predictions even at the single subject level (24). To determine
the individual trajectory of brain maturation and aging as well
as the risks for cognitive dysfunction and age-associated brain
diseases, a number of structural and functional brain-based
prediction methods for age or cognitive state enjoy increasing
popularity in (cognitive) neuroscience, providing personalized
biomarkers of brain structure, and function by identifying
deviations from pre-established reference curves or automatically
discriminating patients with brain disorders from healthy
controls (25–30). Most of these studies are using state-of-the-art
machine learning techniques to make predictions at the single-
subject level. Especially pattern recognition and regression-based
computational modeling methods aim to predict the values of
continuous variables, like structural brain age, cognitive states, or
neuropsychological characteristics (27). These new brain-based
biomarkers offer a powerful strategy for using neuroscience in
clinical practice and have a wide range of implementations, such
as providing reference curves for healthy brainmaturation/aging,
predicting personalized brain maturation/aging trajectories,
discovering protective, and harmful environmental influences
on brain health, disentangling age-related from disease-specific
changes in individual brain structure, aiding in the risk-
assessment, and early detection of certain neurodegenerative
diseases, tracking individual disease progression, as well as
determining the individual relationship of structural brain aging
to cognitive performance and neuropsychiatric symptoms (8).

The “brain age gap estimation (BrainAGE)” method, which
utilizes structural MRI data to directly quantify acceleration
or deceleration of individual brain aging, was the first brain

aging estimation approach that (1) established reference curves
for healthy brain maturation during childhood into young
adulthood and for healthy brain aging during adulthood into
senescence, (2) examined deviations of individual brain aging
from the established reference curve of healthy brain aging in
neurodegenerative diseases, (3) analyzed longitudinal changes of
individual brain aging in several samples, (4) used deviations of
individual brain age predictions from the established reference
curve of healthy brain aging to predict worsening of cognitive
functions and conversion to Alzheimer’s disease (AD), (5) studied
the effects of a number of several health- and lifestyle-related
factors on individual brain aging, (6) monitored the effects
of protective interventions on individual brain aging, and (7)
was adapted to be also applied in experimental studies with
rodents and nun-human primates. This review firstly describes
the generation of the BrainAGEmodel and secondly recapitulates
and integrates all studies predicting individual brain age with
the innovative BrainAGE method in healthy and diseased
populations. Wherever possible, studies applying other brain age
prediction approaches to examine the very issue are additionally
included in this review. A short summary of all BrainAGE studies
summarized here can be found in Table 1.

GENERATION OF THE BRAINAGE MODEL

A growing body of research is using high-dimensional
neuroimaging data, i.e., often including several hundred
(multi-modal) parameters per individual, and employing
supervised, linear, or non-linear pattern recognition techniques
in order to depict and quantify structural brain development and
aging across the lifespan. In contrast to univariate approaches,
multivariate analyses of individual brain structure are able to
detect and quantify subtle, but widespread deviations in region-
or voxelwise brain structure within the whole brain for the
individual’s age.

In general, the brain age prediction model needs to be
trained first in order to subsequently assess a person’s individual
brain age. The brain age prediction model is generated by
recognizing multivariate patterns of age-typical brain structure
and parameters, utilizing MRI data of a large sample of
(cognitively) healthy subjects. Subsequently, the age prediction
model is applied in previously unseen test subjects, i.e., estimating
the subject-specific brain ages utilizing their individual MRI data.
The difference between a person’s estimated brain age and its
chronological age finally identifies the individual deviation from
the typical maturation/aging trajectory.

Pipeline for the Generation of Brain Age
Estimations
In general, the workflow of our innovative BrainAGE model
includes several processing steps (Figure 1). Firstly, the raw T1-
weighted image data are preprocessed with a standardized voxel-
based morphometry (VBM) pipeline, resulting in comparable
as well as more easily processible data to be utilized in
the following analysis steps (see Preprocessing of raw MRI
data). Secondly, automated data reduction of the preprocessed
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TABLE 1 | Studies utilizing the BrainAGE model for analyzing individual brain aging.

Study focus Study sample Main study results$

Groups No. of subjects

[female]

Age mean ± SD [range]

in years

MRI [no.] Mean BrainAGE (SD) in years

EVALUATION OF BRAINAGE PREDICTION PERFORMANCE IN REFERENCE SAMPLES

Performance of the

BrainAGE model for brain

maturation during childhood

& adolescencea

CTR 394 [47%] 10.7 ± 3.8 [5 – 19] 1.5T [6] – • Brain age estimation was highly accurate (r = 0.93; p < 0.001).

• The 95% confidence interval for the prediction of brain age was stable across the entire age

range (±2.6 years).

• MAE was 1.1 years.

• BrainAGE model for brain maturation during childhood and adolescence

explained 87% of the individual variations in brain structures.

Performance of the

BrainAGE model for brain

aging from early into late

adulthoodb

CTR 547 [56%] 48 ± 17 [19 – 86] 1.5T [2], 3T [1] – • Brain age estimation was highly accurate (r = 0.92; p < 0.001).

• The 95% confidence interval for the prediction of age was stable along the age range, with

no broadening at old age (cf. age = 20 ± 11.6 years, age = 80 ± 11.7 years).

• Correlation between MAE and the true age indicated no systematical bias in the age

estimations as a function of true ages (r = −0.015).

• MAE was 4.9 years.

• Results did not differ between genders (MAE: 5.0 years for males, 4.9 years for females; r

= 0.9 for both genders).

• BrainAGE model for brain aging during adulthood explained 85% of the individual

variations in brain structures.

CTR 108 [37%] 32 ± 10 [20 – 59] 1.5T [1] –

Performance of the

BrainAGE model in

baboonsc

CTR 29 [52%] 9.5 ± 4.9 [4 – 22] 3T [1] – • Strong correlation between estimated brain age and chronological age (r= 0.80; p< 0.0001)

• MAE was 2.1 years.

• Best fit between chronological and estimated brain age was linear (R2 = 0.64; p < 0.0001).

• With only 29 MRI data in the baboon sample, the baboon–specific BrainAGE

framework showed very good performance, certainly improving with

additional data

Performance of the

BrainAGE model in rodentsd
CTR 24 (up to 13 scans;

n = 273)

life span: 734 ± 110 days 3T [1] – • Brain age estimation was highly accurate (r = 0.95; p < 0.0001).

• MAE was 49 days, which equates to an estimation error of 6% in relation to the age range

• Best fit between chronological and estimated brain age was linear (R2 = 0.91; p < 0.0001).

• Analyses of individual brain aging trajectories showed increasing variance at old ages.

• Rodent–specific BrainAGE model showed excellent performances, explaining

91% of the individual variations in brain structures.

RELIABILITY OF BRAINAGE ESTIMATIONS

Scan-rescan-stability of

BrainAGE estimations (same

scanner)e

CTR, double-scanned on

same scanner

20 [60%] 23.4 (4.0) [19 – 34] 1.5T [1] 1st scan: 13.8 (6.1) 2nd scan:

12.8 (5.6)

• BrainAGE estimations from 1st and 2nd scan were strongly correlated (r = 0.93***) and

showed ICC of 0.93***.

• BrainAGE scores linearly adjusted for the offset at each scanning time point strongly

correlated with raw scores (r = 0.996***).

• BrainAGE estimations within the same subjects proved to be stable across a

short delay between two scans.

Effect of MRI field strengths

on stability of BrainAGE

estimationse

CTR, double-scanned on

1.5T & 3T scanners

60 [63%] 75.2 (4.8) [60 – 87] 1.5T/3T

[26/26]

1.5T scan: −5.9 (7.0) 3T scan:

−9.1 (6.6)

• BrainAGE estimations from 1.5T and 3T scan were strongly correlated (r=0.91***) and

• showed ICC of 0.90***.

• BrainAGE scores, linearly adjusted for the scanner–specific offset, did not differ between

scanners***.

• • BrainAGE estimations within the same subjects proved to be stable across

scanners with different field strengths.

Short-term changes of

BrainAGE during the

menstrual cycle f

CTR (naturally cycling

women)

7 [100%] [21 – 31] 1.5T [1] Difference to scan at menses:

• Ovulation: −1.3 (1.2)

• Midluteal: 0.0 (1.6)

• Next menses: 0.1 (0.6)

• BrainAGE decreased by −1.3 years* from menses to ovulation.

• Classification analyses of data whether acquired at menses or ovulation is much more

precise when based on BrainAGE (accuracy: 86%/AUC: 0.88) as compared to GM (57%

0.55), WM (43%/0.51), and CSF (64%/0.55) volumes*.

• Lower BrainAGE were correlated to higher estradiol levels (r = −0.42*), whereas

progesterone levels did not correlate with individual BrainAGE.

• The BrainAGE method proved to recognize short-term effects of hormones on

individual brain structure.

(Continued)
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TABLE 1 | Continued

Study focus Study sample Main study results$

Groups No. of subjects

[female]

Age mean ± SD [range]

in years

MRI [no.] Mean BrainAGE (SD) in years

BrainAGE MODEL FOR BRAIN MATURATION DURING CHILDHOOD AND ADOLESCENCE

Effects of being born

preterm on brain

maturationa

Born preterm, before 27

weeks of gestation

10 14.3 (1.4) [12 – 16] 1.5T (1) −2.0 (0.7) • Scanned between the ages of 12–16 years,BrainAGE were about 1.5 years lower in subjects

who were born before the end of the 27th week of gestation vs. subjects who were born

after the end of the 29th week of gestation**.

• Although the mean difference in gestational age between both groups was only 5

weeks, results show a systematically lower BrainAGE in adolescents who were

born extremely preterm, implying delayed brain maturation.

Born preterm, after 29

weeks of gestation

15 14.7 (1.5) [12 – 16] −0.4 (1.5)

BRAINAGE IN MILD COGNITIVE IMPAIRMENT AND ALZHEIMER’S DISEASE

Premature brain aging in

ADb
CTR 232 [49%] 76.0 (5.1) [60 – 90] 1.5T [26] 0 • For people with mild AD, the mean BrainAGE score was 10 years, implying a

systematically higher estimated than chronological age based on structural MRI

data***.

• BrainAGE estimations differed significantly between CTR/sMCI vs. pMCI/AD at baseline*

and follow-up*.

• Over the follow-up period of up to 4 years, BrainAGE remained stable for CTR (annual

changing rate: 0.12) & sMCI (0.07), but increased in the pMCI (1.05) and AD (1.51), thus

suggesting additional acceleration in brain aging*.

• Higher BrainAGE were related to worse cognitive functioning and more severe clinical

symptoms at baseline (ADAS: r = 0.45***; CDR: r = 0.39***; MMSE: r = −0.46***) and at

follow up (ADAS: r = 0.55***; CDR: r = 0.46***; MMSE: r = −0.55***).

AD 102 [54%] 75.8 (8.2) [55 – 88] 10

Longitudinal changes of

individual brain aging in

CTR, MCI, ADe

CTR 108 [43%] Baseline: 75.6 (5.0)

follow-up: 78.9 (5.0)

1.5T (26) Baseline: −0.3 follow-up: −0.1 • Changes in BrainAGE from baseline to last follow-up scan were related to worsening of

cognitive functioning and clinical symptoms (ADAS: r = 0.30***; CDR: r = 0.27***; MMSE: r

= −0.33***).

• Results suggest structural changes that show the pattern of accelerated brain

aging in pMCI and AD, accelerating even more, at the speed of 1 additional year in

BrainAGE estimation per follow-up year in pMCI and 1.5 additional years in AD.

sMCI 36 [17%] Baseline: 77.0 (6.1)

follow-up: 80.1 (6.0)

Baseline: −0.5 follow-up: −0.4

pMCI 112 [40%] Baseline: 74.5 (7.4)

follow-up: 77.2 (7.6)

Baseline: 6.2 follow-up: 9.0

AD 150 [49%] Baseline: 74.6 (7.6)

follow-up: 76.3 (7.7)

Baseline: 6.7 follow-up: 9.0

Effects of APOE–genotype

on longitudinal changes in

CTR, MCI, ADg

CTRC [APOE ε4 carriers] 26 Baseline: 75.0 (5.1)

follow-up: 78.2 (5.1)

1.5T [26] Baseline: −0.1 (6.8) follow-up:

−0.2 (7.9)

• BrainAGE estimations differed significantly between CTR/sMCI vs. pMCI/AD at baseline* and

up to 4 years follow-up*, without significant effects regarding APOE ε4 status or interaction

between diagnostic group and APOE ε4 status, nor particular allelic isoforms.

• Annual changing rates in BrainAGE differed significantly between CTR/sMCI vs. pMCI/AD

as well as between APOE ε4 carriers vs. ε4 non-carriers*, with APOE ε4

carriers showing C NC C NC C increased changing rates (NO: 0.0; NO: 0.0; sMCI: 0.2; sMCI:

−0.1; pMCI: 1.1; NC C NC pMCI: 0.6; AD: 1.7; AD: 0.9).

• Larger BrainAGE were significantly related to worse cognitive functioning and more sever

clinical symptoms at baseline, being stronger in APOE ε4 non-carriers vs. ε4 carriers.

• Results suggest structural changes that show the pattern of accelerated brain

aging in pMCI and AD, accelerating even more during follow-up in pMCI and AD,

with APOE ε4 carriers showing faster acceleration of brain aging.

sMCIC [APOE ε4 carriers] 14 Baseline: 77.3 (5.6)

follow-up: 80.4 (5.4)

Baseline: −0.9 (6.1) follow-up:

0.0 (6.0)

pMCIC [APOE ε4 carriers] 78 Baseline: 74.1 (6.5)

follow-up: 76.7 (6.7)

Baseline: 5.8 (6.4) follow-up:

8.7 (7.2)

ADC [APOE ε4 carriers] 101 Baseline: 74.1 (6.8)

follow-up: 75.8 (6.9)

Baseline: 5.8 (7.7) follow-up:

8.3 (8.0)

CTRNC [APOE ε4

non-carriers]

81 Baseline: 75.9 (4.9)

follow-up: 79.1 (5.0)

Baseline: −1.3 (6.4) follow-up:

−1.4 (6.1)

sMCINC [APOE ε4

non-carriers]

22 Baseline: 76.8 (6.5)

follow-up: 79.9 (6.5)

Baseline: −0.9 (6.1) follow-up:

−0.6 (4.8)

pMCINC [APOE ε4

non-carriers]

34 Baseline: 75.5 (9.3)

follow-up: 78.1 (9.4)

Baseline: 5.5 (9.7) follow-up:

7.3 (10.3)

ADNC [APOE ε4

non-carriers]

49 Baseline: 75.7 (8.9)

follow-up: 77.4 (9.1)

Baseline: 6.2 (9.5) follow-up:

7.7 (10.1)

(Continued)
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TABLE 1 | Continued

Study focus Study sample Main study results$

Groups No. of subjects

[female]

Age mean ± SD [range]

in years

MRI [no.] Mean BrainAGE (SD) in years

BRAINAGE–BASED PREDICTION OF CONVERSION TO ALZHEIMER’S DISEASE

BrainAGE–based prediction

of conversion from MCI to

ADh

(1) sMCI 62 [21%] 76.4 (6.2) [58 – 88] 1.5T [26] 0.75 • Predicting future conversion to AD within 12-months follow-up based on baseline BrainAGE

(accuracy: 81%/AUC: 0.83) was significantly more accurate than predictions based on

chronological age (41%/0.59), hippocampus volumes (left: 66%/0.69; right: 61%/0.67),

cognitive scores (ADAS: 66%/0.80; CDR–SB: 59%/0.71; MMSE: 57% /0.69), and CSF

biomarkers (T-Tau: 60%/0.60; P-Tau: 57%/0.66; Aβ42: 57%/0.58; Aβ42/P-Tau: 69%/0.65).

• Predicting future conversion to AD within 36-months follow-up based on baseline BrainAGE

(accuracy: 75%/AUC: 0.78) was significantly more accurate than predictions based on

chronological age (52%/0.56), hippocampus volumes (left: 61%/0.69; right: 54%/0.67),

cognitive scores (ADAS: 48%/0.75; CDR–SB: 38%/0.67; MMSE: 37%/0.67), and CSF

biomarkers (T-Tau: 58%/0.61; P-Tau: 43%/0.63; Aβ42: 49%/0.56; Aβ42/P-Tau: 73%/0.62).

• Prognostic certainty for prediction of conversion to AD increased from 68%

pre-test probability to 90% post-test probability when using BrainAGE (right

hippocampus: 84%; left hippocampus: 85%; ADAS: 86%; CDR-SB: 68%; MMSE:

79%).

• Each additional year in BrainAGE was associated with a 10% greater risk of

developing AD during 36-months follow-up.

(2) pMCI_early 58 [43%] 73.9 (7.0) [55 – 86] 8.73

(3) pMCI_late 75 [36%] 75.2 (7.3) [56 – 88] 5.62

Effects of APOE-genotype

on BrainAGE-based

prediction of conversion

from MCI to ADg

sMCIC [APOE ε4 carriers] 26 [12%] 76.5 (5.2) 1.5T [26] 0.0 (4.4) • Cox regression showed higher baseline BrainAGE being associated with a higher risk of

converting to AD independent of APOE status, with BrainAGE above median of 4.5 years

indicating a nearly 4 times greater risk of converting to AD as compared to BrainAGE below

median***#.

• Including APOE status into Cox model, the accuracy of the prediction tended to improve.

• APOE ε4 carriers: predicting future conversion to AD within 12-months follow-up based

on baseline BrainAGE (accuracy: 85%/AUC: 0.88) was significantly more accurate than

predictions based on chronological age (39%) or cognitive scores (ADAS: 69%; CDR-SB:

49%; MMSE: 46%).

• APOE ε4 carriers: predicting future conversion to AD within 36-months follow-up based

on baseline BrainAGE (accuracy: 75%/AUC: 0.82) was significantly more accurate than

predictions based on chronological age (54%) or cognitive scores (ADAS: 43%; CDR-SB:

26%; MMSE: 23%).

• APOE ε4 non-carriers: predicting future conversion to AD within 12-months follow-up based

on baseline BrainAGE (accuracy: 78%/AUC: 0.75) was significantly more accurate than

predictions based on chronological age (50%) or cognitive scores (ADAS: 68%; CDR SB:

67%; MMSE: 60%).

• APOE ε4 non-carriers: predicting future conversion to AD within 36-months follow-up based

on baseline BrainAGE (accuracy: 74%/AUC: 0.71) was significantly more accurate than

predictions based on chronological age (47%) or cognitive scores (ADAS: 64%; CDR SB:

51%; MMSE: 47%).

• From diagnosis at study baseline onwards, APOE ε4 carriers showed the tendency to take to

convert to AD (560 ± 280 days) as compared to APOE ε4 non-carriers (471 ± 233 days)#.

• Prediction of conversion was most accurate using BrainAGE as compared to

neuropsychological test scores, even when including the APOE ε4-status.

pMCIC_early [APOE ε4

carriers]

33 [39%] 72.9 (6.0) 9.0 (6.3)

pMCIC_late [APOE ε4

carriers]

58 [38%] 75.0 (6.4) 5.7 (6.0)

sMCINC [APOE ε4

non-carriers]

36 [28%] 76.2 (6.8) 1.2 (4.0)

pMCINC_early [APOE ε4

non- carriers]

24 [46%] 75.3 (8.3) 8.0 (9.2)

pMCINC_late [APOE ε4

non- carriers]

16 [31%] 76.4 (10.0) 5.0 (7.7)

EFFECTS OF PSYCHIATRIC DISORDERS ON BRAIN AGING

Effects of schizophrenia and

bipolar disorder on brain

agingi

CTR 70 [43%] 33.8 (9.4) [22 - 58] 3T [1] −0.2 (5.6) • BrainAGE scores were significantly higher in SZ by about 3 years*, but not BD patients.

• Structural brain aging in bipolar disorder is comparable to healthy brain aging.

• Structural brain aging is significantly advanced in schizophrenia.

SZ 45 [36%] 33.7 (10.5) [21 – 65] 2.6 (6.0)

BD 22 [55%] 37.7 (10.7) [24 – 58] −1.2 (4.6)

(Continued)
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TABLE 1 | Continued

Study focus Study sample Main study results$

Groups No. of subjects

[female]

Age mean ± SD [range]

in years

MRI [no.] Mean BrainAGE (SD) in years

Brain age in early stages of

bipolar disorders or

schizophreniak

CTR 43 [40%] 27.0 (4.4) 3T [1] −0.01 (4.1) • BrainAGE scores were significantly higher in SZ by about 3 years**.

• The proportion of participants who had a greater biological than chronological age was

higher in SZ (74%) than CTR (46%)**.

• BrainAGE was not associated with duration of illness or duration of untreated psychosis.

• No differences in BrainAGE between the SZ diagnoses.

• BrainAGE in SZ was negatively associated with GM volume diffusely throughout the brain***.

• Structural brain aging is significantly advanced in schizophrenia

• BrainAGE scores were comparable between unaffected, high-risk for BD, BD, and CTR

participant’s#.

• BrainAGE scores were not associated with number of episodes or hospitalizations, as we

as duration of illness.

• Structural brain aging in bipolar disorder and unaffected, high-risk subjects for

BD is comparable to healthy brain aging.

SZ (FES) 43 [40%] 27.1 (4.9) 2.6 (4.1)

CTR 60 [60%] 23.4 (4.9) 1.5T [2] 0.2 (5.3)

Unaffected, high- risk for

BD

48 [60%] 20.9 (4.1) −1.0 (5.0)

BD 48 [69%] 23.1 (4.5) −1.0 (5.2)

Obesity, dyslipidemia and

brain age in first-episode

psychosisl

CTR 114 [45%] 33.8 (9.4) [18 – 35] 3T [1] −0.2 (5.6) • BrainAGE scores were significantly associated with FEP**, obesity**, and BMI*.

• BrainAGE was highest in participants with a combination of FEP and obesity (3.8 years) and

lowest in normal weight CTRs (−0.3 years) *.

• Even among only FEP participants, BMI remained significantly associated with BrainAGE.

• As compared to CTRs, BrainAGE scores in non-medicated FEP participants were greater

than in CTRs**, comparable to previously medicated FEP individuals, and not associated

with cumulative exposure to antipsychotics (with non-medicated FEP participants not

differing from the previously medicated ones in relevant clinical variables).

• Medication dosage at the time of scanning was not associated with BrainAGE or BMI.

• BrainAGE was not associated with duration of illness, duration of untreated psychosis,

another health markers.

• Brain structural aging is significantly advanced in medicated as well as non-

medicated patients with psychosis (FEP).

• Obesity added to advanced structural brain aging in controls as well as psychosis.

FEP 120 [38%] 33.7 (10.5) [18 – 35] 2.6 (6.0)

EFFECTS OF INDIVIDUAL HEALTH ON BRAIN AGING

Effects of type 2 diabetes

mellitus on brain agingm
CTR 87 [53%] 65.3 (8.5) 3T [1] 0.0 (6.7) • Brain ages in DM2 were estimated 4.6 years higher than their chronological age***.

• Diabetes duration correlated positively with BrainAGE scores (r = 0.31*).

• BrainAGE scores in whole sample were related to fasting blood glucose (r= 0.34*; BrainAGE

1st vs. 4th quartile: 5.5 years*), TNFα levels (r = 0.29**), smoking duration (r = 0.20**;

BrainAGE 1st vs. 4th quartile: 3.4 years**), alcohol consumption (r = 0.24***; BrainAGE

1st vs. 4th quartile: 4.1 years**).

• BrainAGE scores in whole sample were related to verbal fluency (r=−0.25**; BrainAGE 1st

vs. 4th quartile: 5.6 years***).

• BrainAGE scores in whole sample were related to depression scores (r = 0.23*; BrainAGE

1st vs. 4th quartile: 5.4 years**).

• BrainAGE scores were higher in males than females**.

• Type 2 DM is associated with structural brain changes that reflect advanced

brain aging.

DM2 98 [46%] 64.6 (8.1) 4.6 (7.2)

Longitudinal effects of type 2

diabetes mellitus on brain

agingm

CTR 13 [61%] Baseline: 69.9 (5.5)

follow-up: 73.9 (5.7)

3T [1] Baseline: 0.0 follow-up: 0.0 • At baseline BrainAGE scores in DM2 subjects were 5.1 years higher than in CTR*.

• BrainAGE scores in CTR did not change during 3.8 ± 1.5 years follow-up.

• BrainAGE scores in DM2 subjects after 3.8± 1.5 years follow-up were 5.9 years higher than

in CTR*.

• BrainAGE in DM2 is increasing by 0.2 years per follow-up year.

DM2 12 [67%] Baseline: 63.3 (6.9)

follow-up: 66.8 (6.7)

Baseline: 5.1 follow-up: 5.9

Gender-specific effects of

health parameters on brain

agingn

male CTR 118 75.8 (5.3) [60 – 88] 1.5T [26] 0 • 39% of variance within BrainAGE scores were attributed to health parameters, with BMI,

uric acid, GGT, DBD contributing most***.

• BrainAGE scores were related to BMI (r = 0.35***; BrainAGE 1st vs. 4th quartile: 7.5

years***), uric acid (r = 0.25**; BrainAGE 1st vs. 4th quartile: 5.6 years*), GGT (r = 0.20*;

BrainAGE 1st vs. 4th quartile: 7.5 years**), DBD (r = 0.19*; BrainAGE 1st vs. 4th quartile:

6.6 years**).

female CTR 110 76.1 (4.8) [62 – 90] 0

(Continued)

F
ro
n
tie
rs

in
N
e
u
ro
lo
g
y
|
w
w
w
.fro

n
tie
rsin

.o
rg

6
A
u
g
u
st

2
0
1
9
|V

o
lu
m
e
1
0
|
A
rtic

le
7
8
9

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


F
ra
n
ke

a
n
d
G
a
se

r
B
ra
in
A
G
E
R
e
vie

w

TABLE 1 | Continued

Study focus Study sample Main study results$

Groups No. of subjects

[female]

Age mean ± SD [range]

in years

MRI [no.] Mean BrainAGE (SD) in years

• BrainAGE scores in “healthy” men (values below the medians of BMI, DBD, GGT, uric acid;

n = 9) vs. men with “risky” health markers (values above the medians of BMI, DBD, GGT,

and uric acid; n = 14): −8.0 vs. 6.7 years*.

• In cognitively healthy elderly men, markers of the metabolic syndrome, and

impaired liver and kidney functions were associated with subtle structural changes

that reflect accelerated brain aging, whereas protective effects on brain agingwere

observed for markers of good health.

• 32% of variance within BrainAGE scores were attributed to health parameters, with GGT,

ALT, AST, vitamin B12 contributing most**.

• BrainAGE scores were related to GGT (r= 0.25*; BrainAGE 1st vs. 4th quartile: 6.1 years**),

ALT (r = 0.23*; BrainAGE 1st vs. 4th quartile: 5.1 years*), AST (r = 0.20*; BrainAGE 1st vs.

4th quartile: 3.1 years), vitamin B (r = −0.17; BrainAGE 1st vs. 4th quartile: 4.8 years*). 12

• BrainAGE scores in “healthy” women (values below the medians of GGT, ALT, AST, vitamin

B12; n = 14) vs. women with “risky” health markers (values above the medians of GGT, ALT,

AST, vitamin B12; n = 13): −1.0 vs. 3.8 years.*

• In cognitively fit elderly women, protective effects on brain aging were observed

for markers of good health.

PROTECTING INTERVENTIONS FOR BRAIN AGING

Effects of long-term

meditation practice on brain

agingo

CTR [no meditation

practice]

50 [44%] 51.4 (11.8) [24 – 77] 1.5T [1] 0 • Brains of meditators (4–46 years practice, mean = 20 years) were estimated to be 7.5 years

younger at age 50 than those of CTRs*.

• For every additional year over age fifty, meditators’ brains were estimated to be an additional

1 month, 22 days younger than their chronological age*.

• Female brains were estimated to be 3.4 years younger than male brains**.

• Meditation is beneficial for brain preservation, effectively protecting against

age–related atrophy with a consistently slower rate of brain aging throughout life.

Meditators 50 [44%] 51.4 (12.8) [24 – 77] −7.53

Effects of making music on

brain agingp
CTR [non-musicians] 38 [39%] 25.2 (4.8) 1.5T [1] 0.48 (6.85) • Musicians had younger brains than non-musicians**.

• Small positive correlation between years of music making and BrainAGE score in

professional musicians (r= 0.32*), suggesting that with increasing number of years of music

making, the age-delaying effect (in professionals) might lessen.

• Making music has an protecting effect on brain aging, with a stronger effect when

it is not performed as a main profession, but as a leisure or extracurricular activity.

Amateur musicians 45 [40%] 24.3 (3.9) −4.51 (5.60)

Professional musicians 42 [48%] 24.3 (3.9) −3.70 (6.57)

EFFECTS OF PRENATAL UNDERNUTRITION ON BRAIN AGING IN HUMANS AND NON-HUMAN PRIMATES

Gender-specific effects of

prenatal under nutrition on

brain aging in humansq

Men born before Dutch

famine

14 68.6 (0.4) 3T [1] −1.8 (3.5) • In men, the variance in individual BrainAGE scores was best explained by birth

characteristics, late–life health characteristics, chronological age, and famine exposure*.

• In women, the variance in individual BrainAGE scores was best explained by birth

characteristics, chronological age at MRI data acquisition, and famine exposure*.

• Premature brain aging by about 4 years in male offspring who had been exposed to Dutch

famine during early gestation, as compared to men born before the famine.

• BrainAGE did not differ in the female sample.

• Cognitive and neuropsychiatric test scores in late adulthood did not differ between the famine

exposure groups.

• Exposure to prenatal under nutrition is associated with premature brain aging

during late adulthood.

Men exposed to Dutch

famine in early gestation

19 67.4 (0.1) 2.5 (5.2)

Men conceived after

Dutch famine

19 66.7 (0.4) 0.5 (4.6)

Women born before

Dutch famine

21 68.7 (0.5) −0.1 (4.3)

Women exposed to Dutch

famine in early gestation

22 67.4 (0.2) 0.9 (4.0)

Women conceived after

Dutch famine

23 66.7 (0.4) −0.1 (5.3)

(Continued)
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MRI data is performed in order to reduce computational
costs, avoid method-typical over-fitting of pattern recognition,
as well as to provide a robust and widely applicable age
estimation model (see Data reduction). Thirdly, relevance vector
regression (RVR) is performed, capturing the multidimensional
maturation/aging patterns throughout the whole brain and
thus modeling structural brain maturation/aging. Subsequently,
individual brain ages can be estimated (see Training of the
BrainAGE algorithm).

Preprocessing of Raw MRI Data
Preprocessing of the raw MRI data is done using SPM including
the VBM8/CAT12 toolbox, running under MATLAB. More
specifically, T1-weighted images are corrected for bias-field
inhomogeneities (46, 47). Following, the images are spatially
normalized. Afterwards, the images are segmented into the tree
brain tissue types, i.e., gray matter (GM), white matter (WM),
and cerebro-spinal fluid (CSF), within the same generative model
(48). Furthermore, adaptive maximum a posteriori estimations
(49) and a hidden Markov random field model (50) are applied
in order to account for partial volume effects (51). Finally, image
preprocessing includes affine registration.

Data Reduction
Preprocessed MRI data are smoothed with 4 or 8mm full-
width-at-half-maximum (FWHM) Gaussian kernels. Thereafter,
data are re-sampled to 4 or 8mm spatial resolution, resulting
in 29,852 or 3,747 voxels per subject after masking out non-
brain areas, respectively. Finally, principal component analysis
(PCA) is applied to further reduce data dimensionality. As a
great portion of the resulting voxels are still sharing much of its
variances with their neighboring voxels, PCA is mathematically
allowed to be performed although the numbers of data sets in
the training sample is lower than the number of voxels, given
the numbers of data sets in the training sample is sufficient (see
Performance of the BrainAGE model for brain aging from early
into late adulthood). The PCA model is calculated within the
training data only and subsequently the resulting transformation
parameters are utilized to reduce data dimensionality within the
independent test samples.

Training of the BrainAGE Algorithm
The BrainAGE framework utilizes RVR (52, 53) with a linear
kernel. Importantly, RVR does not require additional (manual)
parameter optimization during the training procedure, which is
advantageous over the commonly used support vector machines
with regards to computational costs and robust model fitting.

In general, the age regression model is calculated within
the training sample, utilizing the preprocessed structural MRI
data as independent variables and the chronological ages as
dependent variables, resulting in a complex model of healthy
brain maturation/aging (Figure 1A, left panel). Within this
specified regression task (i.e., healthy brain maturation/aging),
voxel-specific weights are calculated, representing the voxel-
specific importance within this regression task (for illustrations
of the resulting voxel-specific weights see Figure S1 for the brain
maturation model & Figure S2 for the brain aging model).
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FIGURE 1 | Depiction of the BrainAGE concept. All MRI data are automatically preprocessed via VBM. (A) The model of healthy brain aging is trained with the

chronological age and preprocessed structural MRI data of a training sample (left; with an illustration of the most important voxel locations that were used by the age

regression model). Subsequently, the individual brain ages of previously unseen test subjects are estimated, based on their MRI data. (B) The difference between the

estimated and chronological age results in the BrainAGE score, with positive BrainAGE scores indicating advanced brain aging (orange line), increasing BrainAGE

scores indicating accelerating brain aging (red line), and negative BrainAGE scores indicating delayed brain aging (green line). [Figure and legend adapted from Franke

et al. (45), with permission from Hogrefe Publishing, Bern].

Subsequently, the brain maturation/aging model is applied
to aggregate the complex, multidimensional maturation/aging
pattern throughout the whole brain of a new test subject,
resulting in one single value, i.e., the estimated brain age
(Figure 1A, right panel).

Finally, the difference between estimated brain age and
chronological age reveals the individual brain age gap estimation
(BrainAGE) score. For BrainAGE, positive values are indicating
advanced structural brain maturation/aging, whereas negative
values are indicating delayed structural brain maturation/aging.
In longitudinal studies, increasing BrainAGE scores are
indicating accelerating brain aging over the time. Thus, the
individual BrainAGE score is directly quantifying the amount of
acceleration or deceleration of brain maturation/aging in terms
of years (Figure 1B). For example, if a 70 years old individual
shows a BrainAGE score of +5 years, the typical atrophy pattern
of this individual resembles the brain structure of a 75 years
old individual.

Cross-Validation of the BrainAGE Model in Reference

Samples
In order to generate and validate the brain age model, most
studies are employing a so-called “cross-validation” approach,
i.e., the neuroimaging parameters of a large portion of the
reference sample of healthy individuals are used to generate
the brain age model. The generated brain age model is then
applied to the smaller portion of the reference sample that
was not included in the model generation step (i.e., “left-
out”), in order to predict individual brain ages based on the
identified neuroimaging parameters within the actual training
sample. This procedure is repeated multiple times, until an
individual brain age is provided for each subject in the whole
reference sample.

To measure the accuracy of age estimation, Pearson’s
correlation coefficient (r), mean absolute error (MAE), and root
mean squared error (RMSE) between individual estimated brain

ages and chronological ages are calculated:

MAE = 1/n∗
∑

i
|BAi − CAi|, (1)

RMSE = [1/n∗
∑

i
(BAi − CAi)

2]1/2, (2)

with n being the number of subjects in the test sample, BAi

being the estimated subjects-specific brain ages, and CAi being
the subject-specific chronological ages. Additionally, F statistics
of the regression model is used to analyze the fit between BA
and CA.

Application of the Generated BrainAGE Model in

Independent Test Samples
Additionally to the cross-validation in the reference samples,
the brain age model is further validated in independent test
samples of healthy and clinical subjects, in order to prove the
generalizability of the pre-established brain age model across
different samples and even MRI scanners, which is crucial for
broad application in a clinical context, as well as to investigate
the power of the brain age models as a diagnostic and prediction
tool at a single-subject level, for monitoring individual changes
in brain aging during treatment studies, or to explore the effects
of various health characteristics, diseases, and life experiences on
individual brain aging.

Species-Specific Adaptations of the
BrainAGE Model for Experimental Animal
Studies
Species-Specific BrainAGE Model for Baboons
Within the species-specific BrainAGE model for baboons, we
used a customized preprocessing pipeline as described in
Franke et al. (33). To further reduce high-frequency noise,
a spatial adaptive non-local means (SANLM) filter (54) is
applied. The segmentation and spatial registration step requires
a baboon-specific tissue probability map (TPM) as well as a
“Diffeomorphic Anatomical Registration using Exponentiated
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Lie algebra” (DARTEL) template (55), which is estimated during
an iterative process based on a rescaled human template. More
specifically, affine transformation is initially used to scale the
human SPM12 TPM and the CAT12 Dartel template map onto
the brain size of baboons. Image resolution of this template is
set to isotropic voxel size of 0.75mm. For each of the performed
iteration steps, the resulting tissue maps are averaged and
subsequently smoothed with a 2mm FWHM kernel to estimate
an affine registration, finally resulting in a newTPM, a T1-average
map, as well as a baboon-specific brainmask. To achieve averaged
data, a median function is used in order to reduce distortions
by outliers or failed processing. The iteration process is stopped
when the actually accomplished change is below a pre-defined
threshold as compared to the previous template, resulting in the
final segmentation.

After Segmentation and Registration, Data are Smoothed
With a 3mm FWHM Gaussian Smoothing Kernel and re-
sampled to 3mm. Finally, PCA is Applied to Further Reduce
Data Complexity (as Described in Data Reduction).

Species-Specific BrainAGE Model for Rodents
As described in Franke et al. (34), a preprocessing framework
for automatically preprocessing and analyzing MRI data of
rodents is providing analyses in the space of a Paxinos atlas (56),
including several realignment and normalization steps. First,
affine co-registration to the Paxinos template is applied utilizing
normalized mutual information. In the next step, a deformation
based morphometry (DBM) approach is utilized to analyze
positional differences between every voxel within the actual brain
data and a reference brain in order to detect structural differences
over the entire brain. Thus, all measured time points of the
data set of one animal are registered to the individual baseline
scan. Afterwards, the deformations between all-time points
and the subject-specific baseline measures are being estimated.
Minimizing the morphological differences between the baseline
and the follow-up brain scans, the deformation maps now
encode the information about these differences. Subsequently,
the Jacobian determinant of the deformations can be used to
calculate local volume changes. Finally, the resulting Jacobian
determinants in each voxel are filtered with a 0.4mm FWHM
Gaussian smoothing kernel.

Technical Notes
The BrainAGE framework is fully automatic. All steps,
including MRI preprocessing, data reduction, model training,
and brain age estimation, are executed within MATLAB
(www.mathworks.com). For preprocessing the T1-weighted
images, SPM8 is utilized (www.fil.ion.ucl.ac.uk/spm), integrating
the VBM8 toolbox (http://dbm.neuro.uni-jena.de). For the
generation of brain age models in baboons and rodents
our new CAT12 toolbox (http://dbm.neuro.uni-jena.de) is
utilized. For PCA, the “Matlab Toolbox for Dimensionality
Reduction” (https://lvdmaaten.github.io/drtoolbox/) is applied.
RVR analyzes are performed utilizing the toolbox “The Spider”
(http://people.kyb.tuebingen.mpg.de/spider/).

Preprocessing the human MRI data takes about 20–30min
per MRI data set on a MAC OS X, Version 10.12, 2.2 GHz

Intel Core i7. The whole process of training the BrainAGE
model and estimating brain ages takes between 1 and 5min
in total, depending on the number of features, training, and
test subjects.

Baboon TPM and template generation needs about 30min per
subject and iteration, summing up in about 48 h for the whole
sample of 29 control subjects. The whole process of training the
baboon-specific BrainAGE model and estimating the individual
brain ages takes about 1min in total.

Preprocessing MRI data of rodents takes about 10–15min
per MRI data set on MAC OS X, Version 10.6.3, 2.8 GHz Intel
Core 2 Duo, resulting in about 5–6 h for a sample of 24 rats
with up to 13 MRI data sets per subject. Within this sample, the
whole process of training the rodent-specific BrainAGE model
and estimating the individual brain ages is performed within
about 5 min.

EVALUATION OF BRAINAGE PREDICTION
PERFORMANCE IN REFERENCE
SAMPLES

Performance of the BrainAGE Model for
Brain Maturation During Childhood and
Adolescence
For generating the BrainAGE model during childhood and
adolescence (31), GM and WM images of a cross-sectional
reference sample of 394 healthy children and adolescents
from the Pediatric MRI Data Repository [NIH MRI Study
of Normal Brain Development; (57)] were utilized, aged
5–18 years (mean age = 10.7 years; SD = 3.9 years),
with structural data acquired on six different MRI scanners
(1.5T). Using leave-one-out cross-validation, the MAE between
estimated brain age and chronological age was 1.1 years.
Between estimated brain age and chronological age 87% of
the variance were explained (r = 0.93; p < 0.001), with the
95% confidence interval being stable across the age range
(± 2.6 years; Figure 2A).

Additionally, training the BrainAGE model with the data
from only five of the six MRI scanner sites included in the
study, and then applying to data from the left-out MRI scanner,
estimation accuracy proved to remain stable across all scanner
sites. Prediction accuracy ranged between r = 0.90–0.95 and
MAE = 1.1–1.3 years, which proved stability of brain age
estimation even across scanners (31).

A number of other studies establishing models for brain
maturation including age ranges from early childhood to young
adulthood have been published so far (58–63). Accuracies
for brain age predictions derived from cross-validation in the
reference sample ranged from r = 0.43–0.96 and MAEs from 1.0
to 1.9 years. The most accurate model for brain age prediction
during development in healthy individuals aged 3–20 years used
a number of parameters derived from different MRI modalities
(i.e., T1, T2, DTI), including cortical thickness, cortical
surface area, subcortical volumes, apparent diffusion coefficient,
fractional anisotropy, and T2 signal intensities in predefined
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FIGURE 2 | Reference curves for BrainAGE. (A) Individual structural brain age based on anatomical T1-images of 394 healthy subjects (aged 5–18 years).

Chronological age is shown on the x-axis and the estimated brain age on the y-axis. The overall correlation between estimated brain age and chronological age is r =

0.93 (p < 0.001), and the overall MAE = 1.1 years. The 95% confidence interval of the quadratic fit is stable across the age range (±2.6 years). [Figure and legend

reproduced from Franke et al. (45), with permission from Elsevier, Amsterdam.] (B) Estimated brain age and chronological age are shown for the whole test sample

with the confidence interval (red lines) at a real age of 41 years of ± 11.5 years. The overall correlation between estimated brain age and chronological age is r = 0.92

(p < 0.001), and the overall MAE = 5.0 years. [Figure and legend modified from Franke et al. (32), with permission from Elsevier, Amsterdam.] (C) Scatterplot of

estimated brain age against chronological age (in years) resulting from leave-one-out cross-validation in 29 healthy control baboons using their in vivo anatomical MRI

scans. The overall correlation between chronological age and estimated brain age is r = 0.80 (p < 0.001), with an overall MAE of 2.1 years. [Figure and legend

reproduced from Franke et al. (33), permitted under the Creative Commons Attribution License.] (D) (a) Chronological and estimated brain age are shown for a sample

of untreated control rats, including the 95% confidence interval (gray lines). The overall correlation between chronological and estimated brain age was r = 0.95 (p <

0.0001). [Figure and legend reproduced from Franke et al. (34), with permission from IEEE.] (E) Longitudinal brain aging trajectories for the individual rats. [Figure and

legend reproduced from Franke et al. (34), with permission from IEEE].

subcortical regions, applying a regularized multivariate non-

linear regression-like approach, resulting in r = 0.96 and MAE

= 1.0 years (59). Although each single MRI modality showed

similar predictive power (r≈ 0.9) across the full age range (i.e., 3–

20 years), modality-specific contributions to the generation of the

brain age model differed across neuroanatomical structures and
age sub-ranges, with measures of T2 signal intensity being the
strongest predictors in age 3–11 years and diffusivity measures
being the strongest predictors in the ages 17–20 years (59).
Additionally, modality-specific subsets showed worse prediction
accuracies compared to the combined model (T1 subset: r =

0.91, MAE = 1.7 years; T2 subset: r = 0.91, MAE = 1.6
years; DTI subset: r = 0.90, MAE = 1.7 years). However, the
BrainAGE method (31) outperformed all other brain age models
using only a single MRI modality or single-modality subsets,
and additionally proved sufficient generalizability across different
scanners and even across studies.

Performance of the BrainAGE Model for
Brain Aging From Early Into Late Adulthood
In our first study introducing the BrainAGE model (32),
two different samples were used to assess the brain
age, i.e., the reference sample from the IXI database
(www.brain-development.org; n = 550, aged 19–86 years,
collected on three MRI scanners) and another independent test
sample of healthy subjects (n = 108, aged 20–59 years, collected
on a fourth scanner). The brain age of healthy subjects in both
validation samples was accurately estimated, resulting in a MAE
of 5 years and an overall correlation of r = 0.92, with the 95%
confidence interval for the prediction of age being stable across
the age range (Figure 2B). The BrainAGE model showed no
systematical bias in MAE of brain age estimation as a function of
chronological age (r= – 0.01). Furthermore, brain age estimation
did not differ between genders (r = 0.92 for both genders; MAE
= 5.0 years for males, MAE= 4.9 years for females).
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FIGURE 3 | Influences of the various parameters on BrainAGE estimation accuracy. (1) The accuracy of age estimation essentially depends on the number of subjects

used for training the age estimation model (blue lines: full training sample; green lines: ½ training sample; red lines: ¼ training sample). (2) The method for

preprocessing the T1-weighted MRI images also showed a strong influence on the accuracy of age estimation. (3) Data reduction via principal component analysis

(PCA) only had a moderate effect on the mean absolute error (MAE). AF, affine registration; NL, non-linear registration; R4/8, re-sampling to spatial resolution of

4/8mm; S4/8, smoothing with FWHM smoothing kernel of 4/8mm. [Figure and legend modified from Franke et al. (32), with permission from Elsevier, Amsterdam].

Additional analyses showed that the number of subjects in
the reference sample has the strongest influence on brain age
prediction accuracy, even though the choice of the preprocessing
approach and model-training algorithm would also influence
model performance as well as generalizability (32). In detail, the
accuracy of brain age estimation worsened with reducing the size
of the training/reference sample (full data set for training the
BrainAGE model [n = 410]: MAE = 5 years; ½ data set [n =

205]: MAE = 5.2 years; ¼ data set [n = 103]: MAE = 5.6 years).
The results further recommend a fairly rapid preprocessing of
the T1-weighted MRI images with affine registration and a rather
broad smoothing kernel. Dimensionality reduction of the data
via PCA moderately improved brain age estimation accuracy
and generalizability, while at the same time speeding up the
computing time for generating the BrainAGE model as well as
estimating the individual brain age values of the independent test
subjects (Figure 3).

A number of other studies establishing models for brain
aging have been published so far (55, 60, 64–79). Accuracies
for brain age predictions derived from cross-validation in the
whole reference sample of healthy subjects ranged from r =

0.43–0.97, MAEs from 4.3 to 13.5 years, and RMSEs from 5.1 to
21.0 years. In general, studies mathematically modeling healthy
brain aging, which use a number of parameters derived from
different MRI modalities, tended to provide more accurate brain
age predictions. The best performing model in a sample of
healthy participants aged 8–85 years was based on a number of
T1- and DTI-derived parameters, utilizing linked independent
component analysis (ICA), resulted in an overall prediction

accuracy of r = 0.97 and MAE = 5.9 years (67). Another study
also used a number of parameters derived from different MRI
modalities (i.e., T1, T2, T2∗, DTI), generating and testing their
brain age model by utilizing multiple linear regression in a
sample of healthy individuals aged 20–74 years, resulting in an
overall age prediction accuracy of r = 0.96 (74). Additionally,
this study found voxel-wise mean diffusivity to be the main
predictor of the brain age model (i.e., explaining 62.4% of
intra-individual variance), followed by GM volume (18.3%),
R2∗ (14.2%) and fractional anisotropy (3%). However, although
DTI is a powerful tool offering unique information on tissue
microstructure and neural fiber connections that cannot be
obtained from standard structural MRI, parameters derived from
DTI can differ significantly depending on the type of scanner,
field strength, gradient strength, number of gradient orientations,
preprocessing, fitting procedure, tractography algorithm etc.
(80–83). Unfortunately, all studies including DTI failed to prove
generalizability of the established brain agemodel in independent
test samples and across scanners.

Another very recent study used a number of parameters
derived from T1 and T2∗, including cortical and subcortical
measures as well as connectivity data, generating and testing the
brain age model by utilizing linear support vector regression
(SVR) (79). This approach showed very good performance
during cross-validation within the reference sample (combined
model: r = 0.93, MAE = 4.3 years), but a rather fair
generalizability when validating the brain age model in an
independent sample of healthy subjects, with data acquired on a
different scanner (combined model: r = 0.86, MAE = 8.0 years).
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Aside from the BrainAGE approach, best prediction accuracies
during cross-validation in the reference samples as well as during
validation of the brain age model in independent test samples
were achieved utilizing linear SVR (reference sample: r = 0.89,
MAE = 4.3 years; independent test sample: MAE = 3.9 years;
(76)], and Gaussian process regression [reference sample: r =

0.92, MAE = 6.2 years; independent test sample: r = 0.93, MAE
= 5.8 years; (73)].

Performance of the BrainAGE Model in
Baboons
For establishing the baboon-specific brain aging model, only
GM images were used. The baboon-specific brain age estimation
model was trained and tested via leave-one-out cross-validation,
utilizing one MRI scan per subject. Within each cross-validation
loop, PCA was calculated separately in the training set and
subsequently applied to the test data before performing RVR. The
baboon-specific BrainAGE model showed very good accuracy (r
= 0.80), with the linear regression model showing the best fit (R2

= 0.64; p < 0.0001; Figure 2C). Calculation of MAE resulted in
2.1 years, equating to an age estimation error of 11% in relation
to the age ranged included (33, 34).

Performance of the BrainAGE Model in
Rodents
As described in Franke et al. (34), training and testing of the
rodent-specific BrainAGE model was performed with subject-
specific leave-one-out cross-validation processing, utilizing data
sets of 24 rats, repeatedly scanned with up to 13 time points
between 97 and 846 days after birth. In detail, to model the
rodent-specific aging process, RVR was performed with the
preprocessed structural MRI data of all scanning time points of
23 out of the total of 24 subjects. Subsequently, individual brain
ages for each scanning time point of the left-out test subject
were estimated, repeating the whole procedure for all 24 subjects.
Brain age estimation was highly accurate (r = 0.95; p < 0.0001),
with the linear regression model showing the best fit between
chronological and estimated age (R2 = 0.91; F = 2622.3; p <

0.0001; Figure 2D). Mean MAE was 49 days, which equates to
an error of 6% in relation to the age range within this study.
Mean RMSE was 71 days. Additionally, longitudinal analyses
of subject-specific brain aging trajectories revealed increasing
variance between subjects in old age (Figure 2E).

RELIABILITY OF BRAINAGE ESTIMATIONS
IN HEALTHY ADULTS

Scan-Rescan-Stability of BrainAGE
Estimations (Same Scanner)
To analyze stability and reliability of BrainAGE estimations, T1-
weighted MRI data of 20 healthy subjects were utilized, applying
the BrainAGEmethod to two MRI scans per subject, which were
acquired on the sameMRI scanner (1.5T) within a time period of
max. 90 days. The results showed a strong scan-rescan-stability of
BrainAGE estimations based on MRI data acquired on the same
scanner, with mean BrainAGE scores between 1st and 2nd scan

not differing among each other (p = 0.60) and the intra-class
correlation coefficient (ICC; two-way random single measures)
between BrainAGE scores calculated from the 1st and 2nd scan
resulting in 0.93 [95% confidence interval [CI]: 0.83–0.97; (45)].

Effect of Different MRI Field Strengths on
BrainAGE Estimations
To analyze estimation stability across different scanners and field
strengths, T1-weightedMRI data of 60 healthy subjects (aged 60–
87 years) were utilized, applying the BrainAGE method to two
MRI scans per subject, acquired on two different MRI scanners
(1.5T & 3T) within a short period of time. The results suggest that
the field strength affects BrainAGE estimations, which should be
corrected for by shifting the BrainAGE scores to a zero group
mean with a linear term in both data sets in order to gain
interpretability of the results (Figure S3). After linearly adjusting
for the scanner-specific offset, Student’s t-test did not show any
difference between the BrainAGE scores calculated from the 1.5T
and 3T scans (p = 1.00). ICC between the BrainAGE scores
calculated from the 1.5T and 3T scans resulted in 0.90 (CI: 0.84–
0.94), demonstrating strong reliability and generalizability of the
BrainAGE model, even with data from different scanners and
field strengths (45).

Sensitivity to Hormone-Related Short-Term
Changes of BrainAGE in Women
In order to establish the BrainAGE model as an innovative tool
to monitor and evaluate short-term changes in individual brain
aging induced by treatments and interventions, we explored
its potential to recognize short-term changes in brain structure
occurring during the menstrual cycle due to varying hormonal
influences (35). A total of 7 young, healthy, naturally cycling
women (age range 21–31 years) were scanned on a 1.5T MRI
scanner (t1) during menses, (t2) at time of ovulation, (t3) in
the midluteal phase, and (t4) at their next menses. During
menstrual cycle BrainAGE scores significantly differed (p< 0.05),
with BrainAGE scores decreasing by −1.3 years from menses
to ovulation (SD = 1.2 years; p < 0.05) and after ovulation
slowly increasing (Figure 4). Additionally, estradiol levels did
negatively correlate with BrainAGE scores (r=−0.42, p < 0.05),
but progesterone levels did not (r= 0.08, p= 0.71).

Another study by Luders et al. (84) explored the changes
in BrainAGE after pregnancy. A total of 14 healthy women
(aged 25–38 years) were scanned on a 3T MRI scanner within
the first two after childbirth (early postpartum) as well as 4–6
weeks after childbirth (late postpartum). BrainAGE scores were
significantly decreased by an average of −5.4 years from early to
late postpartum (SD= 2.4 years; p < 0.001). Additional analyzes
of hormone levels also showed a profound postpartum decrease
in estradiol (p < 0.001) and progesterone (p < 0.001).

Taken together, these results provide strong evidence that
hormonal changes during the course of the menstrual cycle have
significant effects on the individual brain structure. Furthermore,
the BrainAGE method demonstrated its potential to capture and
identify subtle short-term changes in individual brain structure.
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FIGURE 4 | Change in BrainAGE scores during the menstrual cycle. BrainAGE

scores significantly decreased by −1.3 years (SD = 1.2) at time of ovulation

(i.e., t2-t1; *p < 0.05). The data are displayed as boxplots, containing the

values between the 25th and 75th percentiles of the samples, including the

median (red lines). Lines extending above and below each box symbolize data

within 1.5 times the interquartile range. The width of the boxes depends on the

sample size. Note: reduced sample size at t4. [Figure and legend reproduced

from Franke et al. (35), with permission from Elsevier, Amsterdam].

APPLICATIONS OF BRAINAGE MODEL
FOR BRAIN MATURATION DURING
CHILDHOOD AND ADOLESCENCE

Effects of Being Born Preterm on Individual
Brain Maturation
In a study with pre-term born adolescents, individual BrainAGE
scores of subjects being born before the end of the 27th week
of gestation (i.e., GA < 27; n = 10) were compared to those
being born after the end of the 29th week of gestation (i.e., GA
> 29; n = 15), applying the pre-established BrainAGE model
for brain maturation during childhood and adolescence (31).
At MRI scanning (1.5T), subjects were aged between 12 and
16 years. The results show significantly lower BrainAGE scores
by 1.6 years in the group of adolescents being born GA < 27
(−1.96± 0.68 years) as compared to subjects being bornGA> 29
(−0.40 ± 1.50 years), although the mean difference in gestation
age was only 5 weeks, thus probably implying delayed structural
brain maturation.

BRAINAGE IN MILD COGNITIVE
IMPAIRMENT AND ALZHEIMER’S DISEASE

Premature Brain Aging in AD
In a first proof-of-concept application, individual brain ages was
studied in a group of cognitively healthy control subjects (CTR;
n= 232) and a group of patients suffering from early Alzheimer’s
disease (AD; n = 102), applying the pre-established BrainAGE

model for brain aging during adulthood (32). For the AD group,
the mean BrainAGE score was +10 years (p < 0.001), implying
systematically advanced brain aging.

In another study that applied the pre-established BrainAGE
model for brain aging during adulthood to data from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database,
baseline BrainAGE scores resulted in the following group means:
(1) −0.3 years in CTR (i.e., being stable in the diagnosis of
CTR during 36-months follow-up; n = 108), (2) −0.5 years in
sMCI (i.e., stable MCI; being stable in the diagnosis of mild
cognitive impairment (MCI) during 36-months follow-up; n
= 36), (3) 6.2 years in pMCI (i.e., progressive MCI; changing
diagnosis from MCI at baseline to AD during 36-months follow-
up; n = 112), and (4) 6.7 years in AD (i.e., being stable in the
diagnosis of AD during 36-months follow-up or until death; n =

150). Post-hoc t-tests resulted in significant BrainAGE differences
between CTR/sMCI vs. pMCI/AD groups (p < 0.05), suggesting
strong evidence for structural brain changes that show the
pattern of advanced brain aging in the pMCI and AD groups
(Figure 5A) (45).

Longitudinal Changes of Individual Brain
Aging in CTR, MCI, AD
Further analyses explored the individual brain aging trajectories
in CTR, sMCI, pMCI, and AD during a follow-up period of
up to 36 months (45). BrainAGE scores in pMCI and AD
significantly increased by 1.0 additional year in brain aging per
follow-up (chronological age) year in pMCI and 1.5 additional
years in brain aging per follow-up (chronological age) year in
AD, suggesting acceleration of individual brain aging during
the course of disease (Figure 5C). With pMCI and AD subjects
already showing advanced BrainAGE scores of about 6 to 7 years
at baseline assessment and mean follow-up durations of 2.6 years
for pMCI and 1.7 years for AD, mean BrainAGE scores at last
follow-up MRI scan accumulated to about 9 years at the last
MRI scan in both diagnostic groups (Figure 5B). In contrast,
mean BrainAGE scores in CTR and sMCI subjects did not change
during follow-up, thus suggesting no deviations from healthy
brain aging in both groups.

Additionally, advanced structural brain aging was related to
worse cognitive functioning and more severe clinical symptoms
during the 36 months follow-up period (baseline BrainAGE
scores: r = 0.39–0.46; BrainAGE scores at last follow-up visit: r
= 0.46–0.55). Moreover, individual changes in BrainAGE scores
were correlated with individual changes in cognitive test scores
and clinical severity (r = 0.27–0.33), denoting a significant
relationship between acceleration in individual brain aging and
prospective worsening of cognitive functioning, being most
pronounced in pMCI and AD subjects (45).

Effects of APOE-Genotype on Longitudinal
Changes in CTR, MCI, AD
Studying the effects of Apolipoprotein E (APOE) on individual
brain aging trajectories during a 36 months follow-up period,
neither APOE ε4-status, nor particular allelic isoforms had
a significant effect on baseline BrainAGE scores in the
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four diagnostic groups (36). However, individual brain aging
accelerated significantly faster in APOE ε4-carriers as compared
to APOE ε4-non-carriers in the pMCI and AD groups.
More specifically, in pMCI ε4-carriers individual brain aging
accelerated with the speed of 1.1 additional years per follow-up
year, whereas in pMCI ε4-non-carriers individual brain aging
accelerated with the speed of only about 0.6 years. Likewise, in

AD ε4-carriers individual brain aging accelerated with the speed
of 1.7 additional years per follow-up year, whereas in AD ε4-
non-carriers individual brain aging accelerated with the speed of
only about 0.9 years per follow-up year. In line with previous
results, deviations from normal brain aging trajectories were
not observed in healthy controls or sMCI subjects, neither in
ε4-carriers nor ε4-non-carriers (Figure 6).

FIGURE 5 | Longitudinal BrainAGE. Box plots of (A) baseline BrainAGE scores and (B) BrainAGE scores of last MRI scans for all diagnostic groups. Post-hoc t-tests

showed significant differences between NO/sMCI vs. pMCI/AD (*p < 0.05) at both time measurements. (C) Longitudinal changes in BrainAGE scores for NO, sMCI,

pMCI, and AD. Thin lines represent individual changes in BrainAGE over time; thick lines indicate estimated average changes for each group. Post-hoc t-tests showed

significant differences in the longitudinal BrainAGE changes between NO/sMCI vs. pMCI/AD (*p < 0.05). [Figures and legend reproduced from Franke et al. (45), with

permission from Hogrefe Publishing, Bern].

Frontiers in Neurology | www.frontiersin.org 15 August 2019 | Volume 10 | Article 789

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Franke and Gaser BrainAGE Review

FIGURE 6 | Longitudinal BrainAGE in APOE ε4-carriers and ε4-non-carriers.

BrainAGE scores at (A) baseline for APOE ε4-carriers [C] and non-carriers

[NC] in the 4 diagnostic groups NO, sMCI, pMCI, and AD. BrainAGE scores

differed significantly between diagnostic groups (p < 0.001). Post-hoc tests

showed significant differences between BrainAGE scores in NO as well as

sMCI from BrainAGE scores in pMCI as well as AD (p < 0.05). (B) Estimated

longitudinal changes in BrainAGE scores for the 4 diagnostic groups: NO (light

blue), sMCI (green), pMCI (red) and AD (blue), subdivided into APOE ε4 carriers

and non-carriers. Post-hoc t-tests resulted in significant differences for ε4

carriers and non-carriers as well as for NO/sMCI vs. pMCI/AD (p < 0.05).

[Figures and legend reproduced from Loewe et al. (36), permitted under the

Creative Commons Attribution License].

BRAINAGE-BASED PREDICTION OF
CONVERSION TO ALZHEIMER’S DISEASE

BrainAGE-Based Prediction of Conversion
From MCI to AD
In a study by Gaser et al. (37), the BrainAGE approach was
implemented to predict future conversion to AD at a single-
subject level up to 36 months in advance, based on structural
MRI. The sample included 195 participants diagnosed with MCI
at baseline, of whom 133 participants were diagnosed with AD

during 36 months of follow-up. The BrainAGE scores at baseline
examination differed significantly between the participants, who
did not convert to AD (i.e., sMCI; 0.7 years) and those, who
converted to AD within the 1st follow-up year (i.e., pMCI_fast;
8.7 years) as well as in 2nd or 3rd follow-up year (i.e., pMCI_slow;
5.6 year). A close relationship was shown between advanced
brain aging, prospective worsening of cognitive functioning,
and clinical disease severity. Predicting conversion from MCI
to AD by using baseline BrainAGE scores, post-test probability
increased to 90%. This gain in certainty based on the baseline
BrainAGE score was 22%, being the highest as compared to
baseline hippocampus volumes (right/left: 16%/17%), cognitive
scores (MMSE: 11%; CDR-SB: 0%; ADAS: 18%), and even state-
of-the-art CSF biomarkers (T-Tau: 4%, P-Tau: 0%, Aβ42: 0%,
Aβ42/P-Tau: 8%). Predicting future conversion to AD during the
1st follow-up year based on baseline BrainAGE scores showed an
accuracy of 81% (area under curve (AUC) in receiver-operating
characteristic (ROC) analysis = 0.83), being significantly more
accurate than conversion predictions based on chronological age,
hippocampus volumes, cognitive scores, and CSF biomarkers
(for exact numbers see Table 1). Furthermore, higher BrainAGE
scores were related to a higher risk of developing AD, i.e., each
additional year in BrainAGE score induced a 10% greater risk of
developing AD (hazard rate: 1.1, p < 0.001). More specifically, as
compared with participants in the lowest quartile of BrainAGE
scores, participants in the 2nd quartile had about the same risk of
developing AD (hazard ratio [HR]: 1.1; p= 0.68), those in the 3rd
quartile had a three times greater risk (HR: 3.1; p < 0.001), and
those in the 4th quartile had a more than four times greater risk
(HR: 4.7; p < 0.001) of developing AD (Figure 7A). BrainAGE
outperformed all other baseline measures.

Effects of APOE-Genotype on
BrainAGE-Based Prediction of Conversion
From MCI to AD
A study by Loewe et al. (36) additionally explored the
effects of the APOE-genotype on BrainAGE-based prediction of
conversion from MCI to AD during the 36 months of follow-up
period. Independent of APOE status, higher baseline BrainAGE
scores were associated with a higher risk of converting to AD,
with BrainAGE scores above median of 4.5 years resulting in
a nearly 4 times greater risk of converting to AD as compared
to BrainAGE scores below the median (HR: 3.8, p < 0.001).
Again, the Cox regression model based on baseline BrainAGE
scores outperformed all other models based on cognitive scores,
even when including the APOE ε4-status into the models
(Figure 7B). Also, predictions based on baseline BrainAGE
scores were significantly more accurate than predictions based on
chronological age or cognitive test scores (for exact numbers see
Table 1), especially in APOE ε4-carriers.

EFFECTS OF PSYCHIATRIC DISORDERS
ON BRAIN AGING

A recent study on the effects of psychiatric disorders on
individual brain aging analyzed data from schizophrenia (SZ)

Frontiers in Neurology | www.frontiersin.org 16 August 2019 | Volume 10 | Article 789

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Franke and Gaser BrainAGE Review

FIGURE 7 | Cumulative probability for MCI patients of remaining AD-free

based. (A) Kaplan-Meier survival curves based on Cox regression comparing

cumulative AD incidence in participants with MCI at baseline by BrainAGE

score quartiles (p for trend < 0.001). [Figure and legend reproduced from

Gaser et al. (37), permitted under the Creative Commons Attribution License.]

(B) Kaplan-Meier survival curves based on Cox regression comparing the

cumulative incidence of AD incidence in ε4-carriers [red] and ε4-non-carriers

[blue] with MCI at baseline, divided into patients with baseline BrainAGE scores

below the median (light lines) and above the median (dark lines). Duration of

follow-up is truncated at 1,250 days. [Figure and legend reproduced from

Loewe et al. (36), permitted under the Creative Commons Attribution License].

patients, bipolar disorder (BD) patients (mostly with previous
psychotic symptoms or episodes), as well as CTR participants,
aged 21–65 years. Significantly higher BrainAGE scores by
2.6 years were found in SZ, but not BD patients, indicating
advanced structural brain aging in SZ (Figure 8A). This study
thus suggested, that there might be an additional progressive
pathogenic component despite the conceptualization of SZ as a
neurodevelopmental disorder (38).

Interestingly, another study by Hajek et al. (39) in young
adult patients with early SZ as well as young adult patients with
early BD and young adults with familial risk for BD, aged 15–
35 years, resulted in comparable results. Specifically, participants
with first-episode SZ showed advanced BrainAGE of 2.6 years
as compared to their chronological age (p < 0.001), whereas
participants at familial risk for or in the early stages of BD
showed no differences between brain age and chronological age
as well as compared to controls (p = 0.70). Post-hoc analyses
additionally showed that BrainAGE was negatively associated
with GM volume diffusely throughout the brain (Figure 8C). The
authors concluded that the greater presence of neurostructural
antecedents may differentiate SZ from BD and that BrainAGE
could consequently aid in early differential diagnosis between BD
and SZ.

A third study in first-episode SZ investigated whether
comorbid obesity or dyslipidemia additionally contributes to
brain alterations (40). Comparable to previous studies, young
adult participants with first-episode SZ (n = 120; 18–35 years)
showed neurostructural alterations, which resulted in their brain
age exceeding their chronological age by 2.6 years (p < 0.001).
Furthermore, the diagnosis of first-episode SZ and obesity were
each additively associated with BrainAGE (p < 0.001), resulting
in BrainAGE scores being highest in obese participants with first-
episode SZ (3.8 years) and lowest in normal weight controls (−0.3
years; Figure 8B). However, neither dyslipidemia nor medical
treatment was associated with BrainAGE. In conclusion, this
study suggests obesity being an independent risk factor for diffuse
brain alterations, manifesting as advanced brain aging already
in the early course of SZ. Thus, targeting metabolic health and
intervening at the BMI level might potentially slow brain aging
in schizophrenic and psychotic patients.

EFFECTS OF INDIVIDUAL HEALTH ON
BRAIN AGING

Effects of Type 2 Diabetes Mellitus on
Brain Aging
In the study by Franke et al. (41), the BrainAGE method was
applied to a sample of participants with type 2 diabetes mellitus
(DM2) and CTR participants (mean age: 65 ± 8 years) in order
to quantify the effects of DM2 on individual brain aging in
cognitively healthy older adults. Participants with DM2 showed
significantly increased BrainAGE by 4.6 years as compared to age-
matched healthy CTRs (p < 0.001). Moreover, longer diabetes
duration was correlated to higher BrainAGE scores (r= 0.31, p<

0.05). Additionally, BrainAGE scores were also positively related
to fasting blood glucose (r = 0.34, p < 0.05), with a difference
of 5.5 years (p < 0.05) between participants with the lowest vs.
highest values.

Longitudinal Effects of Type 2 Diabetes
Mellitus on Brain Aging
Additionally, Franke et al. (41) further analyzed a small
subsample of DM2 and CTR participants that completed a
follow-up MRI scan 3.8 ± 1.5 years after their baseline
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FIGURE 8 | BrainAGE in psychiatric disorders. (A) Box-plot of BrainAGE scores in healthy controls (CTR), bipolar disorder patients (BPD), and schizophrenia patients

(SZ) with significant group effect (ANOVA, p = 0.009), and schizophrenia patients showing higher BrainAGE scores than either CTR or BPD. [Figure and legend

reproduced from Nenadic et al. (38), with permission from Elsevier, Amsterdam.] (B) Associations between BrainAGE scores and psychiatric diagnosis and metabolic

factors. Obesity was significantly associated with BrainAGE scores additively to the effect of first-episode schizophrenia (FES; age adjusted mean and 95%

confidence intervals). [Figure and legend reproduced from Kolenic et al. (40), with permission from Elsevier, Amsterdam.] (C) Negative association between BrainAGE

and gray matter volume in participants with first episodes of schizophrenia-spectrum disorders (P ≤ 0.001, cluster extent = 50). [Figure and legend from Hajek et al.

(39), with permission from Oxford University Press].

assessment. GM and WM volumes did not differ between both
groups or between time points. However, BrainAGE scores were
increasing by 0.2 years per follow-up year in participants with
DM2, but did not change in CTRs during follow-up. Specifically,
baseline BrainAGE scores in DM2 patients were increased by 5.1
years as compared to CTR (p < 0.05), they even increased by 0.8
years during follow-up (p < 0.05). Thus, brain aging in DM2 did
even more accelerate during follow-up.

Individual Health and Brain Aging
In addition to the effects of DM2 on individual brain aging
in non-demented older adults, the study by Franke et al. (41)
also explored the (additional) effects of lifestyle risk factors
(i.e., smoking duration, alcohol intake), individual health marker
(i.e., hypertension, TNFα), and common clinical outcomes (i.e.,
cognition, depression). The results revealed BrainAGE being also
correlated to smoking duration (r = 0.20, p < 0.01), alcohol
consumption (r = 0.24, p < 0.001), TNFα levels (r = 0.29, p
< 0.01), verbal fluency (r = −0.25, p < 0.01), and depression
(r = 0.23, p < 0.05), but not to hypertension (p = 0.9).

Furthermore, contrasting individuals with the lowest values (i.e.,
1st quartile) vs. those with the highest values in these measures
(i.e., 4th quartile) resulted in BrainAGE differences of 3.4 years
for smoking duration (p< 0.01), 4.1 years for alcohol intake (p<

0.01), 5.4 years for TNFα (p < 0.01), 5.6 years for verbal fluency
(p < 0.001), and 5.4 years for depression (p < 0.01; Figure 9A),
with all results being independent of diabetes duration, gender,
and age (41).

Gender-Specific Effects of Health
Characteristics on Brain Aging
In a study by Franke et al. (42), the effects of various physiological
and clinical markers of personal health on individual BrainAGE
scores were further explored and quantified, utilizing a sample of
cognitively unimpaired participants, aged 60–90 years.

In the male sample, the included health parameters explained
39% of the observed variance in BrainAGE (p< 0.001), with body
mass index (BMI), uric acid, γ-glutamyl-transferase (GGT), and
diastolic blood pressure (DBP) contributing most. Additional
quartile analyses revealed significant differences in BrainAGE
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FIGURE 9 | The effects of low vs. high levels in distinguished variables on BrainAGE. (A) Mean BrainAGE scores in participants with values in the 1st (plain squares)

and 4th (filled squares) quartiles of distinguished variables from the diabetes study. [Figure and legend reproduced from Franke et al. (41), permitted under the Creative

Commons Attribution License.] (B) Mean BrainAGE scores of cognitively healthy CTR men in the 1st vs. 4th quartiles of the most significant physiological and clinical

chemistry parameters (left panel). BrainAGE scores of cognitively healthy CTR men with “healthy” markers (i.e., values below the medians of BMI, DBP, GGT, and uric

acid; n = 9) vs. “risky” markers (i.e., values above the medians of BMI, DBP, GGT, and uric acid; n = 14; p < 0.05; right panel). [Figures and legend modified from

Franke et al. (42), permitted under the Creative Commons Attribution License.] (C) Mean BrainAGE scores of cognitively healthy CTR women in the 1st vs. 4th

quartiles of the most significant physiological and clinical chemistry parameters (left panel). BrainAGE scores of cognitively healthy CTR women with “healthy” markers

(i.e., values below the medians of GGT, ALT, AST, and values above the median of vitamin B12; n = 14) vs. “risky” clinical markers (i.e., values above the medians of

GGT, ALT, AST, and values below the median of vitamin B12; n = 13; p < 0.05; right panel). [Figures and legend modified from Franke et al. (42), permitted under the

Creative Commons Attribution License]. *p < 0.05; **p < 0.01.
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scores between the 1st vs. 4th quartile groups (Figure 9B, left
panel), resulting in 7.5 years for BMI (p < 0.001), 6.6 years for
DBP (p < 0.01), 7.5 years for GGT (p < 0.01), and 5.6 years for
uric acid (p < 0.05). When combining these four health markers,
the effects on individual BrainAGE even were compounded. In
detail, comparing individual brain ages of male subjects with
values below the medians vs. those with values above the medians
of BMI, DBP, GGT, and uric acid resulted in BrainAGE scores
of −8.0 vs. 6.7 years (p < 0.05; Figure 9B, right panel), thus
suggesting a strong relationship between individual health and
neurostructural aging in men.

In the female sample, the included health parameters
explained 32% of the observed variance in BrainAGE (p <

0.01), with GGT, aspartat-amino-transferase (AST), alanin-
amino-transferase (ALT), and vitamin B12 contributing most.
In addition, 1st vs. 4th quartile analyses resulted in differences
in BrainAGE (Figure 9C, left panel) of 6.6 years for GGT (p
< 0.01), 3.1 years for AST (p < 0.10), 5.1 years for ALT (p <

0.05), and 4.8 years for vitamin B12 (p < 0.05). Again, when
combining these four health markers, the effects on individual
BrainAGE were compounded, resulting in mean BrainAGE
scores of −1.0 vs. 3.8 years (p < 0.05; Figure 9C, right panel),
thus suggesting a mediocre relationship between individual
health and neurostructural aging in women.

PROTECTING INTERVENTIONS FOR
BRAIN AGING

Effects of Long-Term Meditation Practice
on Brain Aging
Exploring the effects of long-term meditation practice, the study
by Luders et al. (43) included 50 meditation practitioners with 4–
46 years of meditation experience (mean: 20 ± 11 years) and 50
non-meditating, age-matched CTRs. At age 50 years, BrainAGE
in meditation practitioners was about 7.5 years lower than in
CTRs (p < 0.05). Additionally, gender exerted a main effect,
with BrainAGE in females being lower by 3.4 years as compared
to males (p < 0.01). Furthermore, age-by-group interaction
was significant (p < 0.05), with follow-up analyses revealing
significant effects for BrainAGE in meditation practitioners. In
detail, for each year in chronological age over the age of 50
years, there was a significant decrease of 1 month and 22 days
in BrainAGE in the meditation practitioners (Figure 10).

Effects of Making Music on Brain Aging
Another study investigated the impact of music-making on
brain aging, including non-musicians, amateur musicians, and
professional musicians, aged 25 ± 4 years (44). All three groups
were closely matched regarding age, gender, education, and other
leisure activities. The “musician status” had a significant effect
on BrainAGE (p < 0.05; non-musicians: −0.5 ± 6.8 years;
amateur musicians: −4.5 ± 5.6 years; professional musicians:
−3.7 ± 6.6 years), suggesting a decelerating effect of making
music on individual brain aging. Post-hoc comparisons revealed
lower BrainAGE scores in amateur musicians (p < 0.05) and
professional musicians (p= 0.07) as compared to non-musicians.

While no significant correlation between years involved in
musical activities and BrainAGE score was found in amateur
musicians (r = −0.1, n.s.), a small correlation was found in
professional musicians (r = 0.3, p < 0.05). Thus, making music
seems to have a slowing effect on the aging of the brain, especially
for amateur musicians, while professional musicians revealed a
lower effect probably due to stress-related interferences.

GENDER-SPECIFIC EFFECTS OF
PRENATAL UNDERNUTRITION ON
INDIVIDUAL BRAIN AGING

Results From Studies in Humans
Utilizing a subsample of the Dutch famine birth cohort, a recent
study investigated the effects of fetal undernutrition during
early gestation on individual brain aging in late-life (85). The
participants of the MRI subsample were aged about 67 years at
the time of MRI acquisition, including individuals being born
before the famine inWinter 1944/45, individuals being prenatally
exposed to the famine during early gestation, and individuals
being conceived after the famine. In females, 28% of the observed
variance BrainAGE at age 67 years was explained by birth
characteristics, chronological age at MRI data acquisition, and
famine exposure (p < 0.05), whereas in males, 76% the observed
variance in BrainAGE was explained by the combination of birth
characteristics, late-life health characteristics, chronological age,
and famine exposure (p < 0.05). In the male sample, BrainAGE
scores differed significantly between the three groups (p <

0.05). In the female sample, BrainAGE scores did not differ
between the groups. Post-hoc tests in the male sample showed
advanced brain aging by 2.5 years (p < 0.05) in those who had
been prenatally exposed to the famine during early gestation,
whereas those who had been born before the famine showed
delayed brain aging by −1.8 years, resulting in a difference of
about 4 years (p < 0.05; Figure 11A). With regard to BrainAGE
scores there were no significant differences between males
and females (85).

Results From Studies in Non-human
Primates
An experimental study of maternal nutrient restriction (MNR)
in baboons also studied the effects of prenatal undernutrition on
structural brain aging based on the baboon-specific BrainAGE
model [see Species-specific BrainAGE model for baboons; (33)].
The experimental group included 11 subjects [5 females], with
prenatal undernutrition being induced by MNR of 30% during
the whole gestation. The CTR group included 12 same-aged
subjects [5 females]. Subjects were aged 4–7 years [human
equivalent to 14–24 years] at time of MRI data acquisition. In the
female MNR offspring, baboon-specific BrainAGE scores were
increased by 2.7 years, as compared to female CTR offspring
(p = 0.01; Figure 11B), strongly suggesting premature brain
aging resulting from prenatal undernutrition during the whole
gestation. There were no differences in BrainAGE scores between
the male MNR and CTR offspring (33).
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FIGURE 10 | Group-specific links between age-related measures. Scatterplots and regression lines were generated separately for (A) controls (circles) and (B)

meditation practitioners (triangles). The x-axes display the chronological age; the y-axes display the BrainAGE index (negative values indicate that participants’ brains

were estimated as younger than their chronological age, positive values indicate that participants’ brains were estimated as older). [Figures and legend reproduced

from Luders et al. (43), with permission from Elsevier].

FIGURE 11 | Effects of prenatal undernutrition on brain aging. (A) Dutch famine sample: BrainAGE scores in late adulthood differed significantly between the three

groups only in men (blue), but not in women (red). In men, post-hoc tests showed significantly increased scores in those with exposure to famine in early gestation (*p

< 0.05). [Figure and legend reproduced from Franke et al. (85), with permission from Elsevier, Amsterdam.] (B) Baboon sample: BrainAGE scores in late

adolescence/young adulthood differed significantly between female (red) CTR and offspring with maternal nutrient restriction (MNR) by 2.7 years (**p < 0.01), but not

between male (blue) CTR and MNR offspring. [Figure and legend reproduced from Franke et al. (33), permitted under the Creative Commons Attribution License].
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FIGURE 12 | Graphical summary of BrainAGE results in human studies. Dots, study means; Lines, longitudinal results; Blue, males; Red, females. [AD, Alzheimer’s

disease; BPD, bipolar disorder; CTR, control subjects; DM2, diabetes mellitus type 2; FES, first episode of schizophrenia-spectrum disorders; GA, gestational age;

MCI, mild cognitive impairment; pMCI, progressive MCI (i.e., convert from MCI to AD during follow-up); pMCI_fast, diagnosis was MCI at baseline, conversion to AD

within the first 12 months (without reversion to MCI or CTR at any available follow-up; pMCI_slow, diagnosis was MCI at baseline, conversion to AD was reported after

the first 12 months of follow-up (without reversion to MCI or CTR at any available follow-up); sMCI, stable MCI (i.e., diagnosis is MCI at all available time points, but at

least for 36 months); SZ, schizophrenia].

SUMMARY

In this review, we recapitulated studies that utilized the

innovative BrainAGE biomarker to capture individual age-

related brain structure, covering age ranges from childhood

until late adulthood (Figure 12 for a graphic summary of all

results in human studies). This predictive analytical method

provides a personalized biomarker of brain structure that
can help to elucidate und further examine the patterns and
mechanisms underlying individual differences in brain structure
and disease states. Because brain-age estimation is done on
an individual level, the BrainAGE biomarker might be very
well-suited for clinical use. The method is deriving individual
predictions from multivariate patterns and interactions between
voxels across the whole brain. In contrast to other structural
measures, such as regional or global volumes, cortical thickness,
or fractional anisotropy, BrainAGE scores are preserving the
complex patterns of subtle variations in brain structure and
their regional interactions. Additionally, reducing the complex

multivariate structural information from the whole brain into a
single metric resolves the problem of multiple comparisons and
enables a better detection of effects (7, 24).

According to the American Federation of Aging Research (86),
markers of aging should possess certain characteristics: They
should be able to determine biological aging, predict the rate
of aging, monitor the fundamental processes underlying aging,
and be measured accurately, efficiently, and repeatedly, without
harming the subject. Further, the markers need to be applicable
across the species for mechanistic examinations. However,
reproducibility and accuracy of some widely used biomarkers
of aging, like telomere length, vary widely due to differences
in extraction methods, laboratory-dependent methodological
details, and measurement methods (87–89). Thus, accuracy is
sometimes so low that measurement errors impede detection
of differences in telomere length (88). Although biomarkers of
aging should preferably be closely related to the mechanistic
aging process, development of markers of brain aging that are
related to brain function and structure is much more advanced
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and provide a considerably higher degree of correlation to
age and diagnostic specificity. Moreover, brain-aging markers
based on structural MRI show less inter-individual variability
and methodological variations of measurements across labs or
study sites. The superiority of phenotype-related markers may
be explained by a number of reasons: At present, it is easier
to determine phenotype because the processes underlying brain
aging are complex and not yet well-understood. This is all the
more so for the many compensatory pathways in the biological
environment by which the organism modulates or responds to
the process of aging. Aside from the complexity being present at
the cellular level, the organism can respond to an infinite number
of biological and environmental influences with only limited
changes to the phenotype. Consequently, establishing phenotype-
related biomarkers for structural brain maturation and aging
(e.g., BrainAGE) might probably be a better approach to assess
and longitudinally track individual brain aging trajectories.

In general, cognitive impairment is not due to just one disease.
Cognitive impairment could be caused by AD and other forms
of dementia, as well as several disease conditions, e.g., traumatic
brain injury, stroke, depression, or developmental disabilities.
Age-related cognitive decline is a growing concern in modern
societies since mental health is perceived as a major determinant
limiting quality of life during aging (90). Thus, biomarkers
measuring individual brain age and predicting individual
trajectory of cognitive decline are highly desirable. Approaches to
determine brain age based on structural neuroimaging data are
designed to indicate deviations in age-related changes in brain
structure by establishing reliable reference curves for healthy
brain aging and providing individual brain age measures, while
accounting for the multidimensional atrophy patterns in the
brain. Although multiple factors affect and modify individual
brain aging trajectories, normal brain aging follows coordinated
and sequenced patterns of GM and WM loss as well as CSF
expansion (21, 91, 92). Several studies applying the MRI-based
models for structural brain aging, have already demonstrated
profound relationships between premature brain aging and AD
disease severity and prospective decline of cognitive functions
(45), MCI and AD (93), conversion to AD (37), SZ (76, 94),
traumatic brain injury (73), HIV (95), chronic pain (96), DM2
(41), and elderly people suffering from undernutrition during
gestation (85), as well as being indicative of poorer physical
and mental fitness, higher allostatic load, as well as increased
mortality (97). Furthermore, significant associations between
individual brain aging and various health parameters, personal
lifestyle, or drug use (42, 98), levels of education and physical
activity (77), and meditation practice (43) have been shown.
However, although Brown et al. (59) showed a relation between
increased premature brain maturation and increased executive

intelligence measures in adolescents as well as Steffener et al.
(77) showing a correlation between delayed brain aging and
higher education levels in adults, this issue has to be explored in
more depth with well-characterized and well-tested samples with
regards to cognitive reserve and IQ levels.

In conclusion, the phenotypic approach presented here has
already established and validated reference curves for age-related
changes in brain structure. Furthermore, it also showed great

potential for easy application in multi-center studies. Thus,
this predictive analytical method provides an individualized
biomarker for determining the biological age of brain structure,
which also relates to cognitive function. This MRI-based marker
is able to predict individual aberrations in brain maturation
and aging as well as the occurrence of age-related cognitive
decline and age-related neurodegenerative diseases. This
review has recapitulated evidence that neuroimaging data
can be used to establish biomarkers for brain aging, which
has already been confirmed as providing vital prognostic
information. In future, combining different biomarkers of
structural and functional brain age, like the assessment of
age-related changes of parameter estimates based on the
“theory of visual attention” (99–103), may enhance sensitivity
and specificity for detecting aberrations in biological age
compared to the chronological age in various neurological and
psychiatric conditions and in neurodegenerative diseases.
The important prognostic information included in the
estimation of the structural and functional brain age may
aid in developing personalized neuroprotective treatments
and interventions.
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