
Ten Years of Hoare's Logic:
A Survey-Part I

KRZYSZTOF R. APT

Erasmus University

A survey of various results concerning Hoare's approach to proving partial and total correctness of
programs is presented. Emphasis is placed on the soundness and completeness issues. Various proof
systems for while programs, recursive procedures, local variable declarations, and procedures with
parameters, together with the corresponding soundness, completeness, and incompleteness results,
are discussed.

Key Words and Phrases: Hoare's logic, partial correctness, total correctness, soundness, completeness
in the sense of Cook, expressiveness, arithmetical interpretation, while programs, recursive proce
dures, variable declarations, subscripted variables, call-by-name, call-by-value, call-by-variable, static
scope, dynamic scope, procedures as parameters
CR Category: 5.24

1. INTRODUCTION

In 1969 Hoare [27] introduced an axiomatic method of proving programs correct.
This approach was partially based on the so-called intermediate assertion method
of Floyd [18]. Hoare's approach has received a great deal of attention during the
last decade, and it has had a significant impact upon the methods of both
designing and verifying programs. It has also been used as a way of specifying
semantics of programming languages (see [17, 28, 40]).

The purpose of this paper is to present the most relevant issues pertaining to
Hoare's method (namely, those of soundness and completeness) in a systematic
and self-contained way. The main problem with such an exposition is that various
proofs given in the literature are awkward, incomplete, or even incorrect. In many
cases proof rules are introduced without any proofs of soundness or completeness
at all. The field itself is enormous, since for virtually all programming constructs
and notions some proof rules have been suggested. Also, for some constructs, such
as recursive procedures with parameters, several alternative proof rules have
been proposed.

Faced by these problems, we decided to restrict the exposition to only those
constructs and notions which we found most important. In each case we selected
only one, hopefully the most successful, among many possible proof systems.

Permission to copy without fee all or part of this material is granted provided that the copies are not

made or distributed for direct commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific

permission.
This paper is an extended version of a paper presented at the Fifth Scandinavian Logic Symposium,

Aalborg, Denmark, January 17-19, 1979.

Author's present address: LITP, Universite Paris 7, 2, place Jussieu, 75221 Paris, France.

© 1981 ACM 0164-0925/81/1000-0431 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981, Pages 431-483.

432 Krzysztof R. Apt

The choice of a semantics for the programming constructs concerned turns out

to be the decisive factor for the complexity of the proofs. Therefore, we are at

great pains to suggest in each case a semantics which would make the s~undness

and completeness proofs as simple as possible. The papers we are ref ernng to do

not necessarily provide proofs using the same semantics. However, in practically

all cases the proofs can be straightforwardly translated (and simplified) into our

framework. We refrain from pointing out mistakes and errors in the referenced

papers. Many of them can be repaired easily, and many others cannot occur in

the suggested semantical framework.

We found it convenient to divide the subject material in accordance with the

constructs of programming languages: while statements (Section 2), recursive

procedures (Section 3), local variables (Section 4), subscripted variables (Section

5), parameter mechanisms (Section 6), and procedures as parameters (Section 7).

Of course, procedures are but another parameter mechanism. However, proce

dures as parameters deserve a separate treatment owing to the extensive results

concerning them.

Several other important constructs which are also covered by Hoare's method,

such as go-to's, coroutines, functions, data structures, and parallelism, are not

treated in this paper. Those interested in the issues raised by these constructs are

referred to [14, chap. 10] (written by A. de Bruin) and to [8, 11, 12, 25, 46, 47]. To

the reader interested in a more detailed development of the subject we suggest

(14]. The second part of this survey, to be contained in a separate paper, will be

devoted to a discussion of various Hoare-like proof systems for nondeterministic

and parallel programs.

It should be mentioned that there are several other approaches to program

verification which are related to Hoare's method. These approaches are not

discussed in this paper. The interested reader is referred to [22], where other

methods are discussed.

Throughout the paper we assume that the reader has knowledge of some basic

notions and facts from mathematical logic. We state them whenever they are

applied. All of them can be found in, for example, [51].

The title of this paper was perhaps appropriate at the moment of its submission

but is not so appropriate now that it appears in print. We decided to retain this

title, but to keep the paper up-to-date we took the liberty of incorporating here

a few results proved since 1979. Most of them concern the use of procedures as

parameters and form the contents of Section 7. The reader deserves a warning

that that section deals with the most complex results obtained in this area. For

a proper understanding of them, a thorough knowledge of all other sections of

the paper is required. Due to the lack of space, the presentation of Section 7 is

rather sketchy, and no examples are provided.

2. while PROGRAMS

Let L denote a first-order language with equality. We use the letters a, b, x, y, z

to denote the variables of L, the letters s, t to denote terms (expressions) of L,

the letter e to denote a quantifier-free formula (a Boolean expression) of L, and,

finally, the letters p, q, r to denote the formulas (assertions) of L.

Denote by Y the least class of programs such that

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

Ten Years of Hoare's logic: A Survey 433

1. for every variable x and expression t, x := t E Y; and
2. if S, 81, S2 E Y, then S1; 82 E Yand, for every Boolean expression e, if e then

Si else S2 fi E «I' and while e do S od E Y.

The elements of Yare called while programs.

2.1 The Proof System

The basic formulas ofHoare's logic are constructs of the form {p} S {q} (called
asserted programs) where p, q are assertions and SEY'. The formulas are not
subject to Boolean operations. The intuitive meaning of the construct { p} S { q}
is as follows: whenever p holds before the execution of S and S terminates, then
q holds after the execution of S.

Hoare's logic is a system of formal reasoning about the asserted programs. Its
axioms and proof rules are the following.

AXIOM 1: ASSIGNMENT AXIOM

{p[t/x]} x := t {p}.

RULE 2: COMPOSITION RULE

{p} Si {r}, {r} S2 {q}

{p} S1; 82 {q}

RULE 3: if-then-else RULE

{p /\ e} S1 {q}, {p /\ ie} S2 {q}

{p} ife then S1 else S2 fi {q}

RULE 4: while RULE

{p/\e}S{p}

{p} while e do Sod {p /\ •e} ·

As usual, p[t/x] stands for the result of substituting t for the free occurrences
ofxinp.

2.2 An Example of a Proof

As a typical example of a proof in the system, take for L the language of Peano
arithmetic augmented with the minus operation and consider the program So
computing the integer division of two natural numbers x and y:

a := O; b := x; while b ::::: y do b := b - y; a := a + 1 od.

We now prove that

{ x 2: 0 /\ y 2: O} So {a · y + b = x /\ 0 -:S b < y}, (1)

that is, that

if x, y are nonnegative integers and 8 0 terminates, then a is the integer
quotient of x divided by y and bis the remainder. (*)

The proof runs as follows. By the assignment axiom,

{O . y + x = x /\ x 2: O} a:= 0 {a · y + x = x /\ x 2: O} (2)

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

434 Krzysztof R. Apt

and

{a . y + x = x /\ x 2: O} b := x {a . y + b = x /\ b 2: O}; (3)
so, by the composition rule,

{O . y + x = x /\ x:::: O} a:= O; b := x {a · y + b = x /\ b 2: 0}. (4)
Now

x::::O/\y::::O-o ·y+x=x/\x2:0

holds; so (5) and (4) imply

{ x :::: 0 /\ y 2: 0} a := O; b := x {a · y + b = x /\ b 2: 0}.
On the other hand, by the assignment axiom,

and

{(a + 1) . y + b - y = x /\ b - y :::: O} b := b - y

{(a+l) .y+b=x/\b2:0}

(5)

(6)

(7)

{(a+ 1) . y + b = x /\ b 2: O} a:= a+ 1 {a· y + b = x /\ b 2: O}; (8)
so, by the composition rule,

{(a + 1) · y + b - y = x /\ b - y 2: O}

b := b - y; a:= a+ 1 {a· y + b = x /\ b 2: O}.
Now

a· y + b = x /\ b 2: 0 /\ b 2:y

- (a + 1) • y + b - y = x /\ b - y 2: 0
holds; so (10) and (9) imply

{a ·y+b=x/\b2:0/\b2:y}

b := b - y; a:= a+ 1 {a · y + b = x /\ b 2: O}.
(11) implies, by the while rule,

{a · y + b = x /\ b 2: O} while b 2: y do b := b - y;

a := a + 1 od {a · y + b = x /\ b 2: 0 /\ b < y}.
Finally, (6) and (12) imply (1) by the composition rule.

2.3 The Rule of Consequence

(9)

(10)

(11)

(12)

Several remarks are in order. First, to justify the above proof we have to explain how we derived (6) from (5) and (4) and derived (11) from (10) and (9). These steps, although intuitively clear, lack a formal basis. The missing proof rule which we used here is the following:

RULE 5: CONSEQUENCE RULE

P- P1, {p1} S {q1}, q, - q
{p} s {q}

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

Ten Years of Hoare's Logic: A Survey 435

In the example, we used this rule for q 1 = q, but in general the above version
is needed.

This rule forces us to include assertions among the formulas of Hoare's logic.
Denote the resulting system by H.

Now, to get (5) and (10), we have to augment H with a formal proof system
concerning assertions. In this particular case, any elementary theory T in the
underlying L, in which (5) and (10) can be proved, will do. The proofs of (5) and
(10) in T, concatenated with the sequence (2)-(12), (1) of asserted programs or
assertions, finally form a proof of (1) in H U T.

This interpretation is by no means satisfactory for our purposes. We do not
care whether (5) and (10) are theorems of a theory T. All we need to know is that
(5) and (10) are true in the domain of integers.

2.4 Soundness of H

Let A be a set of assertions. Let us write A 1-H { p} S { q} to denote the fact that
there exists a proof of { p} S { q} in H which uses as assumptions (for the
consequence rule) assertions from A. We have thus shown that (5), (10) 1-H (1).
The whole idea of the above proof is that we wish to interpret (1) as(*). To do
this, we must first introduce the notion of the truth of an asserted program under
an interpretation l of the language L. In this case we choose for l the standard
interpretation lo of L with the domain of integers.

So let l be an interpretation of L with a nonempty domain D. By a state we
mean a function assigning to each variable x a value from the domain D. We use
the letters o, T to denote states.

The relation "under the interpretation l an assertion p is true in a state o,"
written as t=1 p(O), is defined in the usual way. Iffor all states o t=1 p(o) holds, we
say that p is true under l, written t=1 p. With each program S E 51' we can
associate a meaning .Ar(S) under l, this being a partial function from states to
states. It is easy to define .;ft'r(S) so as to capture the intended meaning of the
program.

Having done so, we can finally define the truth of an asserted program under
I. We say that an asserted program { p} S { q} is true under I if

for all states o, T, if t=r p(8) and.;ft'1(S)(o) = T, thent=1 q(T).

This definition is clearly a correct formalization of the informal notion of the
truth of {p} S {q}. We can now safely state that(*) simply says that (1) is true
under lo.

The last step in the justification of (*) is the following. Call an asserted program
valid if it is true under all interpretations I. Call a proof rule sound if for all
interpretations lit preserves the truth under I of the asserted programs (and, in
the case of the consequence rule, assertions). It is easy to prove that the axioms
of H are valid and the proof rules of H are sound.

This fact implies (by induction on the length of proofs) the following theorem,
which states that the proof system H is sound.

THEOREM 1. For every interpretation I, set of assertions A, and asserted
program <p the following holds: if all assertions from A are true under I and
A 1-H cp, then cp is true under l.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

436 Krzysztof R. Apt

In other words, if Tr1 f-H cp, then l=r cp, where Tr1 denotes the set of all true
assertions under I.

This theorem immediately implies that (1) is true under lo, because obviously
(5) and (10) are true under 10• (1) is actually true under any interpretation l under
which (5) and (10) are true. So, for example, (1) is also true under the standard
interpretation in the real numbers or in a finite set of natural numbers {x Ix ::5

max}.

2.5 Loop Invariants

Like all formal proofs, the proof of (1) is tedious and difficult to follow. We are
not accustomed to following a line of reasoning expressed in such small steps.
However, it is easy to observe that the whole argument boils down to one crucial
step: observing that (11) holds. Once we guess the assertion r = a · y + b = x /\
b :::::: 0, to find the proof is a straightforward problem. Since (11) holds, r is called
an invariant of the loop while b:::::: y do b := b - y; a:= a+ 1 od. Since (6) holds,
we say that the program a:= O; b := x establishes r. Since (12) holds, we say that
the program while b ~ y do b := b - y; a := a + 1 od preserves r.

A concise way of embedding this information into the program S is simply to
annotate it with the desired assertion(s). To illustrate this point, we now take a
different example. It is easy to see that

{x :=:: 0 /\ y :=:: O} a := x; b := y; z := l;
while b ¥ 0 do b := b - 1; z := z . a od { z = xY}

is true under the interpretation 10 once we write it as

(x :=:: 0 /\ y :=:: O} a:= x; b := y; z := l;
while b ¥ 0 do {z · a 6 = xY} b := b - l; z := z . a od {z = xY}.

Thinking in terms of establishing an invariant and preserving it has immediate
implications for reasoning about programs and their design. For example, in the
case of the above program, an observation that the loop while even(b) do b :=
b/2; a := a · a od preserves the invariant z . ab = xY leads to the following
improvement:

{ x :=:: 0 I\ y :=:: 0} a := x; b := y; z := l;
while b ¥ 0 do {z . a 6 = xY)

while even(b) do {z . ab = xY}

b := b/2; a:= a· a
od·

b := b - 1; z := z · a od {z = xY).'

In both cases it is Theorem 1 which allows us to infer that the asserted
programs are true under 10•

2.6 Termination Not Implied

It is important to note that the above proofs are not concerned with the
termination of programs. Even though (1) is true under 10 , we do not have any
guarantee that the program So terminates. In fact, in a state in which the value
of Y is 0, So does not terminate. While defining the meaning of programs, we left
ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

Ten Years of Hoare's Logic: A Survey 437

room for nontermination by allowing At1(S) to be a partial function from states
to states.

Actually, the termination of a program is interpretation-dependent. For ex
ample, the program while x > O do x := x - 1 od under the interpretation lo
always terminates (is total), whereas under an interpretation in a nonstandard
model of Peano arithmetic it is not total. This simple remark has direct conse
quences concerning the existence of sound proof systems dealing with termina
tion, as we see in Section 2.11.

2. 7 The Issue of Completeness of H

A natural question of not only theoretical interest is that of the completeness of
the proof system H. The question of soundness concerns the correctness of the
method, whereas the question of completeness concerns the scope of its applica
bility (under what circumstances it can be successfully applied).

The system H alone is obviously incomplete: an asserted program {p[t/x]}
x := t {true} is true under every interpretation and yet is unprovable in H; there
is no way to prove in H the formula p ~ true.

Supplementing H by an axiomatic system T dealing with assertions is of no
help. For any axiomatic system G the set of asserted programs provable in G is
recursively enumerable (r.e.) But for the language Lp of Peano arithmetic with
its standard interpretation IN the set Tr1N is not r.e. (see [51]), and for all
assertions p F=1N {true} x := x {p} iff F=1N p; so the set of asserted programs true
under IN is not r.e. either. This shows that in the case of the language Lp any
axiomatizable deduction system dealing with the asserted programs is incomplete.

One might think that the incompleteness comes from allowing arbitrary first
order formulas as assertions. However, this is not true, as the following argument
shows (see [13]). For any interpretation I and program S, F=1 {true} S {false} iff
S fails to halt for all initial values of its variables. Therefore, the following holds.

Fact. Let Yo be a class of programs. If L, I, and Yo are such that the halting
problem of Yo for I is undecidable, then the set {{true} S {false} I F=1 {true} S
{false}, SE Yo} is not r.e.

Now, the halting problem of Y for IN is undecidable, so the restriction of the
assertion language to {true, false} cannot lead to completeness either.

The best one might hope for would be to prove relative completeness of the
system H, which would be a converse of Theorem 1:

For all interpretations I and all asserted programs <p, if F=1 <p, then
Tr 1 l--H qi.

Unfortunately, even this cannot be proved. Wand [54] exhibited a particular
language L with an interpretation I and asserted program qi such that F=1 <p and
Tr1 lf-H <p. The incompleteness comes from the fact that the necessary intermediate
assertions cannot be expressed in L with this particular interpretation.

We now present a simple argument leading to an extension of this incomplete
ness result. Consider the language L+ of Presburger arithmetic, that is, the
language Lp of Peano arithmetic without the multiplication operation. Let I+ be
its standard interpretation. By the result of [49], Tr1+ is a recursive set. Therefore,

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

438 Krzysztof R. Apt

for any axiomatic system G the set of asserted programs cp such that Tr l+ f-a cp
is r.e.

On the other hand, the halting problem of Y for I+ is undecidable, since the
halting problem of Y for IN is undecidable and multiplication can be simulated in
Y using addition. Therefore, by the Fact above, the set of asserted programs true
under I+ is not r.e. This shows that no axiomatic system G can be relatively
complete for 517.

This argument is a special case of a general incompleteness result proved in
[5]. Various other natural structures leading to incompleteness are also exhibited
there. The above argument is also implicit in [13].

2.8 Completeness of Hin the Sense of Cook

A way to overcome these difficulties while defining the notion of completeness
has been indicated by Cook [13]. Define

post1(p, S) = { r: 3o [1=1 p(o) /\ A1(S)(o) = r]};

pre1(S, q) = {o: 'Vr [A1(S)(o) = r-1=1 q(r)J}.

Note that these sets are characterized by the following equivalences:

1=1 {p} S {q} iff {o: l=1p(o}} c pre1(S, q) iffpost1(p, S) c {o: 1=1 q(o)}.

Now let Yo be a set of programs. Call the language L expressive relative to I
and Yo if for all assertions p and programs S E Yo there exists an assertion q
which defines post1(p, S) in L (i.e., such that {o: 1=1 q(o)} = post1(p, S)). If I is
such that Lis expressive relative to I and Yo, we write that I E Exp(L, Yo).

Definition. A proof system G for Yo is complete in the sense of Cook if, for
every interpretation I E Exp(L, Yo) and every asserted program cp, if 1=1 cp, then
Tr1 f-o cp.

The results of [13] imply that the proof system H for Y is complete in the
above sense. The proof of completeness proceeds by induction on the structure
of programs. Let I E Exp(L, Y).

If 1=1 {p} x := t {q}, then clearly 1=1 p - q[t/x]; so, by the assignment axiom
and the consequence rule, Tr1 f-H {p} x := t { q}.

If 1=1 {p} 81; 82 {q}, then clearly 1=1 {p} 8 1 {r} and 1=1 {r} 82 {q}, where r
defines post1(p, 81); so, by the induction hypothesis and the composition rule, Tr1
f-H {p} 81; 82 {q}.

The case of if e then 81 else 82 fi is straightforward.
If 1=1 {p} while e do Sod {q}, then we must find a loop invariant r such that

1=1 {r /\ e} S {r), 1=1 p - r, and 1=1 (r /\ e) - •q. Then, by the induction
hypothesis, Tr1 1-H {p} while e do Sod {q}.

Consider the set

C = { o : 3k, oo, ... , ok [o = ok /\ 1=1 p(&) /\'Vi < k [A1(8) (o;) = o;+i /\ 1=1 e(o;)]]}.

Thus o E C iff there exists a computation which starts in a state satisfying p and
which reaches state o after some finite number of passes through the loop. It is
clear that an assertion r defining C satisfies the above three conditions.

To find such an assertion, consider the list y1, •.• , Yn of all variables which
ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

Ten Years of Hoare's Logic: A Survey 439

occur free in p, e, S, or q. Let r1 be the assertion which defines post1(p, while e /\ (y1 ~ Z1 V Y2 ~ z2 V · · · V Yn ~ z,.) do Sod), where z1, ... , Zn are new variables. If /3 E C, then l=13z1, ... , z,.r1 (8), where the values chosen for z; (i = 1, ... , n) are correspondingly 8(y;) (i = 1, ... , n). The implication 1=1 3z1, ... , z,.r1(8) ~ 8 EC is obvious. Hence r = 3z1, ... , znr1 is the desired assertion.
Clarke [9] observed that if, in the definition of expressiveness, we change the requirement of definability of postr(p, S) to that of definability of pre1(S, q), then the above proof (viz., the last case) can be simplified. Namely, for the invariant r we can simply take an assertion which defines pre1(while e do Sod, q). This proof also shows that, when using the requirement of definability of pre1(S, q) in the definition of expressiveness, it is not necessary to assume that the equality predicate is in the language L.
We chose here Cook's original definition of expressiveness, since the completeness result in the form just proved is used in Section 3.

2.9 Expressiveness

As indicated by Clarke [IOa] and rigorously proved by Olderog [44], these two definitions of expressiveness are actually equivalent for any class of programs considered in this paper. To give an idea of the proof, assume that, for any p and S, post1(p, S) is definable. Consider a program So. Let x be a sequence of all variables occurring in So and let z be a sequence of some new variables of the same length as x. Now let qo be an assertion which defines post1(x = z, So). It is easy to see that, for any q, pre1(So, q) is definable by the formula (Vx (qo ~ q)) [x/z].
A similar construction proves the converse implication. It is worthwhile to note that the formulas {.i = z} So {qo} play an important role in the completeness proofs in Section 3.
A natural question now arises: how restrictive is the assumption of expressiveness? Observe that LP is expressive relative to IN and fl'. Thus, any true (under IN) asserted program can be proved in H provided we can "ask" an oracle about the truth of the assertions under IN. Also, as Clarke [9] observed, if the domain of I is finite, then L is expressive relative to I and Y.
It turns out that these are actually the only two possibilities. The following theorem is a special case of a theorem proved by De Millo, Lipton, and Snyder (see [38]):

THEOREM 2. If L is expressive relative to I and g, then either
1. a standard model of Peano arithmetic can be defined in I, or
2. rJ S E !/ 3n such that S reaches at most n states in any computation over the

domain of I with any initial state.

In the previous section we saw that expressiveness is a sufficient condition for completeness. Is it a necessary condition as well? The answer is no, and the following argument due to Bergstra and Tucker [6] gives evidence for it.
There exists a nonstandard model of Peano arithmetic with an interpretation I such that Tr1 = Tr1w It is a direct consequence of the compactness theorem (see [51]). It is now easy to see that, for any asserted program <p, if 1=1 <p, thenl=1N <p.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

440 Krzysztof R. Apt

Thus, for any ip, F=1 ip implies F=1N ip, which in turn implies Tr 1N f--H ip by the just
proved Cook completeness result; so finally Tr1 f--H ip by the choice of I.

On the other hand, Lp is not expressive relative to I and Y. This follows from
Theorem 2, but of course a straightforward argument can be given. Namely,
consider the program S = while x < y do x := x + 1 od. This program terminates
on I when started in a state a in which x = 0 iff a(y) is a standard natural number.
Thus,

post1(x = 0, S) = {a: a(x) = a(y) /\y is a standard natural number}.

But this set is not definable in I by any formula q of Lp. Otherwise, we could
prove by the induction axiom that F=1 't;/x, y q, which is not the case.

2 .1 0 Complete Assertion Classes

The completeness of Hand the expressibility of Lp relative to IN and Y'imply
that, if F= 1N {p} S {q}, then there exists a proof of {p} S {q} in H (from TrrN)
which uses only arithmetical assertions. In typical proofs much simpler assertions
are used.

A global correctness property { p} S { q} in practice has recursive assertions 1

p and q. The precondition p is usually some simple condition on the input
variables, or even true. Similarly, one may expect that the postcondition q can
be checked effectively by inspection of the output variables. A natural conjecture
then is that all (intermediate) assertions needed in the proof of { p} S { q} in H
may also be chosen to be recursive.

Let A be a set of assertions. Let us write f--H, A { p} S { q} to denote the fact that
there exists a proof of {p} S {q} in H (from Tr1N n A) in which only assertions
from A occur. We call a class of assertions A complete (with respect to Y') if for
every p, q EA and SE Y'we have F=rN {p} S {q} ifff-H,A {p} S {q}. In [2] it is
proved that any class of recursive assertions A which contains true and false is
incomplete; so the above conjecture is false. On the other hand, the class of
recursively enumerable assertions and various other natural classes are complete.

We can, however, get completeness of the class of recursive assertions for Y' if
we extend the proof system H by adding to it the following proof rule concerning
deletion of assignments to the auxiliary variables.

Let AV be a set of variables which appear in S' only in assignments x := t,
where x is in AV. If p and q do not contain free variables from AV and S is
obtained from S' by deleting all assignments to the variables in AV, then

{p} S' {q}

{p} s {q} .

This rule is from [4 7], where it was used in the proof system for verification of
parallel programs.

2 .11 Total Correctness

By distinguishing between partial and total correctness, we stress the fact that
termination is not dealt with in H.

1 That is, assertions which define a recursive set.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

Ten Years of Hoare's logic: A Survey 441

We say that a program S is partially correct under I (with respect top and q)
if l=r {p} S {q}. In contrast, we say that a program Sis totally correct under I
(with respect top and q), written ll=r {p} S {q}, if additionally the termination
of S is guaranteed. Thus, 11=1 { p} S { q} holds iff

for all states o such that l=r p(o) there exists a state -r such that jfr(S) (8)
= T and l=r q(-r).

Thus His a proof system for partial correctness. It is clear that the only proof
rule of H which introduces a possibility of nontermination is the while rule; so to
deal with total correctness that rule has to be changed.

The following refinement of the while rule leading to total correctness has
been formulated in [23].

RULE 6: while RULE II. Let p(n) be an assertion with a free variable n which
does not appear in S and ranges over natural numbers. Then

p(n + 1) ~ e, {p(n +I)} S {p(n)},p(O) ~ •e
{3n p(n)} while e do S od {p(O)}

Let Ho denote the proof system obtained from H by replacing the while rule
(Rule 4) by Rule 6. In Ho we can easily prove total correctness of the program So
from Section 2.2 with respect to x ;:::::: 0 /\ y > 0 and a · y + b = x /\ 0 :S b < y.
Namely, take p(n) = r /\ n · y :S b < (n + I) · y where r = a · y + b = x /\
b ;:::::: 0 is the loop invariant from the proof in Section 2.2. p(n) clearly satisfies the
premises of the above rule for e == b ;:::::: y and S = b := b - y; a := a + l.

Also, similarly to (6),

{x;:::::: 0 /\ y > O} a:= O; b := x {r /\ y > O}

holds. To conclude the proof it is now sufficient to observe that

1=10 r /\ y > 0 ~ 3np(n)

and

I= 10 p(O) ~ a · y + b = X /\ 0 :S b < y

and apply the consequence rule and the composition rule.
Call a proof system G totally sound if, for all interpretations I and asserted

programs cp, Tr1 1-a qi implies 11=1 cp. We would like to require any proof system for
total correctness, including Ho, to be totally sound. Note that total soundness of
Ho would imply that So is totally correct under lo with respect to x ;:::::: 0 /\ y > 0
and a. y + b = x /\ 0 :Sb <y, thus completing the above reasoning. Unfortunately,
any totally sound proof system is hopelessly weak, as the following theorem
shows.

THEOREM 3. There does not exist a proof system G such that

1. G is totally sound and
2. Tr 10 1-a {true} 81 {true} where 81 =while x > 0 do x := x - I od.

PROOF. The proof is immediate. Namely, suppose that a proof system G
satisfies I and 2. As we did in Section 2.9, take a nonstandard model of Peano

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

442 Krzysztof R. Apt

arithmetic with an interpretation I such that Tr1 = Tr1,,. Now, by 2, Tr1l-c {true}
81 {true}; so, by 1, 11=1 {true} 81 {true}. The latter is, however, a contradiction,
since it states that 81 is total under an interpretation in a nonstandard
model of Peano arithmetic. 0

Therefore, when dealing with proof systems for total correctness we have to
find another notion of soundness. One possibility is to restrict attention to one
interpretation only, namely, IN (or a minor extension of it like lo). However, this
is not a satisfactory choice, as it would force us to allow one assertion language
only: that of Peano arithmetic. A more satisfactory proposal has been indicated
by Harel [23].

Let L be an assertion language and let L + be the minimal extension of L
containing the language Lp of Peano arithmetic and a unary relation nat(x). Call
an interpretation I of L + arithmetical if its domain includes the set of natural
numbers, I provides the standard interpretation for Lp, and nat(x) is interpreted
as the relation "to be a natural number." Additionally, we require that there exist
a formula of L + which, when interpreted under I, provides the ability to encode
finite sequences of elements from the domain of I into one element. (The last
requirement is needed only for the completeness proof.)

One of the examples of an arithmetical interpretation is of course IN. It is
important to note that any interpretation of an assertion language L with an
infinite domain can be extended to an arithmetical interpretation of L +. Clearly,
the proof system Ho is suitable only for assertion languages of the form L +, and
an expression such as p(n + 1) is actually a shorthand for nat(n + 1) !\ p(n + 1).

We now say that a proof system G for total correctness is arithmetically sound
if, for all arithmetical interpretations I and asserted programs r:p, Tr1 f-c r:p im
plies 11=1 r:p.

Harel [23] showed that the proof system Ho is arithmetically sound. He also
proved that Ho is arithmetically complete, that is, that an implication converse
to the one above holds.

The completeness proof runs by induction on the structure of programs, and
only the case of the while construct is different from the corresponding case in
the completeness proof of H.

Assume 11=1 {r}while e do 8 od {q} where !is an arithmetical interpretation.
Let n be a fresh variable. Consider the following set of states:

C = {8: 1=1 nat(n)(o)
!\ 380, ... , ok [8 = & /\ 1=1 (q !\ •e)(ok)

/\Vi< k [.,#1(8)(8;) = 0;+1!\1=1 e(8i)]],
where k = 8(n)}.

Thus 8 E C iff o(n) is a natural number, say k, such that the loop in while e do
8 od is executed exactly k times when started in 8 and the final state satisfies q.

It can be shown (thanks to the provision for coding of finite sequences) that
there exists an assertion p(n) which defines C. It is easy to see that 1=1 p(n + I)
~ e, lil=1 {p(n + 1)} S {p(n)}, and 1=1 p(O) ~ •e. Thus, by the induction
hypothesis and the new rule, Tr 1 f--H0 {3n p(n)} while e do 8 od {p(O)}. To
complete the proof it is now sufficient to observe that, by the assumption, 1=1 r
~ 3n p(n) and 1=1 p(O) ~ q and to apply the consequence rule.
ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

Ten Years of Hoare's Logic: A Survey 443

It should be stressed that Theorem 3 applies to the notion of arithmetical soundness as well. However, in any language of the form L + one can speak about "standard" natural numbers; so the formula to be proved can now be phrased as {nat(x)} 81 {true}, and this version can be proved. This shows that the essence of Harel's approach lies in the ability to speak in any assertion language of the form L + about natural numbers together with the restriction on the interpretations assuring that these are the "standard" natural numbers.

2.12 Bibliographical Remarks

The proof system H (with the exception of Rule 3) and the example in Section 2.2 are from [27]. Rule 3 is from [37], which also contains the first proof of soundness of (an extension of) H. The terminology of "establishing'' and "preserving" an invariant, as well as the example in Section 2.5, is from [16]. The idea of annotating a program with the relevant assertions is first expressed in [37]. A different proof of Wand's incompleteness result is given in [24]. The incompleteness of the class of recursive assertions and the completeness of the class of recursively enumerable assertions mentioned in Section 2.10 are also proved in (39]. In (52] a completeness result similar to that of Section 2.11 is presented. The first proof rules for total correctness of while programs within the framework of Hoare's logic are presented in [42]. In (22] various proof rules for total correctness of while programs presented in the literature are discussed and compared.

3. PARAMETERLESS PROCEDURES

For clarity, we have separated the issues concerning procedures from those of scope and parameter mechanisms. Parameterless procedures are discussed next; the treatment of parameters is in Section 6. To simplify the discussion, we restrict our attention to the case of one procedure declaration. All results of this section can be straightforwardly generalized to the case of more than one procedure declaration.

3.1 Nonrecursive Procedures

We first consider the simpler !:ase of a nonrecursive procedure. Assume a procedure declaration P *== So where So E fl1 is the procedure body of P, and extend the set of programs fl1 by allowing the programs to contain the calls of P. Call this extended class of program .S1. Each procedure call P refers to the declaration P <=So. The requirement that So E fl1 implies that the procedure P is not recursive.
To deal with the procedure calls in the correctness proofs, we supplement the proof system H by the following proof rule.

RULE 7: PROCEDURE CALL RULE

{p} So {q}
{p} p {q} .

To consider the problem of soundness and completeness of the resulting system we must first extend the meaning function .fi1 to programs from .S1. For S E .S1 let S[So/P] denote the program resulting from replacing all occurrences of Pin
ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

444 Krzysztof R. Apt

S by So. In other words, S[So/ P] is the macro expansion of S. For S E Yi\ Y we
define .A1(S) to be equal to . .tt'AS[So/P]).

Thus .41r(P) = .4tr(So), which implies that the rule of procedure calls is sound.
The fact that Rules 2-5 are sound in the case of Y and the definition of .411(8)
for S E Yi trivially imply the soundness of Rules 2-5 in the case of Yi .

It should also be clear that the above proof system for Yi is complete in the
sense of Cook (i.e., that I E Exp(L, .'Ii) and 1=1 cp implies Tr1 f-H+Rule7 cp). The
additional case of procedure calls is easily handled: if 1=1 {p} P {q}, then 1=1 {p}
So {q}; thus Tr1 1-H {p} So {q} by the previous completeness result; that is, Tr1

l-H+Rule7 {p} P {q}. The proof of other cases is the same as in Section 2.8.

3.2 The Recursion Rule

When the declared procedure P <==So is recursive, that is, when So E Yi\«?, the
above system is still sound but obviously incomplete: an attempt at proving {p}
P { q} results in an infinite regression. A way to overcome this difficulty has been
suggested in [26]. The rule one should adopt is the following.

RULE 8: RECURSION RULE

{p} P {q} I- {p} So {q}

{p} p {q}

The reasoning presented by this rule is the following: infer {p} P { q} from the
fact that { p} So { q} can be proved (using the other rules and axioms) from the
assumption { p} P { q}. Rule 8 is actually a translation of the so-called Scott's
induction rule (see [50]) into this framework.

As an example of a proof using the recursion rule, consider the procedure
declaration P <== So for

So = if x = 0 then y := 1 else x := x - 1; P; x := x + 1; y := y . x fi.

We now prove {x::::: O} P { y = x!} in the system H augmented with the recursion
rule.

By the recursion rule it is enough to prove

{x::::: O} P {y= x!} f--H {x::::: O} So {y = x!}.

Assume

{x::::O} P {y=x!}.

By the assignment axiom,

{y · x = x!} y := y · x {y = x!}

and

{y · (x+ 1) = (x+ 1)!} x:=x+ 1 {y. x=x!};

so, by the composition rule,

(13)

(14)

(15)

{Y· (x+l)=(x+l)!}x:=x+l;y:=y·x{y=x!}. (16)

Since the implication

y = x! ~ y · (x + I) = (x + 1) ! (17)

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

Ten Years of Hoare's Logic: A Survey 445

is true, by the consequence rule and (13),

{x;::: O} P {y · (x + 1) = (x + 1)!}.

(16) and (18) imply, by the composition rule,

{x;::: O} P; x := x + 1; y := y · x {y = x!}.

On the other hand, since the implication

x;:::O/\x?*O~x-l;:::O

is true, and, by the assignment axiom,

{x - 1 ;::: O} x := x - 1 {x;::: O},

we get by the consequence rule

(18)

(19)

(20)

(21)

{x;::: 0 /\ x ?* O} x := x - 1 {x;::: O}. (22)

By the composition rule we now get from (19) and (22)

{x;::: 0 /\ x ~ O} x := x - 1; P; x := x + 1; y := y • x {y = x!}. (23)

Since

x;::: 0 /\ x = 0 ~ 1 = x!

is true, and, by the assignment axiom,

{l'=x!}y:= 1 {y=x!},

we get by the consequence rule

{x;::: 0 /\ x = O} y := 1 {y = x!}.

(23) and (26) finally imply by the if-then-else rule

{x =:::: O} So {y = x!},

which was to be proved.
Of course, strictly speaking, we have only proved that

(17), (20), (24) 1-e+Rules (x 2:::: O} P {y = x!}.

3.3 Insufficiency of the Recursion Rule

(24)

(25)

(26)

(27)

However, the system H augmented with the recursion rule is not complete. As
evidence we now show that there is no way to prove in it that in the case of the
above procedure declaration a call of P does not change the value of x; that is,
there is no way to prove that {x = z} P {x = z}.

Suppose by contradiction that {x = z} P {x = z} can be proved in the system.
We can assume that all assertions used in the proof do not have y as a free
variable (otherwise, y can be everywhere replaced by, say, 0). We can also assume
that the last rule applied was that of consequence. So for some p and q such that
the formulas

x=z~p (28)

and

(29)

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

446 Krzysztof R. Apt

are true (under the standard interpretation in natural numbers) {p} P {q} can
be proved. Consecutive applications of the consequence rule can be combined
into one. Thus we can assume that in the proof of { p} P { q} the last rule applied
was the recursion rule. In other words, the premise {p} P {q} I- {p} So {q} can
be established. Hence, under the assumption of {p} P {q} both {p /\ x = O}
y := 1 {q} and {p /\ x ;': O} x := x - l; P; x := x + l; y := y · x {q} can be proved.

The provability of the first formula implies that

p/\x=O~q (30)

is true (by assumption, y is not free in q).

The other formula had to be proved using the assumption { p} P { q}. For some
PI and QI we have that PI ~ p and

(31)

is true (to obtain {pi} P {qI} by the consequence rule) and both {p /\ x ;': O}
x := x - 1 {PI} and {qi} x := x + l; y := y · x {q} hold. Provability of the second
correctness formula implies that

Q1 ~ q[x + l/x]

is true. (31) and (32) imply that

q~ q[x + l/x]

is true. But (29) implies that q[x + I/x] ~ x + 1 = z is true; so, by (33),

q~x+I=z

is true. From (29) and (34) we get that

(32)

(33)

(34)

q ~false (35)

is true. On the other hand, from (28) and (30) x = z /\ x = 0 ~ q is true; so, by
(35), x = z /\ x = 0 ~false is true, which gives the desired contradiction.

3.4 The Proof System G

The system H augmented with the recursion rule is thus incomplete. Therefore,
following Gorelick [19], we supplement this system by the following axiom and
proof rules, which lead to a complete proof system.

AXIOM 9: INVARIANCE AxIOM

{p} p {p} where var(p) n var(So) = 0.

RULE 10: SUBSTITUTION RULE I

{p} p {q}
where z n var(So) = 0 and y n var(So) = 0.

{p[y/z]} P {q[j/z]}

RULE 11: SUBSTITUTION RULE II

{p} p {q}
where z n var(So, q) = 0.

{p[y/z]} p {q}

ACM Transactions on Progranuning Languages and Systems, Vol. 3, No. 4, October 1981.

Ten Years of Hoare's Logic: A Survey 447

RULE 12: CONJUNCTION RULE

{p} p {q}, {p'} p {r}

{p /\p'} p {q /\ r}

Here j and z denote sequences of variables of the language L. p[y / i] stands for
a simultaneous substitution of the variables from y for the variables from z in p.
var(So) denotes the set of all variables which occur in S 0 , and var(p) denotes the
set of all free variables of p. It should be clear what we mean by var(So, q), etc.

Let us denote the resulting proof system by G.

3.5 An Example of a Proof in G

To see how the additional rules of G are used in actual proofs, we now prove the
already mentioned formula {x = z} P {x = z} where P is the factorial procedure
from Section 3.2. To prove { x = z} P { x = z}, it is enough to establish the premise
{x = z} P {x = z} f- {x = z} So {x = z} of the recursion rule.

Assume

{x = z} P {x = z}. (36)

By substitution rule I,

{x = u} P {x = u}, (37)

and, by the invariance axiom,

{u = z - l} P {u = z - l}; (38)

so, by the conjunction rule and the consequence rule,

{x = z - l} P {x = z - l}. (39)

Now, applying the assignment axiom and the composition and consequence rules,
we get from (39)

{x = z} x := x - l; P; x := x + l; y := y . x {x = z}. (40)

By the consequence rule we can conjoin the preassertion with the formula x o;f 0.
Also,

{x = z /\ x = O} y := 1 {x = z} (41)

holds. By the if-then-else rule we now get (x = z} So {x = z}; so we have
established the desired premise.

This proof did not use substitution rule II. However, that rule is needed, for
example, to prove { x 2: O} P { y 2: 1}. The proof makes use of the already proved
formulas {x 2: O} P {y = x!} and {x = z} P {x = z} and an instance {z 2: O} P
{z 2: O} of the invariance axiom to get, by the conjunction rule, {x 2: 0 /\ x = z
/\ z 2: O} P {y = x! /\ x = z /\ z 2: O}. Using the consequence rule, we now get
{x = z /\ x 2: O} P { y 2: 1}. Finally, by substitution rule II, (x = x /\ x 2: O} P
{ y 2: l}; so {x 2: O} P { y 2: 1} by the consequence rule.

These proofs shed light on the way the new rules are used. Using substitution
rule I, one simply renames variables not used in the program (so-called auxiliary

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

448 Krzysztof R. Apt

variables). In contrast, substitution rule II is used to get rid of the auxiliary
variables from the preassertion. Auxiliary variables are typically used here to
"freeze" the values of the program variables before a procedure call. In proofs
usually two different premises about a procedure call are needed: one derived by
the recursion rule and the other one obtained by the invariance axiom. The
conjunction rule replaces these two premises by one. Finally, observe that the
invariance axiom can be proved straightforwardly using the recursion rule.
However, since it is often used, it is useful to have it formulated separately.

3.6 Semantics of Recursive Procedures

Before we dwell on the question of the soundness and completeness of G, we
have to define the meaning function At1 on programs from 511\9: We do so in a
way which simplifies our considerations concerning the soundness of G. The
semantics we provide is usually called an approximating semantics.

Let n stand for a program from !I' which never halts. Let us define a program
S~n> E Y'by induction on n:

Sb0) = n;

Sbn+i> = So[Sbn>/P].

A straightforward proof by induction on the structure of S shows that, for all

S1, 82 E Y'and SE 511, if At1(Si) c At1(S2), then .H1(S[Si/P]) c At1(S[S2/P]).
This implies (by induction on n) that, for all n, At1(S~n» C .fi1(S~n+t>). Thus, for
all SE Yl, At1(S[Sl;1>/P]) c .H1(S[S~n+i>;P]).

For SE 9'l we now define A1(S) by putting

.H1(S) = U At1(S[Sbn>;p]).
n-0

In particular,

By the above, .H1(S) is a (partial) function.

3.7 Soundness of G

We wish to prove that the proof system G is sound, that is, that, for every
interpretation I and correctness formula <p, if Tr1 1-o <p, then 1=1 cp. The fact that
G is not a usual proof system in the sense of first-order logic forces us to exercise
some care while doing so. It is, for example, not clear to what extent we can use
the fact that Rules 2-5 are sound in the case of nonrecursive procedure declara
tions and in what sense the recursion rule is to be proved sound.

To deal with these problems, we first transform the system G into a proof
system K which uses the usual notion of proof.

The formulas of K are implications cl>~ it (called correctness phrases), where

cl> and it are finite sets of correctness formulas. If cl> is empty, we write it instead
of cl> ~ it. For each axiom <po and proof rule

<p1, • • ., <pn

<pn+l

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

Ten Years of Hoare's Logic: A Survey 449

of G, we adopt in K an axiom <I> - cpo and a proof rule

We also have the rule

<I> - <p1, · ·., C/)n

(I> - <{ln+I

{p} P {q} - {p} So {q}

{p} p {q}

corresponding to the recursion rule, the collection rule

<I> - '¥1, ··.,<I>~ '¥n

<I> - '¥1, · ·., '¥n

and the selection axiom <I> - cp where cp E <I>. This translation of G into K
corresponds to a translation of a Gentzen natural deduction system into a Gentzen
sequent calculus.

In the following discussion we write (P <= S I <p) instead of cp to indicate that
each procedure call P in <p refers to the procedure declaration P <= S.

Definition. Let I be an interpretation of L.

1. An implication (P <=So I <I>~'¥) is called I-good if, for every n, (P <= s~n) I <I>
~ '¥) is true under I.

2. For a nonrecursive procedure declaration P <= 8:
a. (P <= SI <I> ~ '¥) is true under I if the truth under I of (P <= SI <I>)

implies the truth under I of (P <=SI i'); and
b. (P <=SI <I>) is true under I if, for all cp E <I>, (P <=SI rp) is true under I.

Definition

1. A correctness phrase is called good if it is /-good for all interpretations I.
2. A proof rule of K is called good if for all interpretations I it preserves the /

goodness of correctness phrases.
3. The proof system K is called good if all its axioms and proof rules are good.

Observe that, for every set of assertions T, TU {cp} f-a '¥ iff T f-K <p ~'¥.The

proof runs by induction on the length of proofs. Thus, in particular, for every set
of assertions T, T f-o cp iff T f-K cp.

This, together with the observation that (P <=So I cp) is true under I iff it is/
good, implies the following claim:

CLAIM 1. If the proof system K is good, then the proof system G is sound.

Also, the following holds:

CLAIM 2

1. If, for each n, (P <= s~n) I cp) is valid, then (P <=So I <I> - cp) is good.
2. If for each n a proof rule

(P <= S6") j 'l'i)

(P <= S6") I '1'2)

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

450 Krzysztof R. Apt

is sound, then the proof rule

is good.

(P <=So I <I>~ '¥1)

(P <=So I <I>~ '¥2)

Thus the axioms and proof rules of K which are translations of axioms and
proof rules of Hare all good, as the system His sound in the case of a nonrecursive
procedure declaration.

By Claims 1 and 2, to prove the soundness of G it is now enough to prove

a. the validity of the invariance axiom in the case of a nonrecursive procedure
declaration;

b. the soundness of substitution rules I and II and the conjunction rule in the
above case;

c. the goodness of the rule

{p} P {q} ~ {p} So {q}

{p} p {q}

that is, that for any I, if for all n (P <= s6n) I {p} p {q} ~ {p} So {q}) is true
under I, then for all n (P <= s6nl I { p} P { q}) is true under I; and

d. the goodness of the selection axiom and the collection rule.

Proofs of a and b are straightforward. To prove c, assume that for a given I and
all n

(P <= s6n) I {p} p {q} ~ {p} So {q}) is true under I. (42)

Clearly (P <= S6°l I {p} P {q}) is true under I. Assume now that for some n

(P <== s6n) I {p} p {q}) is true under I. (43)

Then by (42)

(P <= s6n) I {p} So {q} >is true under I. (44)

But So[S6n) /P] = s6n+I); so (44) implies that (P <== s6n+I) I {p} p {q} > is true under
I. So, by induction, (43) holds for all n.

d is obviously true. Thus the system G is indeed sound.

3.8 Completeness of G in the Sense of Cook

We now prove the completeness of G for 5'l in the sense of Cook. Let x be a
sequence of all variables which occur in So and let z be a sequence of some new
variables of the same length as x.

Assume that I E Exp(L, YI). There exists an assertion q0 which defines
postr(x= z, P). The correctness formula {x= z} P {qo} is called the most general
formula for P, since any other true (under I) correctness formula about P can be
derived from {x = z} P {qo} in G. This claim is the contents of the following
lemma.

LEMMA l. If l=r {p} S {q}, then Trr U {x = z} P {qo} 1-a {p} S {q}.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

Ten Years of Hoare's logic: A Survey 451

PROOF. The proof proceeds by induction on the length of S. If S ~ P, the proof
is identical to the completeness proof for H.

Suppose that S = P. Assume

{.X = .Z} P {qo}. (45)
By the invariance axiom,

(46)
where Pi = p[u/ z] and u is a sequence of some fresh variables of the same length
as z.

(45) and (46) imply by the conjunction rule that

{..i = z /\p1[z/x]} P {qo /\p1[z/.i]}. (47)

We now show that

F1 Qo /\Pi [z/.i] ~ Q1 where q1 = q[u/z]. (48)

Assume F1 (qo /\p1[.Z/.i])(r). By the definition of q0 there exists a state a such
that u#1(P) (a) = rand u#1(.i = z) (a). Suppose now that F1 'Pi [z/.i](a). Then, by
the validity of the invariance axiom, F1 'JJ1[.Z/.i](r), since u#1(P)(a) = r. This
contradicts our assumption, so F1 Pi [z/.i](a). Since F1 (.i = z /\p1 [z/ .i]) ~ p1, we
now get F1 p1(a). But, by the soundness of substitution rule I, also F1 {pi} P
{qi}; so finally F1 qi(r). This proves (48). (47) and (48) imply by the consequence
rule that

{.i = .z /\p1[z/x]} P {qi}.

Now, by substitution rule II,

{.i = .f /\pi} p {q1},

since .i = .i /\p1 = (.f = z /\pi[.Z/.i])[.ijz]. By the consequence rule,

{pi} p {qi};

so, by substitution rule I,

{p1[z/u]} P {q1[z/u]}.

Clearly, F1 p - Pi [Z/u] and F1 q - q1 [z/u]; so, by the consequence rule,

{p} p {q},

which was to be proved. 0

(49)

(50)

(51)

(52)

(53)

The next lemma shows that the hypothesis {.i = z} P {qo} used in the above
lemma can actually be proved in G.

LEMMA 2. Tr1 1--a {.f = z} P {qo}.

PROOF. The proof is immediate. By the definition of Qo, F1 {.i = £} P {qo}; so
F1 {.i = z} So {qo} since A1(P) = ult1(So). By Lemma 1, Tr1 U {.f = z} P {qo}
1-c {i = z} So {qo}; so, by the recursion rule, Tr1 1--a {i = z} P {qo}. D

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

452 Krzysztof R. Apt

The completeness of G is the immediate consequence of Lemmas 1 and 2. Note
that in the above proof the auxiliary variables in z were used to "freeze" the
values of the variables in x before the procedure call.

3.9 Total Correctness of Recursive Procedures

Recursive procedures introduce another possibility of nontermination of pro
grams. Clearly, the recursion rule does not provide any means to establish
termination of the procedure calls, and so it is appropriate for proofs of partial
correctness only.

Sokolowski [53] proposed the following refinement of the recursion rule, which
leads to proofs of total correctness. This rule can also be found in Clarke [lOa],
where it is attributed to M. O'Donnell.

RULE 13: RECURSION RULE II

<p(O), {p(n)} P {q} f- {p(n + l)} So {q}

{3np(n)} P {q}

Here, as in while rule II, p(n) is an assertion with a free variable n which does
not appear in So and ranges over natural numbers.

The intuition behind this rule is the following. Call a computation (q, n)-deep
if it terminates in a state satisfying q and if at any moment at most n calls of P
are active in it. {p(n)} S {q} is to be interpreted here as a statement that any
execution of S starting in p(n) is (q, n)-deep. The assumption { p(n)} P { q} thus
states that executions of P starting in states satisfyingp(n) are all (q, n)-deep and
is used to show that all executions of P starting in states satisfying p(n + 1) are
(q, n +I)-deep. The latter is shown by proving {p(n + l)} So {q}.

Using this rule, we can easily prove the correctness formula { x 2:: 0} P { y = x ! }
considered in Section 3.2 by taking p(n) = x ;:::: 0 A x = n - 1 and repeating the
proof from Section 3.2.

However, a proof analogous to that in Section 3.3 shows that the system Ho
supplemented with recursion rule II is incomplete. Therefore, essentially following
[23], we extend it to a proof system which is arithmetically complete. The
extension is very similar to the corresponding extension of H + Rule 8 to G. We
adopt substitution rule I and the following two proof rules.

RULE 14: INVARIANCE RULE

{p} p {q}

{p/\r}P{q/\r}

RULE 15: ELIMINATION RULE

{p} p {q}

{3z p} P {q}

Call the resulting system Ga.

where var(r) n var(So) = 0.

where z n var(So, q) = 0.

It should be clear that, if we substitute Rules 14 and 15 in G for the invariance
axiom, substitution rule II, and the conjunction rule, then we also get a proof
system for partial correctness which is complete in the sense of Cook. The
completeness proof is in fact identical to that of G. The main reason for adopting

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

Ten Years of Hoare's Logic: A Survey 453

a different extension here than in Section 3.4 is the fact that the invariance axiom
is not valid when used for proofs of total correctness.

The arithmetical soundness of Go can be proved in a way analogous to the way
the soundness of G was proved. When dealing with recursion rule II, one uses the
premise ']J(O) to ensure that 11=1 (P ~ S6°> I {p(O)} P {q}}.

The proof of the arithmetical completeness of Go is "dual" to the completeness
proof of G. Before presenting the proof, we introduce the following notion.

pret1(S, q) = pre1(S, q) n { 8 : 3T [Af1(8)(8) = T]}.

pret stands in the same relation to total correctness as pre does to partial
correctness: we have 11=1 {p} S {q} iff {8: 1=1 p(8)} C pret1(S, q).

Let x and z be defined as in Section 3.8 and let n be a fresh variable. Assume
now that I is an arithmetical interpretation. It can be shown that there exists an
assertion po(n) such that for all states

1=1 po(8) iff 1=1 nat(n)(8) and 8 E pret1(8bk>, x = z),
where k = 8(n).

The following lemmas show that po(n) plays a role here analogous to that of Qo
in the completeness proof of G.

LEMMA 3. If 11=1 {p} s {q}, then Tr1 u {po(n)} p {.i = z} f--ao {p} s {q}.

PROOF. The proof proceeds by induction on the length of S, and only the case
S == P needs explanation.

Assume

{po(n)} p {.i = z}. (54)

By the invariance rule,

{po(n) /\ q1[z/.i]} P {x = z /\ q1[z/.i]}, (55)

where Q1 == q[u/z] and ii is a sequence of some fresh variables of the same length
as z. The implication

x = z /\ q1[z/x] ~ q1

clearly holds; so, by the consequence rule,

{po(n) /\ q1[z/x]} P {q1}.

By the elimination rule,

{3n3z (po(n) /\ Q1[.Z/.i])} P {q1}.

We now show that

1=1 Pi~ 3n3.Z (po(n) /\ q1[z/.i]), where p1 == p[u/z].

(56)

(57)

(58)

(59)

First, note that, by the arithmetical soundness of substitution rule I, 11=1 {P1}
P {q1}. Assume 1=1 p1(8). By the definition of 11=1 there exist k and a state T such
that .A 1 (S~>)(8) = T and 1=1 q(T). Now let 81 be the state which agrees with 8 on
all variables not listed inn, z and such that 81(2) = T(.i) and 81(n) = k. It is easy

ACM Transactions on Progranuning Languages and Systems, Vol. 3, No. 4, October 1981.

454 Krzysztof A. Apt

to see that ~1 (po(n) /\ q1[z/.i])(oi). This shows that ~1 3n3z (po(n) /\
q1[z/x])(8); so (59) is proved.

(58) and (59) imply by the consequence rule that

{pi} p {qi}; (60)

so, as in Section 3.8,

{p} p {q}. 0 (61)

LEMMA 4. Tr1 f--c" {po(n)} p {x = z}.

PROOF. Observe that, by the definition of po, l~J {po(n + 1)} p {x = z}; so
1~ 1 {p0 (n + l)} So {.i = z} as JlfJ(So) = .A1(P). By Lemma 3, Tr1 U {po(n)} P
{x = z} f-a0 {po(n+ 1)} So {x = z}. Clearly, ~1 '.Po(O); so, by recursion rule II, Tr1
f-a0 {3n p 0(n)} P {x = z}. But the implication po(n) - 3n po(n) obviously holds;
so, by the consequence rule, Tr1 f-c0 {po(n)} P {x = z}. D

The completeness of Go now follows from Lemmas 3 and 4. Note that in the
above proof the auxiliary variables in z were used to "freeze" the values of the
variables in x after the procedure call.

It is easy to see that, following the reasoning presented above, one arrives at a
dual completeness proof of the already-mentioned system H + Rules 8, 10, 14,
and 15.

3.10 Bibliographical Remarks

Most of the papers dealing with procedures within the framework of Hoare's logic
do not discuss parameterless procedures. In particular, Rule 8 is a special case of
a rule given in [26]. The example in Section 3.2 is a modification of an example
given by Hoare [26]. The semantics of recursive procedures in Section 3.6 is a
translation into our framework of the corresponding definition from [50]. It is
often used in the literature. The justification of the soundness of G seems to be
new. The argument used in justifying c in Section 3. 7 corresponds to the proof of
the soundness of Scott's induction rule and often appears in the literature. The
completeness proof given in Section 3.8 is a special case of the completeness proof
presented in [19]. A similar completeness result was proved independently (but
somewhat later) in [24]. The presentation of the proof system Go and its com
pleteness proof in Section 3.9 slightly differs from that of Harel [23]. Harel's
result was formulated within the context of dynamic logic. A similar completeness
result was proved in [lOa, 53]. The terminology of "freezing" is due to Harel,
Pnueli, and Stavi [24].

4. VARIABLE DECLARATIONS

Let us now consider the least class gv of programs which, similarly to class Y,
contains the assignment statements and is closed under the use of the composition
(;), while, and if-then-else constructs but additionally satisfies the following
condition:

if SE gv, then, for each variable x, begin new x; Send E gv_
ACM Transactions on Programntlng Languages and Systems, Vol. 3, No. 4, October 1981.

Ten Years of Hoare's Logic: A Survey 455

new x stands for a declaration of a variable x which is valid within the block
begin new x; S end; x is a local variable with respect to this block.

The occurrence of a variable x in a program S is called bound whenever it is
within a subprogram of S of the form begin new x; 8 1 end. An occurrence of x
in S is free if it is not bound. Let free(S) denote the set of all variables which
occur free in S. We define free(S,p) analogously.

By S[y/x] we mean a substitution of y for the free occurrences of x in a
program S. It is defined analogously to the substitutionp[y/x] for an assertionp.
In particular, variable clashes which arise are resolved by appropriate renamings.

Let w stand for a special constant to which we initialize all local variables. We
might view w as a symbol standing for "undefined." We now adopt the following
proof rule:

RULE 16: VARIABLE DECLARATION RULE

{p /\ y = w} S[y/x] {q}
where y Et free(p, S, q). {p} begin new x; Send {q}

The renaming of x for y is performed here to distinguish between the occur
rences of local x in S and possible free occurrences of nonlocal x in p and q. The
expression y = w captures the idea of initialization.

4.1 Semantics for Variable Declarations

In order to pose the question of soundness of the variable declaration rule, as
usual we must first define the meaning of the programs involved. We follow here
the approach of Clarke [9].

To this purpose we redefine the notion of a state. By a state we now mean a
finite function from the set of variables into the domain D of an interpretation I.
For a state a, if x E dom(a) and d E D, then a U (x, d) stands for the extension
of a yielding d when applied to x. DROP(a, x) stands for a state obtained from a
by deleting x from its domain.

We define the meaning of a program in the same way as before, with the only
new case being that of a block. For all statements S we assume that .AI(S)(a) is
undefined if free(S) g dom(a).

Let 81 =begin new x; Send, and suppose that free(Si) ~ dom(a). We define

.4tf(S1)(a)= DROP(.AI(S[y/x])(a U (y, f!l)), y)

where y is the first variable not in dom(a) and f!1 is the value assigned to the
constant w.

Since we are using a new definition of a state, we have to provide a new notion
of truth under I. Given an assertion p and a state a, we define t=I p(a) to hold in
the event that p becomes true when all its free variables lying in dom(a) get
assigned values provided by a and when the other free variables are universally
quantified. For example, t=IN (x = 0 /\ z = z)((x, O)) holds. Thus, for t=I p(a) to
hold we do not need to have free(p) ~ dom(a). Thanks to this definition, we can
now retain the definition of truth of an asserted program under I given in Section
2.4, with the only difference being that the new definition of state is now used. As

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

456 Krzysztof R. Apt

a result, various former definitions and results do not need to be reconsidered
with respect to the newly introduced semantics.

4.2 Soundness and Completeness of the System H + Rule 1 6

Soundness of Rule 16 follows from the fact that

.;{{1(S[y/x])(a U (y, d)) = .--tr1(S[z/x])(a U (z, d))

for any program S and y, z g dom(a). (62)

To prove this fact, one should actually strengthen the claim and rather prove
that, for any program Sand Yi. ... , Yn, z1, ... , Zn !l dom(a),

.J1r(S[yi}xi] • · • [yn/Xn])(a U (y1, di) · · · (yn, dn))
= .lt'r(S[z1/xi] · • · [zn/Xn])(a U (z1, di) · · · (zn, dn)).

The last claim can be proved by induction on the structure of S, where only the
case of blocks requires some caution due to the possibility of various variable
clashes.

Soundness of the rules of H was proved (or rather stated) with respect to a
different notion of state. But, since virtually the same definition of truth of an
asserted program under I is now used, the same proofs of soundness apply. Thus
the system H + Rule 16 is sound.

We now turn to the problem of the completeness of H + Rule 16. The
definitions of pre, post, and expressiveness given in Section 2.8 should now be
interpreted with respect to the new notion of state.

The system H + Rule 16 is easily seen to be complete in the sense of Cook.
The case of blocks is dealt with using (62), and the other cases are the same as in
the completeness proof of H.

4.3 Adding Procedures

Having settled the case of while programs, we now pass to the programs allowing
procedure calls.

Consider an extension Y'I of gv in which the programs are allowed to contain
calls of a nonrecursive parameterless procedure P. We assume a procedure
declaration P <=So where So E S"v. To provide a meaning to programs from 9"]',
we proceed as in Section 3.1.

A program S E Y'l\S"v assumes the meaning assigned to it by the clause

.A'tr(S) = .A'11(S[So/P]),

where S[So/P] stands for the substitution of all occurrences of P by So. Because
of possible variable clashes, we now have to define S[So/ P] carefully. S[So/ P] is
defined by induction, with the main clause being

begin new x; S end [So/ P]

_{begin new x; S[So/P] end
= begin new x'; S[x' /x][So/P] end where x' E free(S, So)

ACM Transactions on Frog.ramming Languages and Systems, Vol. 3, No. 4, October 1981.

if x E free(So);
otherwise.

Ten Years of Hoare's Logic: A Survey 457

The aim of this clause is to avoid binding any of the free occurrences of the
variables in So through the substitution process. The other clauses are defined in
a natural way.

To prove the correctness of programs from Y], we now use in addition Rule 7.
However, to apply Rule 16 to programs from YI we have to require additionally
that y E free(So). It is easy to see that otherwise this rule becomes unsound. To
illustrate the use of Rule 16 in conjunction with Rule 7, we give the following
example. Consider the procedure declaration P <== x := z and the program S =
z := 1; begin new z; z := O; P end. We now prove {true} S {x = l}.

By the assignment axiom,

{z = l} x :~ z {x = l};

so, by Rule 7,

{z = l} P {x = l}.

By the assignment axiom and the consequence and composition rules,

{z = 1 /\ y = w} y := O; P {x = l},

from which we obtain the desired formula {true} S {x = l}.
It should be noted that, according to ALGOL 60 semantics, the value of x after

the execution of S should be 1 and not 0.
We now prove the soundness and completeness in the sense of Cook of the

system H + Rules 7, 16. We proceed as in Section 3.1. The definition of semantics
of blocks given above provides the meaning for programs from Y) in terms of the
meaning of programs from yv_ Therefore, we can easily reduce the problem to
that of the soundness and completeness of H + Rule 16 for !J>Y. The only case in
both proofs which requires some explanation is that of blocks.

If x, y E free(So), then, for S E Y),

At1(S[y/x]) = At1(S[y/x][So/P]) = At1(S[So/P][y/x])

and

Af1(begin new x; Send)= At1(begin new x; S[So/P] end).

If y E free(So) and x E free(So), then

and

Af1(S[y/x]) = .fi1(S[y/x][So/P]) = At1(S[x'/x][So/P][y/x'])

Af1(begin new x; S end) = Af1(begin new x; Send[So/ P])

= At1(begin new x'; S[x'/x][So/P] end)

where x' ~ free(S, So).

This shows that in both cases the soundness of Rule 16 applied to programs
from Y1 indeed follows from the soundness of Rule 16 applied to programs from
.<:r. Similar reduction takes care of the appropriate case in the completeness
proof.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

458 Krzysztot R. Apt

We now consider the case of recursive procedures. To provide a semantics in
the case in which P is recursive, we proceed as in Section 3.6. If we assume now
that So E Y'!\'l'v, we can define a meaning of a program SE Y!\Y'v by putting

.lff1(S) = U .lft1(S[S bn) / P])
n=O

Sbn+l) = So[Sbn)/P].

Using these definitions, the proof system G + Rule 16 for Y'I is sound and
complete in the sense of Cook. Indeed, the arguments used in Sections 3. 7 and 3.8
can be applied here without any changes. The additional case of blocks is reduced
as above to the already handled case of programs from Y'v.

4.4 Problems with Uninitialized Variables

In Rule 16 we incorporated the assumption that each local variable is initialized
by using the formula y = w. To prove the soundness (and completeness) of this
rule, we were forced later to reflect this assumption while defining semantics for
blocks. But is this assumption needed?

We might equally well drop the formula y = w from the premise of the rule
and, while providing a semantics, initialize each local variable to, say, the first
element of the domain of I not in range(a). It should be clear that with such
changes the claim (62) retains its validity; so both the soundness and the
completeness proofs remain valid.

Why then did we not adopt this simpler solution? The answer is subtle.
Consider the following correctness formula:

{true} begin new z; x := z end; begin new u; y := u end {x = y}.

According to the semantics we adopted and also the semantics we have just
suggested, this formula is true under any interpretation I. It is also easy to prove
it in the system H + Rule 16, since clearly both

{true} begin new z; x := z end {x = w}

and

{x = w} begin new u; y := u end {x = y}

can be proved.
If, however, we adopt the proposal just suggested, we cannot find any inter

mediate assertion which would play the role of x = w above. What is more, the
suggested semantics results in an inexpressiveness of any L relative to any I and
yv ! (The case in which I I I = 1 should be excluded here, since the suggested
semantics is then ill-defined.) To see this, note that the set post1(true, begin
new z; x := z end) is not definable by any formula of L. Thus the completeness
proof is indeed valid but vacuously so.

All these problems were caused here by the use of uninitialized local variables.
We could avoid these difficulties by simply disallowing programs in which some
local variables are uninitialized. Such a class of programs can easily be defined,
and the newly suggested approach can be taken in dealing with it. This is the
solution adopted in [14].

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

Ten Years of Hoare's logic: A Survey 459

4.5 Scope Issues

Our discussion concerning local variables would not be complete without provid
ing an answer to the following seemingly innocent question. Why did we not
adopt the following rule?

RULE 17: VARIABLE DECLARATION RULE II

(p[y/x] ;\ x = w} S {q[y/x]}
where y E free(p, S, q). {p} begin new x; Send {q}

Here the substitution is performed in assertions and not programs; conse
quently, the rule should be easier to use and handle.

The answer touches the issue of the scope of identifiers in programs. It is not
difficult to see that the proof systems H + Rule 16 and H + Rule 1 7 are
equivalent. However, if we allow procedures, the corresponding proof systems H
+ Rules 7, 16 and H + Rules 7, 17 are no longer equivalent. To see this, take the
correctness formula {true} S {x = l} considered in Section 4.3. It is easy to see
that it cannot be proved in H + Rules 7, 17. A straightforward proof shows rather
that {true} S {x = O} holds.

We say that a static scope is assumed if each procedure call is evaluated in the
environment in which the procedure has been declared. In our case this means
that all free variables of the procedure body are understood to be the free
variables of the program. If, on the other hand, each procedure call is evaluated
in the environment in which the procedure is called, then we say that dynamic
scope is assumed.

Using this terminology, we can say that Rule 16 leads to static scope, whereas
Rule 17 leads to dynamic scope. All ALGOL-like languages assume static scope.
Therefore, one might think that dealing with dynamic scope is irrelevant. How
ever, as we see in Sections 6 and 7, a theoretical analysis of scope issues within
the framework of Hoare's logic reveals important differences between these two
scope assumptions and sheds light on the static scope assumption.

To conclude this discussion, we provide a semantics for blocks which leads to
a dynamic scope assumption. This semantics is due to Clarke [9]. For this purpose
we need a slightly refined notion of a state. By a state we mean here a finite
sequence of pairs (x, d) where x is a variable and d an element of the domain D
of an interpretation I. A variable can occur in more than one pair belonging to a
state. By dom(a) we now mean the set of all variables which belong to a pair
from a.

For x E dom(a) let (x, d) be the last pair in a to which x belongs. We define
this d to be the value of x in state a. a U (x, d) now stands for the result of
extending a with the element (x, d), whereas DROP(a, x) stands for the sequence
obtained from a by deleting the last pair to which x belongs.

Assume now that free(S1) ~ dom(a) where 81 = begin new x; Send.We define

.fi1(S1)(a) = DROP(AJ(S)(a U (x, !61)), x).

It can be shown that Rule 17 is sound for programs from yv when the above
semantics is used. Also, the corresponding completeness resvlt concerning H +
Rule 17 holds.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

460 Krzysztof R. Apt

To extend these results to the case of programs admitting procedures, we have
to provide a semantics for such programs. Given a procedure declaration P ~ So
and a program S, let S(So/ P> stand for the result of a literal replacement of each
occurrence of P in S by So. If P is nonrecursive, we define the meaning of a
program S E 9'!\Y"v by

Atr(S) = Atr(S(So/P)).

If P is a recursive procedure, then we put

"'
Atr(S) = u Af1(S(Sbn)/P))

n-0
where Sb0) = n and

The corresponding soundness and completeness results concerning the systems
H + Rules 7, 17 and G + Rule 17 now follow by the same reasoning as was used
in Section 4.3.

Note that the difficulties with the use of uninitialized variables arise in the case
of dynamic scope as well.

4.6 Bibliographical Remarks

Rule 16 (without the formula y = w) is from [26]. The addition of the formula y
= w first appears in [19]. The use of substitution in programs in the definition of
semantics of blocks independently appeared in [4]. The soundness and complete
ness of H + Rule 16, H + Rules 7, 16, and G + Rule 16 are special cases of a
completeness result mentioned in [9] and proved in [1]. [14] provides a detailed
proof of the soundness and completeness of the system H + Rule 16. Rule 17
(without y = w) is due to [37], where also its soundness is proved. The complete
ness of H + Rules 7, 17 and the completeness of G + Rule 17 are special cases of
the completeness results of [13] and [19], respectively. All these results are
subsumed by the results of [45].

5. SUBSCRIPTED VARIABLES

So far we have allowed assignment to simple variables only. Allowing subscripted
variables in expressions and assignments leads to extension of the previous
syntax. To keep things simple we restrict our attention to the case of one
dimensional arrays, omitting any specifications of the bounds.

Let d"f/ be a set of array variables. We extend the syntax of L by allowing
expressions of the form a[t] for a E d"f/and t being an expression, and we now
allow an assignment a[s] := t where a E df"and s, tare expressions.

5.1 An Assignment Axiom for Subscripted Variables

In what follows we assume that conditional expressions of the form ifs = t then
t 1 else t2 fi (so-called equality conditionals) are allowed. To obtain a better
picture of the problem, we consider first the case of an assignment when the
subscript is a simple variable.

By p[t/a[x]] we denote a substitution of an expression t for the subscripted
variable a[x]. It is defined by induction, with the main clause being

a[z][t/a[x]] =if z = x then t else a[z] fi.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

Ten Years of Hoare's Logic: A Survey 461

Essentially the following axiom was proposed in [29]:

{p[t/a[x]]} a[x] := t {p}.

Using this axiom, we can prove

{x = y} a[x] := 1 {a[y] = l}

since (a[y] = l)[l/a[x]] =if y = x then 1 else a[y] fi = 1, and this formula is
implied by x = y. Also, {true} a[x] := 1 {a[x] = l} holds.

If we now allow arbitrary expressions as subscripts, we run into difficulties.
Namely, the formula {true} a[t] := 1 {a[t] = l} is no longer valid! To see this,
observe that, if a[l] = a[2] = 2, then {true} a[a[2]] := 1 {a[a[2]] = l} is not
true.

This shows that the above definition of substitution has to be appropriately
refined for the general case of subscripts being arbitrary expressions. Perhaps the
simplest solution to this problem is to circumvent it. The above substitution still
leads to correct results when used for arbitrary subscripted variables if applied
only to assertions allowing simple variables as subscripts. The main clause of this
substitution is thus

a[z][t/a[s]] =if z = s then t else a[s] fi,

and the case in which an arbitrary expression stands for z is simply not handled.
Given now an arbitrary assertion p, let p' denote an assertion equivalent top

which is obtained by "quantifying out" all subscripts which are not simple
variables. For example, if p is a[a[2]] = 1, then p' is 3z (a[z] = 1 /\ z = a[2]). We
now extend the above substitution to arbitrary assertions by putting p[t/a[s]] =
p'[t/a[s]]. We finally arrive at a general form of the axiom:

AXIOM 18: ASSIGNMENT AxIOM FOR SUBSCRIPTED VARIABLES

{p[t/a[s]]) a[s] := t {p}.

Note the similarity in form between this axiom and Axiom 1.
By way of example, we now prove

{a[2] = 2 ~ a[l] = l} a[a[2]] := 1 (a[a[2]] = l}.

We have

(a[a[2]] = l)[l/a[a[2]]] = (3z (a[z] = 1 /\ a[2] = z))[l/a[a[2]]]

= 3z (if z = a[2] then l else a[z] fi = l

/\if 2 = a[2] then l else a[2] fi = z).

The last formula is implied by the assertion a[2] = 2 ~ a[l] = 1. Namely, if
a[2] = 2 holds, then choose z = 1, and otherwise choose z = a[2]. Thus, by the
consequence rule and Axiom 18 above, we get the desired result.

Axiom 18 is also complete in the following sense: if 1=1 {p} a[s] := t {q}, then
1=1 p ~ q[t/a[s]]. So, if 1=1 {p} a[s] := t {q}, then TR1 f-Rule5+Axiom18 {p}
a[s] := t {q}, where TR1is the set of all assertions of the extension of L which are
true under I.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

462 Krzysztof R. Apt

5.2 Bibliographical Remarks

The final form of the axiom is motivated by the solutions given in [15] and (for
the simpler case) in [43]. Validity and completeness of the axiom follow from
[15], from which the example is taken as well (see also [14]). Different solutions
for the assignment to subscripted variables are given in (28, 30, 48] and [15] (also
to be found in [14]). [30] also provides a solution for the case of an assignment of
the form if e then x else y fi := t and an assignment to pointers. [20] and [21]
provide solutions for the case of a multiple assignment to subscripted variables.

6. PARAMETER MECHANISMS

Parameter mechanisms are among the most troublesome issues in the framework
of Hoare's logic. One of the reasons is that parameter passing is always modeled
syntactically by some form of variable substitution in a program, and this leads
to various subtle problems concerning variable clashes. These difficulties are
especially acute in the presence of recursion and static scoping.

In contrast to our exposition of the previous sections, the presentation cannot
be complete here, as not all problems have been solved in this area. In the
subsequent discussion we attempt to clarify which particular issues lead to
difficulties and indicate what still remains to be done in this area.

We begin our presentation with a treatment of the parameter mechanism of
call-by-name in the presence of the dynamic scope assumption. These results do
not concern most usual features of programming languages. However, techniques
introduced to deal with them form an adequate basis to study more common
parameter mechanisms under the assumption of static scope. Therefore, it is
useful to treat these features first.

6. 1 Call-by-Name

6.1.1 N onrecursiue Procedures. Consider a procedure declaration of the form

p C;:= (name(x: v) I So},

where (x: v) is the formal parameter list and So E gv is the procedure body. x
and v are disjoint lists of distinct variables, and the variables in v cannot occur to
the left of any assignment statement in So. So does not contain procedure calls; so
P is not recursive.

In the extension of gv, called 9"2, we allow procedure calls of the form P(ii: t)
where ii is a list of distinct variables, t is a list of expressions containing no
variable in ii, and no variable in (ii: t) different from formal parameters occurs
free in the procedure body 80 •

All procedure calls mentioned below are assumed to satisfy the above restric
tions.

So[ii, t/x, v] indicates the result of simultaneous substitution of the actual
parameters ii, t for the corresponding free occurrences of the formal parameters x and vin So.

Following [13], we now supplement the proof system H + Rule 16 by the
following three proof rules.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

Ten Years of Hoare's Logic: A Survey 463

RULE 19: PROCEDURE CALL RULE II

{p} So {q}

{p} P(i: v) {q}.

RULE 20: PARAMETER SUBSTITUTION RULE

{p} P(x':u') {q}
where u n free(p, q) k x'. {p[u, t/x', v']} P(ii: t) {q[u, t/x', v']}

RULE 21: VARIABLE SUBSTITUTION RULE

{p} P(u:t) {q}

{p[s/z]} P(u: t) {q[s/z]}

where no variable ins or z occurs free in So[u, t/x, v].
Call the resulting system C.
The last two rules are rather difficult to understand because of the restrictions

imposed on the substituted expressions and variables. To get a better idea of how
these proof rules are used, consider an example proof in C.

Assume the declaration P *== (name(x: v) I x := v; a:= v}. According to the
imposed restrictions, the calls P(y: y + l} or P(y: a + 1) are disallowed, but calls
P(z: y + 1), P(v: y + 1), or P(v: x + 1) are allowed. We now prove

{x = z) P(v: y + 1) {v = y + 1/\a=y+1 /\ x = z}.

To this purpose we have to rename the formal parameter x of the procedure
occurring free in the assertions. Therefore, we first prove

{ u = z} P(v: y + 1) { v = y + I /\ a = y + I /\ u = z}.

We have

{u = z} x := v; a:= v {x = v /\a= v /\ u = z};

so, by procedure call rule II,

{u = z} P(x: v) {x = v /\a= v /\ u = z}.

Now, by the parameter substitution rule,

{u = z} P(x: v') {x = v' /\a= v' /\ u = z};

so once again, by the same rule,

{u = z} P(u: y + 1) {v = y + 1/\a=y+1 /\ u = z}.

Finally, by the variable substitution rule,

{ x = z} P(u : y + 1) { v = y + 1 /\ a = y + 1 /\ x = z} .

The reader can check that in all steps the corresponding restrictions were
obeyed. Note that the direct step from the call P(x: v) to P(v: y + 1) is not
allowed. Namely, the parameter substitution rule requires here that the actual
parameter v in the call P(v: y + 1) be identical toxin P(x: v), as v occurs free in
the assertion x = v /\ a = v /\ u = z.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

464 Krzysztof R. Apt

It is worthwhile to note that the restrictions mentioned in the substitution rules
are necessary. To see this, consider the procedure declaration P ~ (name(x:)
Ix := O). We now have {u = l} P(x :) {u = l}, but of course {u = l} P(u :)
{ u = 1} is not true. This shows that the restriction in the parameter substitution
rule is needed.

Also, { x = l} P(x:) { x = 1} is not true; so the corresponding restriction in the
variable substitution rule is necessary as well.

This artificial example provides a better insight into the nature and use of the
substitution rules. Note that the variable substitution rule was used here to
rename free occurrences of the formal parameters in the assertions of the
correctness formula to be proved. The step from P(x: v) to P(v: y + 1) had to be
split in two; so the parameter substitution rule had to be used twice here.

We now continue with the discussion of the system C.
Let S be a program from .'1'2\Y". We define the meaning of S by putting

where S(So/ P) E yv is the result of the literal replacement of each procedure call
P(ii: t) occurring in S by So[ii, t/ x, v].

The results of [13] imply that the proof system C is sound and complete in the
sense of Cook, where the definition of the meaning of blocks from Section 4.5 is
used. The proofs are delicate, mainly due to the possibility of various variable
clashes in the substitution rules.

The only new case in the completeness proof is that of the procedure calls. We
present here an argument which only works if the formal and actual parameters
have no variables in common and if the assertions p and q do not have free
occurrences of formal parameters. Note that in the above example the first issue
forced us to use the parameter substitution rule twice, and the second problem
was resolved by the use of the variable substitution rule. These difficulties are
resolved in a similar way in the completeness proof of the general case, which is
a careful refinement of the argument presented below.

Suppose

1==1 {p} P(u: t) {q}.

Then, by definition of .1!1,

1==1 {p} So[ii, t/x, v] {q}.

From this it follows due to the above restrictions that

1==1 {v = t !\p[x/u]} So {q[x/ii]},

as no variable clashes arise here.
So does not contain procedure calls; so, by the completeness of H + Rule 17,

Tr1 f-c {v= t !\p[.i/u]} So {q[x/ii]}.

By the rule of procedure calls,

Tr1 f-c {v = t !\p[i/ii]} P(i: v) {q[x/ii]}.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

Ten Years of Hoare's Logic: A Survey 465

By the parameter substitution rule,

Tr1 1-c {i = t /\p} P(ii: t) {q};

so, finally, by the consequence rule,

Tr1 1-c {p} P(u: t) {q}.

Note that the parameter substitution rule can be applied here, since, by the assumption, ii n free(t) = 0 and, by the imposed restriction, ii n (.X u v) = 0; so no variable from ii occurs free in the assertions from the premise of the rule. Note that Rules 19-21 could be replaced here by the simpler rule

{p} So[ii, t/x, ii] {q}

{p} P(u:t) {q}

and soundness and completeness would be preserved.
If this rule were adopted, the restrictions concerning the procedure calls would be unneeded. However, if this rule were used, its hypothesis would have to be verified each time a procedure call with different actual parameters appeared. As a result, the actual proofs would be longer in general than the corresponding proofs in the proof system C, where it is sufficient to prove a general property { p} So { q} of the procedure body just once.

6.1.2 Recursive Procedures. [19] contains an extension of the above result to the case of a recursive procedure. The relevant proof system is the following modification of the system G:

a. in the recursion rule P is replaced by P(.X: ii);
b. the invariance axiom takes the form

{p} P(ii:t) {p}

where p has no free variable occurring free in So[ii, t/x, ii];
c. substitution rule I is replaced by the variable substitution rule;
d. substitution rule II takes the form

{p} P(ii: t) {q}
where z n free(Sn[ii, t/x, v], q) = 0; {p[s/z]} P(ii: t) {q}

e. in the conjunction rule P is replaced by P(ii: t); and
f. the parameter substitution rule is added.

Our definition of the meaning of programs containing procedure calls is similar to the definition in Section 4.5 (so using the dynamic scope requirement). Since the procedures now have parameters, we have to be careful so as to perform the appropriate substitutions of the actual parameters for formals in the proper order. Therefore, we proceed in a slightly different manner.
By induction on n we define a sequence of procedure declarations Dn

and s&n+i> = So[Pn/P].
ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

466 Krzysztof R. Apt

S[P11 / P] stands for the result of substituting the procedure identifier P by Pn in
a program S. We define the meaning of a program S by putting

.!/!1(S) = U .i'!1(S[Pn/P]),
n~O

where the context of the procedure declarations Dn is assumed. In particular,

.r!1(P(ii: t)) = U .1#!1(Pn(ii.: t)).
n=O

Due to these definitions,

jf1(S[P,,/ P]) = .$f1(Sl"1)

Observe that S'" 1 is the result of repeated literal replacement of each procedure
call P(ii: t} by So[ii, t/x, v] performed from the "top" being S to the depth n,
followed by the literal replacement of each procedure call by g,

Strictly speaking, the above definitions require an extension of the considered
syntax by allowing a system of nonrecursive procedure declarations D1, ... , Dn.
The results of [13] cover such a case.

The soundness proof of the above system can now be established following the
reasoning used in Section 3. 7 to prove the soundness of G. Due to the soundness
of an extension of C dealing with a system of nonrecursive procedures, it is
sufficient to prove the validity of the invariance axiom, the soundness of substi
tution rule II and the conjunction rule in the case of a system of nonrecursive
procedure declarations, and the goodness of the recursion rule. Of course, in all
cases we mean the modified versions of the axioms and proof rules. All proofs are
straightforward.

The completeness proof is analogous to the completeness proof of G given in
Section 3.8. For the most general formula for P we now choose the correctness
formula {i' = i} P(x: ij) {q0 } where i' is a sequence of all variables which occur
free in So, z is a sequence of some new variables of the same length as z', and qo
is an assertion which defines post1(z' = z, P(x: iJ)). In the proof of a lemma
corresponding to Lemma 1 from Section 3.8, we now have to tackle the case of
procedure calls with actual parameters different from the formal ones. The other
cases are the same as before. The argument used by Cook [13] in the completeness
proof of C shows the following implicitly.

There exist two assertions Pi and q1 which depend on p, q, So, and ii, t such
that

1. the proof rule

{p} P(ii:t) {q}

{pi} P(x: v) {qi}

is sound in the case of a nonrecursive procedure declaration, and

2. {pi} P(x: v) {qi} 1-c-Rule 19 {p} P(ii: t) {q}.

In the special case of the completeness proof of C which we considered here,
we can take Pi = iJ = t /\ p[x/u] and q1 = q[x/u]. That conditions 1 and 2 are
satisfied immediately follows from the argument presented here.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

Ten Years of Hoare's Logic: A Survey 467

Thanks to the arguments used in Section 3.7, the above proof rule is also sound
in the case of a recursive procedure declaration. Assume now that

1=1 {p} P(ii: t) {q}.

By the abov~,

1=1 {pi} P(x: v) {q1}.

Repeating the reasoning of Lemma 1, we get

{.Z' = z} P(i: v) {qo} I- {p1} P(i: v) {qi};

hence, due to 2,

{z' = z} P(x: v) {qo} r- {p} P(ii: t) {q},

which was to be proved.
The rest of the proof is the same as in Section 3.7.
The systems presented in this subsection assume dynamic scope. However, the

relevant results should also hold when static scope is assumed. The main problem
with such proofs is that the soundness of Rule 16, the first variable declaration
rule, in the presence of parameter mechanisms becomes much more difficult to
prove.

6.2 Call-by-Value and Call-by-Variable

6.2.l Nonrecursive Procedures. In this section we consider the parameter
mechanisms of call-by-value and call-by-variable, which can be found in the
programming language PASCAL and other languages. We allow local variables
as well as subscripted variables. Consider a declaration

where B = {val x; vary I So}

of a nonrecursive procedure P. x and y are the formal value and variable
parameters, respectively, and S0 , as usual, is the procedure body.

To provide a meaning for procedure calls and to deal with procedure calls in a
proof system, we introduce the following notation:

B[t, z] =begin new u; u := t; So[u/x][z/y] end,

B[t, a[s]] =begin new u1, u2; u1 := t; u2 := s; So[uif x][a[u2]/y] end,

where u is the first simple variable = x, y and not free in So, t, or z (and
analogously for u1, u2).

The above notation assumes a straightforward extension of the former defini
tions in that it uses substitution of a subscripted variable for a simple one in a
program and uses a declaration of two local variables u1, u2 in one block.

Let v stand for a variable which is either simple or subscripted. We define the
meaning of procedure calls by putting

.fi1(P(t, u)) = ..4t'1(B[t, v]),

and, consequently, for a program S containing calls of P,

..4t'1(S) = .-#1(8[So/ P])

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

468 Krzysztof R. Apt

where S[S0/P] is the result of substituting each procedure call P(t, v) occurring
in S by B[t, v]. S[So/P] is defined analogously to the way it is defined in Section
4.3. We assume that .#11 is defined in an appropriate way for programs using
subscripted variables and not containing procedure calls.

We now adopt the following proof rule:

{p} B[t, v] {q}

{p} P(t, v) {q}.

This proof rule allows us to deal with arbitrary procedure calls. The construct
B[t, v] captures in a syntactic way the transmission of actual parameters to the
procedure body. The following artificial example shows how various subtleties
concerning the treated parameter mechanisms are handled here.

Consider the declaration P <= <val x; vary I i := i + l; y := x + l; x := 0). We
now show that

{x = 1 /\ i = O} P(x, a[i]) {i = 1/\a[O]=2 /\ x = l}.

We have

B[x, a[i]]

=begin new u1, u2; u1 := x; u2 := i; i := i + l; a[ud := ui + l; u1 := 0 end.

Using the assignment axioms, we now get

{x = 1 /\ i = O} ui := x; u2 := i; i := i + 1; a[u2] := u; + 1; u; := 0

{i = 1 /\ a[O] = 2 /\ x = l}.

Applying the introduced proof rule, we get the desired formula.
We now supplement the proof system H +Rule 16 +Axiom 18 by the last rule.

The soundness of the resulting system can be established in the same way as the
soundness of H + Rules 7, 16 discussed in Section 4.3. Note that the new rule is
obviously sound. However, we have to prove anew the soundness of the former
rules, since they are now used for a bigger class of programs, namely, those
containing subscripted variables. It should be clear that the above system is also
complete in the sense of Cook. (We assume here that the notions of expressibility
and completeness are extended in a proper way to cover the case of programs and
assertions using subscripted variables.)

6.2.2 Recursive Procedures. Assume now that the procedure P is recursive.
Our definition of the meaning of programs containing procedure calls is analogous
to the definition in Section 6.1 but now using the static scope requirement.

The corresponding recursion rule now takes the form

{pi} P(t;, v;) {qi};-1, .. ,n I- {p;} B[t;, V;] {q;}i=l,. ... n

{p1} P(t1, U1) {q1}

The hypothesis of this rule states that the formulas {p;} B[t;, v;] {q;} for i = 1,
... , n can be proved from the assumptions {p;} P(t;, u;) {q;},=i,. . .,n using other
proof rules. These assumptions are needed to deal with the (inner) calls from the
procedure body, or, more precisely, from B[t1, v1]. The conclusion of the rule

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

Ten Years of Hoare's Logic: A Survey 469

states that {pi} P(ti, Vi) {q1} can be proved (without any assumptions), but of
course all formulas {p;} P(t;, V;) {q;};=i,n can be taken here as conclusions.

To get a complete proof system., we now proceed similarly to the way we did in
Section 6.1. We take an extension of the proof system H +Axiom 18 + Rule 16
which, apart from the above recursion rule, contains the corresponding versions
of the invariance axiom, the variable substitution rule, substitution rule II, the
conjunction rule, and the parameter substitution rule. The only new rule is the
following rewrite rule:

{p} S' {q}

{p} s {q} .

S' denotes here a program such that S' ::::: Sand no bound variable of S' occurs
free in So. In turn, S1 ::::: S means that Si is obtained from S by replacing some
blocks begin new z; 82 end occurring as subprograms in Si by begin new u;
S2[u/z] end where u E free(S, So).

[14] contains a proof of soundness of the above proof system. The proof can be
simplified if we proceed exactly as before, making use of the soundness of an
extension of the system H + Rule 18 + Rule 16 dealing with a system of
nonrecursive procedures.

In [14) it is also proved that the above proof system is complete in the sense of
Cook. We present here a sketch of the proof for the case when the procedure
body So contains only one procedure call.

Let

p(t, v) = z' = z /\Vu (a'[u] = a[u])

where z' and a' are correspondingly the sequences of all simple and array
variables which occur free in So, t, or v and z and a are corresponding sequences
of fresh simple and array variables. Let q(t, u) be an assertion defining
post1(p(t, u), P(t, v)).

The only interesting case in the above completeness proof is that of procedure
calls. In a manner similar to the way the completeness of G was proved, one can
prove that, if F=1 { p} P(t, u) { q}, then

TR1 U {p(t, v)} P(t, v) {q(t, v)} I- {p} P(t, v) {q};

so it is enough to prove

TR1 I- {p(t, v)} P(t, v) {q(t, v)}.

The proof runs as follows.

LEMMA 5. Let S be a program and let P(t;, V;);=1, n be all procedure calls
occurring in S'. If F=1 {p} S' {q}, then

TR1 u {p(t;, V;)} P(t;, u;) {q(t;, V;)}i=l, ... ,n I- {p} S' {q}.

PROOF. The proof proceeds by induction on the structure of programs. The
above remark indicates how to proceed in the case in which Sis a procedure call.
The only other nontrivial case in the proof is that of blocks. Assume S' is begin
new x; S1 end.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

4 70 Krzysztof R. Apt

If 1=1 begin new x; 81 end, then 1=1S1[y/x] for some fresh variabley. Procedure
calls in S 1[y/x] are of the form P(ti, vi) for i = 1, ... , n where ti = t;[y/x] and
vi = u;[y / x]. By the induction hypothesis,

TR1 U {p(ti, vi)} P(ti, vi) {q(t;, vi)};=1, ... ,n f- {p} S1[y/x] {q}.

Hence, by the variable declaration rule,

TR1 U {p(ti, vi)} P(ti, vi) {q(ti, v:)};=1,. ... n f- {p} S' {q}.

By the definition of S', x is not free in So. Therefore, {p(t;, u;)[y/x]} P(ti, vi)
{q(t;, v;)[y/x]} can be derived from {p(t;, v;)} P(t;, v;) {q(t;, v;)} using the
corresponding parameter substitution rule. Also, since x E free(So) and y is a
fresh variable,

1=1 p(t;, v;)[y/x] ~ p(ti, vi)

and

1=1 q(t;, u;)[y/x] ~ q(ti, vi).

The last three facts imply the claim. D

It is this case in the proof of Lemma 5 which forces us to work with S' instead
of directly with S. Note that, if x were free in So, then we could not apply the
corresponding parameter substitution rule. Also, observe that, if dynamic scope
were assumed here, then we could use Rule 17 instead of Rule 16. Consequently,
we could work directly with S, and the rewrite rule would be unneeded in the
proof system.

COROLLARY. For any procedure call P(t1, v1),

TR1 U {p(t;, u;)} P(t;, u;) {q(t;, v;)}i=l.2,3,4 f- {p(t;, V;)} B[t;, v;]' {q(t;, v;)};=1.2.:i

where, for i = 2, 3, 4, P(t;, v;) is the procedure call occurring in B[t,-1, V;-1]'.

LEMMA 6. {p(t4, V4)} P(f4, V4) {q(t4, V4)} can be derived from {p(t3, V3)}
P(t3, V3) {q(t3, V3)} using the corresponding parameter substitution rule.

The proof distinguishes eight different cases depending on the form of v, and
Vo, where P(to, Vo) is the inner call of So.

Now, by the above corollary, Lemma 6, and the rewrite rule, we get

TR1 U {p(t,, v;)} P(t;, v;) {q(t;, v;)};-1,2.:i f- {p(t;, u;)} B[t;, u;] {q(t;, v;)};=1.~.:i;

so, by the recursion rule,

TR1f- {p(t1, U1)} P(t1, Vi) {q(t1, V1)}.

It should be noted that the proof of Lemma 6 leads to a veritable combinatorial
explosion of cases to be dealt with when So contains more than one procedure call
and/ or there are more than two formal parameters.

Some other parameter mechanisms can be described in a way similar to the
above discussion. By way of illustration, consider a declaration of a recursive
procedure P:

P<=Bo where Bo= (val x; res y I So)
ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

Ten Years of Hoare's Logic: A Survey 471

and where y is a formal result parameter as used in ALGOL W (see [55]).
We define

Bo[t, z] =begin new u; u := t; So[u/x]; z := y end,

Bo[t, a[s]] = begin new u1, u2; u1 := t; u2 := s; So[ui/ x]; a[u2] := y end.

The corresponding proof system is sound and complete in the sense of Cook.
The proofs are virtually the same as in the case of call-by-variable. The only
difference is that the case of procedure calls in the completeness proof is now
easier to handle and does not lead to a combinatorial explosion of the cases in the
proof of Lemma 6. The reason is that a call-by-result parameter, in contrast to a
call-by-variable parameter, does not lead to a substitution in the procedure body.
As a result, {p(t~i 1 , vg>)} P(tg>, vg1) {q(t~i>, vg>)} can be derived from {p(t~i>, v~i))}
P(tki 1, v~>) { q(t~>, v~i 1)} using the corresponding substitution rule.

Here P(t~il, v1il) is the ith procedure call occurring in B[t1 , v1]', and P(t~il, vg>)
is the ith procedure call occurring in B[tY1, vYT for somej.

6.2.3 A Discussion. One of the basic disadvantages of the proof systems dealt
with in this section is the fact that each procedure call requires a separate proof
of the premise concerning the body of the procedure in question. It should be
possible to remove this deficiency by following the approach presented in the
previous section and imposing appropriate restrictions on the actual parameters.

A useful observation in this respect is that procedure declarations

P '*'= (val x; vary I So>

and

P '*'= (name(y:x) I So> where So= begin new u; u := x; So[u/x] end

where u is a fresh variable lead to equivalent procedure calls when no subscripted
variables are allowed. Therefore, the proof systems from the previous section
dealing with the second declaration can be readily adopted to deal with programs
in the context of the first declaration. Thus, in effect the study of call-by-value
and call-by-variable can be reduced to the study of call-by-name. What remains
to be done here is to incorporate subscripted variables and the static scope
assumption into this framework.

Another point concerns the use of the renaming mechanism denoted here by
the ""' sign. First, note that we could use a slightly different version of the
recursion rule, obtained by replacing B[t;, vi] in the recursion rule by B[t;, v;]'.
After this change, the rewrite rule needs to be applied only once: as the last step
of the proof. Thus, for any program S the whole proof deals in fact with programs
of the form SI.. But for such programs it does not matter which of the two
variable declaration rules is applied. We conclude that, when using the refined
version of the recursion rule, we can adopt variable declaration rule II provided
that the rewrite rule is applied exactly once, namely, as the last step of the proof.

If we now drop from the recursion and rewrite rule the"'" sign, we get a sound
and complete proof system dealing with the dynamic scope assumption. Thus we
can treat static and dynamic scope in a uniform way here. At the level of

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

472 Krzysztof R. Apt

semantics, a similar uniformity can be found by distinguishing between two forms
of substitution: [.. ./ P] and (.. ,/P), defined in Sections 6.2 and 6.1, respectively.

6.3 Bibliographical Remarks

The division x: v of formal name parameters and the restriction on the procedure
calls in Section 6.1 are from [26]. Rules 20 and 21 are from [13]; they are
refinements of the corresponding proof rules from [26] where global variables in
procedure bodies (i.e., free variables different from formal parameters) are disal
lowed. Both Cook [13] and Gorelick [19] proved slightly stronger completeness
results. The definition in Section 6.1.2 of the meaning of calls of recursive
procedures is from [29]. The restrictions on procedure calls used in [19] are lifted
in [7], where the static scope is also assumed. A recent paper of Gries and Levin
[21) deals with related issues but only for the case of nonrecursive procedures.
The notation "B[t, v]" and the corresponding recursion rule in Section 6.2.2 are
from [3]. The definition of semantics of programs containing procedure calls
suggested in Section 6.2 is partially motivated by [45). Clarke [10] relates various
completeness results concerning recursive procedures with parameters called by
name to the existence of fixed points of some operators.

7. PROCEDURES AS PARAMETERS

7.1 Clarke's Incompleteness Result

A satisfactory treatment of procedures having procedures as parameters is
impossible in full generality within the framework of Hoare's logic. This rather
astonishing result was proved by Clarke [9] and is the contents of the following
theorem.

THEOREM 4. There exists no Hoare's proof system which is sound and
complete in the sense of Cook for a programming language which allows

1. procedures as parameters in procedure calls,
2. recursion,

3. static scope,

4. global variables in procedure bodies, and
5. local procedure declarations.

The proof follows the line of incompleteness results proved in Section 2.7. First,
the following crucial lemma is proved.

LEMMA 7. The halting problem is undecidable for programs in a programming
language with features (1) to (5) above for all finite interpretations I with
1112: 2.

Now take a finite interpretation I with I II 2: 2. It is easy to see that Tr1 is a
recursive set. Thus the set of asserted programs cp such that Tr1 f--w cp in a Hoare's
system W is recursively enumerable. Also, as observed in Section 2.9, the
assertion language is expressive relative to I and the class of programs considered.
On the other hand, Lemma 7 and the Fact from Section 2.7 imply that the set of
all asserted programs from the above programming language which are true

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

Ten Years of Hoare's Logic: A Survey 473

under I is not recursively enumerable. Therefore, no Hoare's system W for this
programming language can be complete in the sense of Cook.

7.2 Copy Rules

Under what restrictions, then, is it possible to get sound and complete Hoare's
systems dealing with procedures as parameters? Clarke [9] stated that, if any of
the above features 1 to 5 is disallowed, then there exists a natural Hoare's system
for the corresponding programming language which is sound and complete in the
sense of Cook. Unfortunately, the corresponding proofs for the cases in which 1,
2, 4, or 5 is disallowed are not worked out there. Also, some additional restrictions
to be discussed in Section 7.7 (concerning sharing and self-application) are
imposed on the language.

A detailed analysis of these and related issues is provided in [45], where most
of the missing proofs are supplied in a uniform way. In the subsequent discussion
we allow procedure declarations of the form

P <== {proc R; var .YI So)

where P is the name of the declared procedure, R is the list of distinct formal
procedure parameters, and y is the list of distinct formal parameters called by
variable.

Subscripted variables are not allowed here; consequently, only simple variables
can be used as actual parameters called by variable. With such restrictions
imposed on the language, call-by-variable is of course equivalent to call-by-name.
In blocks, systems of declarations of local procedures are allowed in addition to
declarations of local variables. Call this class of programs !fP.

A uniformity similar to the one exemplified in Section 6.2.3 forms an important
aspect of Olderog's considerations. However, the situation is more complicated
here because procedures are allowed as parameters.

Uniformity is reached by employing the notion of copy rule. A copy rule is a
relation between two programs differing only by an injective bound renaming of
some local identifiers. By an identifier we mean here a simple variable or a
procedure name. By idf(S) we denote the set of all identifiers occurring in S.
Injective bound renaming (written as 8:::::: S') is defined as follows: S::::: S' iff 8

inj inj

:::::: S' (bound renaming as defined in the previous section but now referring to all
identifiers) holds and additionally the renaming is injective.

1·

Now let Id be a set of identifiers. Olderog [45] considers three copy rules:

1. The ALGOL 60 copy rule <.f60 : (8, Id) <;f60 81 iff 81 :::::: S and no identifier
inj

bound in 8 1 occurs in Id.
2. The "most recent" copy rule <t'mr: (8, Id) <t'mr 8 1 iff 81:::::: S, no simple variable

inj

bound in 81 occurs in Id, and procedure names have not been renamed.
3. The naive copy rule <t'n: (S, Id) <t'0 8 1 iff 8 1 = S.

Note that, according to this terminology, (8, free(80)) <.f60 S' and (S, free(8o)) <t'mr
8' hold for programs discussed in Section 6.2.2.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

474 Krzysztof R. Apt

7 .3 The Proof System (0, 't&')

These copy rules are incorporated into the proof system as a parameter; this is
similar to the case of static and dynamic scope assumptions discussed in Section
6.2.3.

The proof system (0, '€) has a structure similar to that of the systems discussed
in Section 6. But since we are now dealing with declarations of local procedures,
we cannot take a fixed procedure declaration P ~ (... I So) such that every
procedure name P occurring within an asserted program { p} S { q} refers to this
declaration. Instead, we augment each program S with a context E, being a
sequence of procedure declarations with different procedure names. Thus, we
now consider formulas {p} <EIS) {q} instead of simply {p} S {q}. Throughout
this section it is always assumed that for every procedure name occurring freely
in S there exists a corresponding declaration P *= <·.·I So) in E. We say that a
procedure call S = P(R1 , yi) is incorrect with respect to E if the declaration of P
in E requires different actual parameters. To cover the case of incorrect procedure
calls, the following new axiom is introduced.

RULE 22: AXIOM OF INCORRECT PROCEDURE CALLS

{p} (EIP(R1,.Yil) {q}

where the procedure call P(R1, .Y1) is incorrect with respect to E.

This axiom is valid because an incorrect procedure call gets a nowhere defined
function as its meaning. The need for such an axiom arises from the fact that the
execution of a syntactically correct program can lead to an incorrect procedure
call in the case in which procedures are allowed as parameters.

A copy rule <t' is used in two proof rules. The first of them is the recursion rule,
which now has the following form.

RULE 23: RECURSION RULE III

{p;} (Ed P;(R;' y;)) { q;};=l, .. .,n I- {p;} (Ed B;,,) { q;};=l, ... ,n

{p1} (E1 I P1(R1, .:Y1)) {q1}

where, for some S; (i =I, ... , n),

1. P; ~ (proc Ri; var .Yi IS;) EE; with IR;I =I Ri I, l.Y; I= I.Yi I; and
2. (S;[R;/Ri][yJyi], ld;)lfi Bi'£ where Id;= idf(E;, P;(R;, .Yi)).

This rule deals with n different procedures, and of course all formulas { p;}
(E; I P;(R;, y;)) {q;} can be taken here as conclusions.

The second rule which refers to the copy rule is the following rewrite rule.

RULE 24: REWRITE RULE

{p} (018') {q}

{p} s {q}

where S' = S in the case of the naive copy rule <fin and S' ::::: S where S' is
distinguished (different defining occurrences of identifiers are denoted differ
ently) in the case of the lfi60 and lfimr copy rules.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

Ten Years of Hoare's Logic: A Survey 475

Among all axioms and proof rules of the system, only the rewrite rule allows us
to pass to a program 8 without any context of procedure declarations. Therefore,
to prove a property of a program 8 we are forced to use the rewrite rule exactly
once, and this as the last step in the proof.

The next step in the development of the system (0, 't&') is the introduction of
the following rule.

RULE 25: RULE OF BLOCKS

{p[y/x] Ax= w} (add(E, E1) I 81} {q[y/x]}

{p} (EI begin new x; E1; 81 end) {q}

where add(E, E1) is the system of procedure declarations obtained from Eby
first deleting from it all declarations referring to a procedure name also
declared in E1 and then adding E1 to it.

The discussion of the proof system from Section 6.2.2 given in Section 6.2.3
aimed to provide a better understanding of the decisions standing behind the
choice of the above three rules.

To deal with the constructs present in the while programs, we adopt an
appropriately modified system H in which each program S is replaced by
(EI 8}. From Section 3.3 we know that proofs concerning procedure calls require
some additional axioms and proof rules. An additional set of axioms and proof
rules similar to the one used in Sections 6.1.2 and 6.2.2 is adopted here. This is a
bit surprising in view of the fact that procedure parameters are now allowed. In
particular, the invariance axiom, the conjunction rule, and substitution rules I
and II are used (all referring to constructs of the form (EIS)).

The final rule is a substitution rule corresponding to the parameter substitution
considered in Section 6.1.

RULE 26: SUBSTITUTION RULE III

{p} (EIS> {q}

{p[y/.i]} (add(E1, E)[.Y/ry]IS[y/x]) {q[y/.i]}

where the substitution y/x is injective when restricted to the subset free(p, q) U
idf(E, S) of x. Here x can contain procedure names; x; is a simple variable if[y;
is a simple variable.

This rule is stronger than the parameter substitution rule from Section 6.1 in
the case in which both are restricted to procedure calls with actual parameters
being simple variables. The reason for this strengthening is that no restrictions
on actual parameters in procedure calls are imposed here, in contrast to Sec
tion 6.1.

It is instructive to check that the arguments from Section 6.1.1 showing the
necessity of restrictions in Rules 20 and 21 do not indicate that the above rule is
unsound. Both substitutions considered there, namely, [u, u/x, u] and [x, x/x, u],
are not injective; so the argument does not apply here.

Note also that the above rule admits extending the procedure environment in
the conclusion. Intuitively, this is allowed because the newly added procedures

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

476 Krzysztof R. Apt

will never be called. The subsequent proofs are not affected if the program S is
restricted in Rule 26 to be a procedure call.

7.4 Semantic Issues

We now pass to semantic issues. Each copy rule 9t generates a corresponding
semantics .//fr. 'f; for the programs from .5f'P. The case of procedure calls is now
more complicated because declarations oflocal systems of procedures are allowed.
In particular, it is difficult to retain the approach of Section 6.1. Therefore, we
proceed in a somewhat different way. We first define by induction on i a sequence
A'/J, ,, of approximating semantics. The crucial clause concerns procedure calls.
We put

.JI},~ (EI P(R, y))

= f vtt}~i (EI B,&)

1 undefined

if i?: 1, P 4== {proc R'; var .Y' IS) EE

with IRI = IR'I, I.YI= l.Y'I;
otherwise.

Here, analogously to Rule 23, (S[R/R'][y/j'], Id) 9t B,. where Id
P(R, y)).

The semantics of blocks is defined by the clause

idf(E,

A't}.dE I begin new x; E1; S1 end)(a) = DROP(A'/},,,(add(E, Ei) I Si)(a'), x)

where a'= a U (x, ~).

Here the definition and use of states of Section 4.5 are adopted. The other
clauses are defined as usual. We now put

"' Ar,'t(EJS) = U vtt},,.(EIS)
i=O

and

A1,,.,(S) = A1,'6(0 IS')

where S' is defined as in Rule 24.
As opposed to the approach taken in Section 4.1, here all renamings of local

identifiers (necessary to satisfy scope requirements) are done first when we
replace S by (01 S') and subsequently at every step where the copy rule 9t is
applied, that is, where P(R, y) is replaced by B '"·

We now define

F1,'~ {p} <EIS) {q} iff for all states a, T, F1 p(a)

and .lt1.'ii'(E IS) (a) = T implies F1 q(r).

The soundness proof of (0, 9t) with respect to the .lt1,,6 semantics proceeds
through the same steps as the ones originally defined in Section 3. 7 and later
repeated in Sections 4.3, 6.1.2, and 6.2.2. Note that the last clause in the definition
of .lt1. '(j assures the soundness of Rule 24. The only complicated case in the proof
is that of the soundness of Rule 26.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

Ten Years of Hoare's Logic: A Survey 477

We now relate copy rules to scope assumptions. In the presence of declarations
of local procedures, the ALGOL 60 copy rule leads to a semantics with the static
scope assumption. For programs satisfying the "most recent" property (see [41))
the same result is already achieved by using the "most recent" copy rule. Finally,
the naive copy rule leads to a semantics with the dynamic scope assumption. Due
to the lack of space, we do not elaborate more precisely on these issues.

7.5 The Characterization Theorem

From the theorem which opened this section we know that we cannot expect
(0, ~) to be complete in the sense of Cook when ~ is the ALGOL 60 copy rule.
Olderog [45] found a rather simple criterion which, when imposed on a true
asserted program, guarantees its provability in (0, ~). To define this condition,
we first introduce two notions.

Given a program S, we write P -s Q iff P and Qare non-formal procedure
names from S such that Q occurs freely in the procedure body of P. By a reference
chain of S we mean a sequence of the form

Given two programs 8 1 and 82, we write 81 .-'$ 8 2 if 8 2 can be obtained by a
single application of the copy rule ~. that is, if 8 2 results from a literal replacement
of some call P(R, j) in 81 by a modified procedure body B,6 defined as in the
formulation of Rule 23. Let--~ stand for the transitive closure of .--c. We now
say that a program 8 is ~-bounded if, for some constant k, whenever S --~ 81,
then the lengths of reference chains of 8 1 are bounded by k. Intuitively speaking,
a program is ~-bounded if it cannot be expanded using the copy rule ~ to
programs with arbitrarily long reference chains.

Equipped with this notion, we can formulate the following characterization
theorem due to Olderog [45].

THEOREM 5. Let I be an interpretation such that the assertion language is
expressive relative to I and f!7P. Then the following statements are equivalent:

1. Tr1 f--w,•c) {p} S (q}.
2. F=1.'" {p} 8 {q} and Sis ~-bounded.

Note that the implication I .- 2 is a strengthening of the soundness theorem
concerning (0, ~).The implication 2 .- I is a completeness theorem. The proof
deals with constructs of the form (E I S > and proceeds by induction on their
structure. The step to programs S is obtained by using the last clause in the
definition of semantics, .4{[, '", and the rewrite rule.

All cases in the proof are dealt with in a way analogous to the handling of the
cases in the previous proofs. As usual, the nontrivial case is that of procedure
calls. The proof is a generalization of the techniques used so far. First, we choose
the most general formula for a procedure call P(R, j).

Let z be a sequence of all simple variables occurring free in (EI P(R, j) > where
P(f, j) is a correct procedure call with respect to E. Let z' be a sequence of fresh
variables of the same length as z. Put p(R, .fl = z = z'. Choose q(R, j) to be an
assertion which defines post1(p(R, j), (EI P(R, j)).

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

478 Krzysztof A. Apt

In a manner similar to the way we proved the completeness of G we can prove
that, ifl=1.c;; {p} (EIP(R,j)) {q}, then

Tr1U {p(R,j) (EjP(R,j)) {q(R,j)} 1-(o,'t> {p} (EjP(R,j)) {q}.

Thus, as in Section 6.2.2, the problem reduces to proving the most general
formula, that is, to proving that

Tr11-(0,'tff) {p(R,y)} (EjP(R,y)) {q(R,y)}. (63)

Due to the lack of space, we can only present a rough sketch of the proof.
Given a procedure call P(R, y) correct with respect to E, let 9?,c((EI

P(R, y))) denote the set of all constructs of the form (E' I P'(R, j')) such that

1. P'(R', j') is a correct procedure call with respect to E' and
2. it can be obtained by a formal expansion of (EI P(R, j)) using symbolic

execution and the copy rule ~.

For example, if Eis P <== (01 begin new x; Ei; P end), then ~,c((EI P)) is
{(EI P), (add(E, Ei) IP)} because add((add(E, Ei)), Ei) = add(E, Ei). Symbolic
execution is incorporated here by symbolically elaborating the block.

Applying this terminology to the procedure declaration E considered in the
completeness proof in Section 6.2.2, we have {(EI P(t;, u;)) : i = 1, ... , 4} k;
~'1$ 60 ((EI P(ti, vi))). Intuitively speaking, the set 9?'tff is the set of all correct'
procedure calls which could possibly occur during the execution of the program
begin E; P(R, y) end. Each such call has an appropriate procedure environment
E' in which it is called. This set is usually infinite.

It turns out, however, that, if the program begin E; P(R, j) end is ~-bounded,
then this set possesses a finite subset from which all other elements can be
derived by a substitution conforming to the restrictions of Rule 26. Lemma 6
shows that {(EI P(t;, v;));=i, ... ,a} is such a subset of .?lc;;s.,((EI P(ti, Vi))).

Once such a subset has been found, reasoning analogous to that in Section
6.2.2 can be applied. Namely, take the set Ai of most general formulas for the
elements of this subset. Let B be the set of corresponding correctness formulas
concerning the bodies B;,,, related to procedure calls from Ai. In turn, let Az be
the set of most general formulas for the procedure calls taken from the bodies
Bi'fl· A lemma corresponding to the Corollary in Section 6.2.2 states that Trr U Ai
U Az l-(o,cc>B. Now, by the choice of Ai, all formulas from Az can be derived from
Ai by Rule 26. Thus Tr1 U Ai 1-w,'clB. By Rule 23, Tr1 f-(o,,.,> Ai. In particular,
(63) holds as desired.

7 .6 Applications of the Characterization Theorem

The characterization theorem can now be applied to various classes of programs
from f/P for which the assumption of ~-boundedness can be established. We list
several such classes without going into further details.

1. ~ = ~so (the ALGOL 60 copy rule, i.e., static scope):
a. All programs disallowing one of the features 1, 2, or 5 from Theorem 4.
b. All programs disallowing feature 4 from Theorem 4 referring to procedure

names.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

Ten Years of Hoare's Logic: A Survey 479

2. <f!? = <fimr (the "most recent" copy rule): All programs satisfying the "most
recent" property.

3. <fi= <fin (the naive copy rule, i.e., dynamic scope): All programs from «J?P.

It should be noted that not all programs from «J?P are <fi?60-bounded. Olderog
[45] exhibits such a program. Of course, the existence of such programs follows
from Theorems 4 and 5.

7. 7 Decidability Issues

When studying such subclasses, it is sensible to ask whether they are properly
defined, that is, whether they form decidable subsets of «J?P. The classes listed in
1 and 3 above obviously satisfy this requirement. Also, by a theorem of Kandzia
[31], the class listed in 2 is a decidable subset of «J?P.

These decidability results should be contrasted with the restrictions imposed
on parameters in Section 6.1. Recall that, according to these restrictions, all
actual simple variables are to be distinct and different from global variables of
the considered procedure bodies (here, those from E).

We say that a program is sharing-free if all procedure calls arising during its
execution satisfy the above restriction. In [9] all programs are assumed to be
sharing-free. In general, the restriction "sharing-free" is dangerous in light of
decidability requirements: if we interpret "sharing-free" as allowing only sharing
free programs in our subclass Y' of «J?P, then Y' is in general undecidable. This
follows from a result of Langmaack (35] stating that for «J?P the formal reacha
bility of procedures is undecidable when the ALGOL 60 copy rule is applied.
Fortunately, these problems do not arise in Section 6.1 because, by the result of
(33], sharing is a decidable property for programs without procedures as parain
eters.

Another possible interpretation of "sharing-free" is to allow arbitrary programs
but restrict the application of Rule 26 to sharing-free procedure calls. But this in
turn makes the substitution rule itself undecidable; so the set of provable asserted
programs is not r.e. Hence, the only proper way to solve these difficulties is to
formulate a proof rule which can deal with sharing.

Also, in [9] no self-application is allowed (e.g., procedure calls of the form
P(... P .. .) are disallowed).

7.8 Lipton's Theorem and Its Implications

The proof of Theorem 4 related decidability of the halting problem for all finite
interpretations to the existence of a complete Hoare's system for the language in
question. Lipton [38) showed that these two properties are in fact equivalent for
a wide class of programming languages, thereby proVing a conjecture of Clarke.
Unfortunately, details of the proof are not fully worked out.

Recently Langmaack [32] provided a rigorous proof of the theorem for the case
of ALGOL-like programming languages. This proof is based on the usual static
scope semantics of ALGOL-like programs (defined by the ALGOL 60 copy rule),
whereas Lipton uses a more general notion of programming language merely
requiring the semantics to be defined by a certain type of interpreter. The version
proved by Langmaack can be stated as follows.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

480 Krzysztof R. Apt

THEOREM 6. For any "acceptable" ALGOL-like programming language PL
the following are equivalent:

1. PL has uniformly decidable halting problems for finite interpretations.
2. PL has a sound and complete Hoare's logic provided the assertion lan

guage allows quantifier-free formulas only.

PL is called acceptable if PL is closed under certain program transformations
such as replacing basic statements in a program S E PL by an arbitrary program
S' E PL. Roughly speaking, the existence of Hoare's logic means here that the set
{<p : 1=1 <p} is uniformly recursively enumerable in Tr1 for interpretations I
satisfying the expressiveness condition.

Note that the existence of a Hoare's system which is sound and complete in
the sense of Cook implies the existence of sound and complete Hoare's logic.

Theorem 6 implies that for all toy programming languages considered in
Sections 2-6 of this paper there exists a sound and complete Hoare's logic.
However, it must be noted that the above theorem does not provide any useful
axiomatization of the corresponding Hoare's logics. Also, quantifiers are disal
lowed in the assertions. In contrast, all proof systems considered in this paper are
natural and can be used straightforwardly to prove the correctness of programs.

An interesting question is whether there exists an application of Theorem 6
which shows the existence of a sound and complete Hoare's logic for a program
ming language with no known sound and complete Hoare's proof system. The
answer is positive. Consider the class of all programs from YP which disallow self
application and global simple variables in procedure bodies. Langmaack [34]
proved that this class of programs satisfies condition l of Theorem 6 in the case
of the ALGOL 60 copy rule. By Theorem 6 there exists a sound and complete
Hoare's logic for this class of programs.

The problem of finding a natural Hoare's proof system for this class of programs
is offered in [36] as a challenge to researchers in this area. It should be noted that
the characterization theorem does not apply here, since not all programs in this
class are ~so-bounded. An example of such a program that is not ~so-bounded is
given in [36, 45]. There is as yet no proof system available in which the partial
correctness of this program can be studied.

7.9 Bibliographical Remarks

Axiom 22 and Rule 25 are due to Clarke [9]. Rule 23 and the semantics ...11}"" are
modifications of the corresponding versions used in [9]. The construct ~, 6 (••.) is
used implicitly in [19] and explicitly in [9], where it is called a range of a
statement. In [l] a completeness result concerning a language disallowing pro
cedures with parameters and with features 2-5 from Theorem 4 is proved. The
discussion of sharing in Section 7.7 is due to a private communication from
Langmaack and Olderog. In (36] they give an overview of the results discussed in
this section.

ACKNOWLEDGMENTS

We thank D. Harel, P. E. Lauer, E.W. Mayr, and J. Zucker for their comments
on earlier versions of this paper. One of the referees made extensive comments

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

Ten Years of Hoare's Logic: A Survey 481

and suggestions concerning the paper which significantly influenced the final
version. Professor H. Langmaack and E. R. Olderog provided detailed suggestions
concerning Section 7.

REFERENCES

1. APT, K.R. A sound complete Hoare-like system for a fragment of PASCAL. Rep. IW 97 /78,
Mathematisch Centrum, Amsterdam, 1978.

2. APT, K.R., BERGSTRA, J.A., AND MEERTENS, L.G.L.T. Recursive assertions are not enough-Or
are they? Theor. Comput. Sci. 8 (1979), 73-87.

3. APT, K.R., AND DE BAKKER, J.W. Semantics and proof theory of PASCAL procedures. In
Lecture Notes in Computer Science, vol. 52: Proc. 4th Colloq. Automata, Languages and
Programming. Springer-Verlag, New York, 1977, pp. 30-44.

4. APT, K.R., AND DE BAKKER, J.W. Exercises in denotational semantics. In Lecture Notes in
Computer Science, vol. 45: Proc. 5th Symp. Mathematical Foundations of Computer Science.
Springer-Verlag, New York, 1976, pp. 1-11.

5. BERGSTRA, J.A., AND TUCKER, J.V. Some natural structures which fail to possess a sound and
decidable Hoare-like logic for their while-programs. Theor. Comput. Sci., to appear; earlier version
appeared as Rep. IW 1:36/80, Mathematisch Centrum, Amsterdam, 1980.

6. BERGSTRA, J.A., AND TUCKER, J.V. Expressiveness and the completeness of Hoare's logic. Rep.
IW 149/80, Mathematisch Centrum, Amsterdam, 1980.

7. CARTWRIGHT, R., AND 0PPEN, D. Unrestricted procedure calls in Hoare's Logic. In Conf. Ree.,
5th Ann. ACM Syrup. Principles of Programming Languages, Tucson, Ariz., Jan. 23-25, 1978, pp.
131-140.

8. CLARKE, E.M., JR. Proving correctness of coroutines without history variables. Acta Inf 13
(1980), pp. 169-188.

9. CLARKE, E.M., JR. Programming language constructs for which it is impossible to obtain good
Hoare axiom systems. J. ACM 26, 1 (Jan. 1979), 129-147.

10. CLARKE, E.M., JR. Program invariants as fixed points. In Proc. 18th IEEE Syrup. Foundations
of Computer Science, 1977, pp. 18-29.

lOa. CLARKE, E.M., JR. Completeness and incompleteness theorems for Hoare-like axiom systems.
Ph.D. dissertation, Computer Science Dep., Cornell Univ., 1976.

11. CLINT, M. Program proving: Coroutines. Acta lnf 2 (1973), 50-63.
l2. ·CLINT, M., AND HOARE, C.A.R. Program proving: Jumps and functions. Acta Inf 1 (1971),

214-224.

13. CooK, S.A. Soundness and completeness of an axiom system for program verification. SIAM J.
Comput. 7, 1 (1978), 70-90.

14. DE BAKKER, .J.W. Mathematical Theory of Program Correctness. Prentice-Hall, Englewood
Cliffs, N.J., 1980.

15. DE BAKKER, J.W. Correctness proofs for assignment statements. Rep. IW 55/76, Mathematisch
Centrum, Amsterdam, 1976.

16. DIJKSTRA, E.W. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N.J., 1976.
17. DONAHUE, J.E. Lecture Notes in Computer Science, vol. 42: Complementary Definitions of

Programming Language Constructs. Springer-Verlag, New York, 1976.
18. FLOYD, R.W. Assigning meanings to programs. In Proc. AMS Symp. Applied Mathematics, vol.

19. American Mathematical Society, Providence, R.I., 1967, pp. 19-31.
19. GORELICK, G.A. A complete axiomatic system for proving assertions about recursive and non

recursive programs. Tech. Rep. 75, Dep. Computer Science, Univ. Toronto, 1975.
20. GRIES, D. The multiple assignment statement. IEEE Trans. Softw. Eng. SE-4 (March 1978),

89-93.
21. GRIES, D., AND LEVIN, G. Assignment and procedure call proof rules. ACM Trans. Program.

Lang. Syst. 2, 4 (Oct. 1980), 564-579.
22. HAREL, D. Proving the correctness of regular deterministic programs: A unifying survey using

dynamic logic. Theor. Comput. Sci. 12 (1980), 61-81.
23. HAREL, D. Lecture Notes in Computer Science, vol. 68: First-Order Dynamic Logic. Springer

Verlag, New York, 1979.

ACM Transactions on Programming Languages and Systems, Vol. :J, No. 4, October 1981.

482 Krzysztof R. Apt

24. HAREL, D., PNUELI, A., AND STAVI, J. Completeness issues for inductive assertions and Hoare's
method. Tech. Rep., Dep. Computer Science, Univ. Tel Aviv, Israel, 1976.

25. HOARE, C.A.R. Proof of correctness of data representations. Acta Inf I (1972), 271-281.
26. HoARE, C.A.R. Procedures and parameters: An axiomatic approach. In Lecture Notes in

1Hathematics, vol. 188: Semantics of Algorithmic Languages. Springer-Verlag, New York, 1971,
pp. 102-116.

27. HOARE. C.A.R. An axiomatic basis for computer programming. Commun. ACM 12, 10 (Oct.
1969), 576-580, 583.

28. HOARE, C.A.R., AND WIRTH, N. An axiomatic definition of the programming language PASCAL.
Acta lnf 2 (1973), 335-355.

29. IcARASHI, S., LONDON, R.L., AND LuCKHAM, D.C. Automatic program verification I: A logical
basiH and its implementation. Acta lnf 4 (1975), 145-182.

30. JANSSEN, T.M.V., AND VAN EMDE BOAS, P. On the proper treatment of referencing, dereferenc
ing and assignment. In Lecture Notes in Computer Science, vol. 52: Proc. 4th Colloq. Automata,
Languages and Programming. Springer-Verlag, New York, 1977, pp. 282-300.

31. KANDZIA, P. On the "most recent" property of ALGOL-like programs. In Lecture Notes in
Computer Science, vol. 14: Proc. 2d Colloq. Automata, Languages and Programming. Springer
Verlag, New York, 1974, pp. 97-111.

32. LANGMAACK, H. A proof of a theorem of Lipton on Hoare Logic and applications. Ber. 8003,
Inst. Inf. Prakt. Math., Univ. Kiel, W. Germany, 1980.

33. LANGMAACK, H. On a theory of decision problems in programming languages. In Lecture Notes
in Computer Science, vol. 75: Proc. lnt. Conf Mathematical Studies of Information Processing,
Springer-Verlag, New York, 1979, pp. 538-558.

34. LANGMAACK, H. On termination problems for finitely interpreted ALGOL-like programs. Ber.
7904, Inst. Inf. Prakt. Math., Univ. Kiel, W. Germany, 1980.

35. LANGMAACK, H. On correct procedure parameter transmission in higher programming languages.
Acta lnf 2 (1973), 110-142.

36. LANGMAACK, H., AND 0LDEROG, E.R. Present-day Hoare-like systems for programming lan
guages with procedures: Power, limits and most likely extensions. In Lecture Notes in Computer
Science, vol. 85: Proc. 7th Colloq. Automata, Languages and Programming, Springer-Verlag,
New York, pp. 363-373.

37. LAUER, P.E. Consistent formal theories of the semantics of programming languages. Tech. Rep.
TR.25.121, IBM Lab. Vienna, Austria, 1971.

38. LIPTON, R.J. A necessary and sufficient condition for the existence of Hoare Logics. In Proc.
18th IEEE Syrop. Foundations of Computer Science, 1977, pp. 1-6.

39. LOMAZOVA, I.A. 0 slofaosti induktivnyh uslovii dlja verifikacii arifmeticeskih programm (On
the complexity of inductive assertions for the verification of arithmetical programs). In Materialy
Wsesojuznoi Nauenoi Studenceskoi Konferencii, Matematika, Novosibirsk State Univ., Novosi
birsk, U.S.S.R., 1978, pp. 85-94.

40. LONDON, R.1., GUTTAG, J.V., HORNING, J.J., LAMPSON, B.W., MITCHELL, J.G., AND POPEK,
G.J. Proof rules for the programming language Euclid. Acta Inf JO (1978), 1-26.

41. McGOWAN, C.L. The "most recent" error: Its causes and correction. In Proc. ACM Conf. Proving
Assertions About Programs; published as joint issue of SJGPLAN Notices (ACM) 7, 1 (.Jan. 1972),
and SIGACT Newsl. (ACM) 14 (Jan. 1972), 191-202.

42. MANNA, Z., AND PNUELI, A. Axiomatic approach to total correctness of programs. Acta Inf 3
(1974), 253-263.

43. MEYER, A.R., AND PARIKH, R. Definability in dynamic logic. In Conf. Proc. 12th Ann. ACM
Symp. Theory of Computing, Los Angeles, Calif., April 28-30, 1980, pp. 1-7.

44. OLDEROG, E.R. General equivalence of expressivity definitions using strongest postconditions
resp. weakest preconditions. Ber. 8007, Inst. Inf. Prakt. Math., Univ. Kiel, West Germany, 1980.

45. 0LDEROG, E.R. Sound and complete Hoare-like calculi based on copy rules. Ber. 7905, Inst. Inf.
Prakt. Math., Univ. Kiel, West Germany, 1980; also Acta lnf, to appear.

46. OPPEN, D.C., AND COOK, S.A. Proving assertions about programs that manipulate data struc
tures. In Conf. Ree., 7th Ann. ACM Symp. Theory of Computing, Albuquerque, N.M., May 5-7,
1975, pp. 107-116.

47. Ow1cK1, S., AND GRIES, D. An axiomatic proof technique for parallel programs I. Acta lnf 6
(1976), 319-340.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.

Ten Years of Hoare's Logic: A Survey 483

48. PRATT, V.R. Semantical considerations on Floyd-Hoare logic. Proc. 17th IEEE Symp. Foun
dations of Computer Science, 1976, pp. 109-121.

49. PRESBURGER, M. Uber die Vollstiindigkeit eines gewissen Systems der Arithmetic ganzer Zahlen,
in welchen die Addition als einzige Operation hervortritt. In C.R. ler Congr. de Mathematiciens
de Pays Slavs, 1929.

50. SCOTT, D., AND DE BAKKER, J. W. A theory of programs: Notes of an IBM Vienna seminar, 1969.
Unpublished.

51. SHOENFIELD, J.R. Mathematical Logic. Addison-Wesley, Reading, Mass., 1967.
52. SOKOLOWSKI, S. Axioms for total correctness. Acta Inf 9 (1977), 61-72.
53. SOKOLOWSKI, S. Total correctness for procedures. In Lecture Notes in Computer Science, vol.

53: Proc. 6th Symp. Mathematical Foundations of Computer Science. Springer-Verlag, New
York, 1977, pp. 475-483.

54. WAND, M. A new incompleteness result for Hoare's system. J. ACM 25, 1 (Jan. 1978), 168-175.
55. WIRTH, N., AND HOARE, C.A.R. A contribution to the development of ALGOL. Commun. ACM

9, 6 (June 1966), 413-432.

Received September 1979; revised .January 1981; accepted May 1981

ACM Transactions on Programming Languages and Systems, Vol. :J, No. 4, October 1981.

