
Ten Years of WebTables

Michael Cafarella
University of Michigan

michjc@umich.edu

Alon Halevy
Megagon Labs

alon@megagon.ai

Hongrae Lee
Jayant Madhavan

Cong Yu
Google, Inc.

{hrlee, jayant,
congyu}@google.com

Daisy Zhe Wang
University of Florida

daisyw@cise.ufl.edu

Eugene Wu
Columbia University

ew2493@columbia.edu

ABSTRACT

In 2008, we wrote about WebTables, an effort to exploit
the large and diverse set of structured databases casually
published online in the form of HTML tables. The past
decade has seen a flurry of research and commercial activi-
ties around the WebTables project itself, as well as the broad
topic of informal online structured data. In this paper, we1

will review the WebTables project, and try to place it in the
broader context of the decade of work that followed. We will
also show how the progress over the past ten years sets up
an exciting agenda for the future, and will draw upon many
corners of the data management community.

PVLDB Reference Format:

Michael Cafarella, Alon Halevy, Hongrae Lee, Jayant Madhavan,
Cong Yu, Daisy Zhe Wang, and Eugene Wu. Ten Years of WebTa-
bles. PVLDB, 11 (12): 2140-2149, 2018.
DOI: https://doi.org/10.14778/3229863.3240492

1. INTRODUCTION
In 2008, the Web had been traditionally modelled as a

corpus of unstructured documents. Some structure was im-
posed by hierarchical URL names and the hyperlink graph,
but the basic unit for reading or processing was the unstruc-
tured document itself. That is mostly still true in 2018.
However, Web documents often contain large amounts of
relational data. For example, the Web page shown in Fig-
ure 1 (from the original paper [7]) contains a table that lists

1 One of the things that has made the WebTables project
exciting is its long lifespan: the project began in 2007, and
is still ongoing. The authors of this paper took an especially
large role in WebTables, but not everyone who worked on
the project is an author of this paper or even necessarily
known to us. We are very grateful to everyone who has
contributed over the years.

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 11, No. 12
Copyright 2018 VLDB Endowment 21508097/18/8.
DOI: https://doi.org/10.14778/3229863.3240492

Figure 1: A typical use of the table tag to describe
relational data. From the original WebTables paper.

American presidents. The table has four columns, each with
a domain-specific label and type (e.g., President is a person
name, Term as President is a date range, etc) and there is
a tuple of data for each row. This Web page essentially con-
tains a small relational database, even if it lacks the explicit
metadata traditionally associated with a database.

The goal of the original WebTables paper [7] was to au-
tomatically detect these “database-like” HTML tables, use
them to construct the largest corpus of databases to date,
and then build novel applications out of the resulting corpus.
We extracted 14.1B HTML tables from Google’s general-
purpose web crawl, and then used a trained classifier to
identify the estimated 154M tables that were database-like.
The percentage of raw tables that described databases was
small — about 1.1% — but the number of raw tables was so
large that the resulting corpus of databases was still larger
than any previously-known collection, by at least five orders
of magnitude. The paper described how we constructed the
corpus, and described a number of novel applications that
the corpus enabled.

The WebTables work at Google was very exciting be-
cause it combined the Web’s enormous scale and topical
reach with questions that have been traditionally associated
with relational databases, such as how to understand and

2140



recover schema information. However, we did not imagine
the many positive events that would follow. Many subse-
quent research papers, from both academia and industry,
improved the original extraction methods, then applied the
resulting datasets to novel problems such as attribute discov-
ery and entity extension. There was also industrial software
engineering effort – most notably at Google and Microsoft –
that built real products similar to the use cases described in
the original WebTables paper, as well as entirely novel ones.

However, we also believe there are still tremendous op-
portunities around extracting and manipulating structured
data on the Web. Indeed, we think the next decade holds
even more promise for WebTables-style work than the last.

In this paper, we will offer a brief summary of the origi-
nal WebTables work, and attempt to describe and organize
much of the intellectual work that followed. We will also de-
scribe the practical engineering efforts that were necessary
to turn the WebTables vision into real products. Finally, we
will sketch a vision of what we believe are open opportu-
nities around WebTables-like work, both in the intellectual
sphere and the practical engineering one.

1.1 WebTables: A Brief Recap
In this section we provide a short overview of the original

WebTables paper [7] and its core contributions.

1.1.1 Extraction and Data Model

We collected roughly 14.1 billion HTML tables from the
Google search web crawl, and applied a trained is-relational
classifier to identify the tables as relational or non-relational.
The relational label is somewhat informal, defined driven
by human judgmements: the human judges wanted tables
where rows clearly represent separate tuple-like objects, and
columns represent different dimensions of each tuple. Ex-
traction details were described in Cafarella, et al. [8].

A “header row” of attribute labels at the top of the ta-
ble is optional, but if recovered offers a small amount of
schema-like information about the extracted data table. We
trained a second classifier to detect this header row. Of
course the schema information is extremely informal, and
even if recovered is not very expressive. For example, even
attribute typing information is not explicit, and many tra-
ditional relational schema elements such as key constraints
are missing.

We applied the is-relational classifier to the collection of
raw HTML tables and obtained a corpus R of databases
(where the classifier returned a verdict of relational). Each
database consists of a single relation. For each relation R ∈
R, we have:

• The url and page offset where R was recovered; these
uniquely identify R.

• The header row, or “schema” RS , which is an ordered
list of attribute labels. For example, the table in Fig-
ure 1 has the attributes RS = [President, Party,
...]. One or more elements of RS may be empty strings
(e.g., if the table’s schema cannot be recovered).

• A list of tuples, RT . A tuple t is a list of data strings.
The size of a tuple t is always |RS |, though one or more
elements of t may be empty strings.

1.1.2 Schema Statistics

Extracting a large collection of database-like tables and
their relational attribute labels allowed us to build the at-
tribute correlation statistics database, or ACSDb. It con-
tains statistics about general WebTables schema use.

The ACSDb listed each unique schema S found in the
set of all RS , along with a count that indicates how many
relations contain the given S. We assume two schemas are
identical if they have the same set of attributes (regardless
of order). The ACSDb A is a set of pairs of the form (S, c),
where S is a schema of a relation in R, and c is the number
of relations in R that have the schema S. We only count
one schema per internet domain name, to prevent a single
site with many similar pages from swamping the counts.

The resulting ACSDb contained 5.4M unique attribute
labels, and 2.6M unique schemas. Unsuprisingly, a relatively
small number of schemas appear very frequently, while most
schemas are rare.

The ACSDb was simple, but critically allowed us to com-
pute the probability of seeing various attributes in a schema.
For example, p(address) is simply the sum of all counts c for
pairs whose schema contains address, divided by the total
sum of all counts. We can also detect relationships between
attribute names by conditioning an attribute’s probability
on the presence of a second attribute. For example, we could
compute p(address|name) by counting all the schemas in
which “address” appears along with “name”, and normaliz-
ing by the counts for seeing “name” alone.

1.1.3 Applications

We used this corpus of databases to build several applica-
tions. The first was a simple keyword search tool: it would
take a user’s search query as input, and return a ranked list
of WebTables-derived databases to answer the query. Our
initial paper used “city population” as an example query.
Subsequent work at Google deployed this idea in the core
search engine; Figure 2 shows that query from the origi-
nal paper’s screenshot, and that same query on the Google
search engine of today.

We also built several applications on top of the ACSDb.
Two of the most interesting are schema autocomplete and
attribute synonym finding.

The schema autocomplete tool helped database designers
build a schema, by suggesting the most-likely next attributes
to add to a schema. For example, if the designer inputs
the attribute stock-symbol, the ACSDb-powered schema
auto-complete tool will suggest company, rank, and sales
as additional attributes. This tool worked by using ACSDb
statistics to find the most probable attributes, conditioned
on seeing attributes the designer has already entered.

The attribute synonym finding tool automatically com-
puted pairs of schema attributes that seem to be used syn-
onymously in the WebTables corpus. For example, the tool
could find that hr and home run are used synonymously
when representing baseball data, even though this would be
an extremely unlikely pair of words to find in a traditional
thesaurus or other linguistic resource. This tool worked
by identifying pairs of attribute labels where (1) the labels
never appeared together in the sameWebTables schema, and
(2) the labels frequently share similar co-attributes, among
other sources of evidence.

2141



Figure 2: A query for “city population”, from
the original WebTables paper’s demonstration ta-
ble search system (left), and Google search results
in 2018 (right).

1.2 Previous Work
In 2008, WebTables was not the first effort to identify

databases from HTML tables. Other systems [10, 37, 41],
especially that of Gatterbauer, et al. [18], had tried a num-
ber of interesting approaches for extracting databases from
HTML pages. WebTables was the first system we know of
to obtain a database corpus at its scale.

Keyword search over structured data was a known prob-
lem in the database literature, but tended to focus on return-
ing tuples from a single large database, as with the DBX-
plorer [2] and DISCOVER [22] projects. Keyword-driven
web search engines sometimes returned structured results,
but were usually limited to a tiny number of domains, such
as weather. In 2008, most other access paths for popular
consumption of structured data, such as mobile device app
stores and voice assistants, did not yet exist.

2. A DECADE OF RESEARCH
The WebTables project was one example of research into

online structured data – a long-lasting line of intellectual
and engineering work that includes Semantic Web [4], Web
of Linked Data [5], and many other projects. However, ded-
icated research into Web-embedded data tables per se has
became quite popular in the last decade.

2.1 Extraction
One early direction was to extend table extraction beyond

HTML tags. The original paper focused on identifying very
conventional tables of data, with attribute-oriented columns
and tuple-oriented rows. However, relational data are also
encoded as attribute-value pairs in the form of vertical tables
(e.g., Wikipedia infoboxes), or as entries in lists [16, 13].
For example, a list of cartoons may have entries such as
“Duck Amuck (Warner Bros./1953)”. This string encodes a
structured record containing the title, the producer, and the
release year. Elmeleegy et al. [16] introduced a pipeline that
splits individual list entries into candidate rows, performs
attribute column alignment across rows, and finally refines
the table to address inconsistencies.

Chu et al. [13] further introduced syntactic and semantic
coherence measures for list extraction, and learned seman-
tic coherence measures by leveraging column co-occurence
statistics from existing web tables. Several researchers pro-
duced web tables from the public Common Crawl [1, 24, 15],
thereby making them available to a broad audience outside
the large Web companies. Wang, et al. [36] improved ex-
traction quality by leveraging curated knowledge bases.

2.2 Table Search
Table Search was a core and exciting potential application

in the WebTables paper, and it is not surprising that it
attracted substantial research attention.

In general, keyword-based table search ranks extracted
tables based on a combination of cell contents, attribute
names, and surrounding text (e.g., page title). However,
this approach may not be sufficient for several important
classes of search queries, encountered by Chakrabarti, et
al. when deploying a web table service on the Bing search
engine [9]. One is row-subset queries, which only request
a subset of rows in a larger table. For example, the query
“largest software companies in USA” may only match a table
of large software companies, and must be filtered to the
subset of USA rows. Another is entity-attribute queries, such
as “aberdeen population”, which match some keywords to
entities (“aberdeen”) and other keywords to attribute names
(“population”).

Another way to navigate a set of tables is via column
search. This method does not use keywords, except per-
haps in the initial user interaction. Instead, users begin
with an ”initial table,” then navigate through a “concept
space” of tables that would be good join candidates for the
original. Different methods built this space using knowledge
bases [17], isA databases [32], or crowd sourcing [17].

2.3 Table Enhancement
In several “table enhancement” projects, the user submits

a query table to the system, which then attempts to “com-
plete” it by filling in attribute values, recommending novel
attributes, or adding more entities of the same type.

Several operators have been proposed for specific types of
table enhancement tasks [6, 39, 43]. In Augmentation by at-
tribute name (ABA) (also called EXTEND() in [6]), the system
fills in attribute values given an explicit user-provided at-
tribute. In augmentation by example (ABE), the system fills
in attribute values given other examples of desired attribute
values (but no attribute name). The Attribute Discovery
(AD) operator recommends important attributes given a list
of entity names.

Cafarella, et al. [6] initially implemented EXTEND() with a
combination of schema matching and search engine results
to find candidate completion values from extracted data ta-
bles. InfoGather [39] observed that precision and coverage
of the filled-in values can be improved by exploiting indirect
match tables that are a “hop away” from the original query
table. This method was used to implement ABA, ABE, and
AD. The follow-on InfoGather+ [43] system ensured that
the web tables used for EXTEND() contained attributes were
semantically consistent. For instance, extending a table of
companies with “revenue” should not draw from columns
with names such as “2010 revenue”, “2011 revenue”, and
“revenue (euros)” even though they are textually quite sim-
ilar to the original attribute name.

Another example of table enhancement is fact lookup, in
which the query table contains a single entity and single
attribute, and the goal is to retrieve the attribute value (the
fact). To answer such queries, FACTO [40] identified web
pages about individual entities (e.g., a wikipedia page about
Barack Obama), then found attribute-value tables from the
relevant pages, and finally retrieved answers from them.

Concept expansion takes as input a high level concept
(e.g., rock stars) and an example list of entities within the

2142



concept (e.g., freddy mercury, yoshiki, and prince) and
expands the set of entities within the concept. Wang, et
al. [34] identified possible source-data web tables for this
task by examining the surrounding text (e.g., table cap-
tions), and employing only exclusive tables to avoid semantic
drift. The user-provided examples serve to seed this itera-
tive process. Chen, et al. attempted to solve a similar task,
with a system tailored for long-tail infrequently-observed
items [11].

One important aspect of table improvement is to improve
the quality of table-contained data. Along this line, Wang
et. al. [35] proposed a framework based on functional depen-
dencies (FDs). Unlike in traditional database design, where
FDs are specified as statements of truth about all possible
instances of the database; in web environment, FDs are not
specified over the data tables. Instead, FDs are extended
with probabilities to capture their inherent uncertainty, and
are generated using counting-based algorithms over many
data sources. These probabilistic FDs can improve data and
schema quality by (1) pinpointing dirty data sources and (2)
normalizing large mediated schemas.

Many of the above techniques fundamentally leverage re-
lationships among columns, rows, and tables, often with a
machine learning component. Limaye, et al. [25] studied
how to annotate web tables with the presence of entities in
cells, attribute types and concepts; and the presence of rela-
tionships between attributes. They used a graphical model
that jointly learns these annotations within a single model,
and leverages the YAGO [31] knowledge base as a source of
attribute concepts and entities. Pimplikar, et al. [27] em-
ployed a similar joint-labeling technique by modeling table
enhancement as a graphical model.

The relationship between tables can be further leveraged
to synthesize tables that are the results of combining mul-
tiple related tables and thereby generating data tables that
are not present anywhere on the Web. Ling, et al. [26] ex-
plored how tables with the same semantics can be discovered
and vertically combined into a table with a more complete
set of rows. Das Sarma, et al. [30] looked at tables that
share core identifying attributes and yet complement each
other on other attributes; these therefore can be horizon-
tally combined to provide a table with a more complete set
of columns.

3. MAKING SOME REAL IMPACT
The publication of the initial WebTables paper inspired

a long line of product work at both Google and Microsoft.
At Google, as described by Balakrishnan, et al. [3], this in-
cluded efforts to bring the core WebTables machinery up to
production quality, integrating pieces of the original WebTa-
bles application vision into existing products, and launching
novel WebTables-driven applications, such as Tables in Fea-
tured Snippets and Structured Snippets. At Microsoft, the
team embarked on its own web tables effort, which became
part of several interesting products. This section will mostly
focus on efforts at Google with some overview of efforts at
Microsoft in Section 3.6.

3.1 Production Corpus Construction
Extracting High Quality Tables: Subsequent engineer-
ing work used the same basic scan-and-classify architecture
as the original WebTables paper, with a few important ad-
ditions:

• The extractor used simple filtering rules that are
written by hand to identify a huge number of non-
relational HTML tables, such as degeneratively small
ones, calendars, and tables-of-contents. These simple
rules are effective at dramatically shifting the class im-
balance of the is-relational task. Instead of 99 non-
relational tables for each relational one, the ratio is
more like 9 to 1, making a trained classifier much eas-
ier to build.

• The system aimed to additionally obtain vertical ta-
bles — that is, lists of attribute/value pairs, often
seen in Wikipedia infoboxes. This entire class of ta-
bles were not considered as useful as horizontal tables
originally, but their inclusion proved to be crucial for
some applications.

• The team designed and implemented machine learn-
ing classifiers to make predictions on is-relational-
vertical and is-relational-horizontal.

Recovering Table Semantics: A substantial amount of
the initial WebTables paper focused on understanding the
semantics of the table corpus as a whole, in the form of
the ACSDb. However, a surprisingly small amount of the
initial system described by that paper focused on under-
standing the semantics of a particular table; it attempted to
identify whether the first row contained a schema, and used
some crude ranking features for table search, but not much
else. However, table-level semantic understanding is key for
many applications. Some examples of recovering table-level
semantics include:

• Subject-column discovery: Researchers observed
that over 75% of the tables in the extracted WebTables
corpus contained a subject-like column that describes
the main entities of the table, while other columns de-
scribe properties of these entities. For example, the
table in Figure 3 describes literacy rates in UN-listed
countries, and contains a subject column of Coun-
try. The team developed a high-quality classifier to
identify subject columns. Interestingly, unlike the pri-
mary keys in relational databases, the subject column
in a Web table may not be a key of the table, and may
contain duplicate values.

• Column class-label annotation: Many WebTables’
columns contain values drawn from a relatively small
number of classes, such as countries. Others are drawn
from a small number of “algorithmic” classes, such as
phone numbers. These class labels are quite different
from the table’s schema labels; the former are drawn
from a fixed set, while the latter can be anything the
data authors wishes to write. It can be useful for
downstream applications if the tables’ columns are an-
notated with their relevant class labels. Note that a
column can belong to multiple classes.

Balakrishnan, et al. [3] used the Google Knowledge
Graph to first match cell values to KG entities (such
as the KG entity that represents Barack Obama).
They then recovered KG entity classes (such as the
class that represents Presidents or the class that rep-
resents People) for each cell. Finally, they aggregated
the recovered KG classes to provide a label for the

2143



overall table column. This column-level verdict can be
further leveraged to clean up ambiguous cell-level ref-
erences (e.g., it may not initially be clear whether the
string “Obama” refers to the entity Barack Obama
or Michele Obama, but a column-level class-label of
President resolves the issue). Additional work [14]
made concept detection more scalable and accurate.

Interestingly, being able to identify a class label for the
subject column proved to be a very effective signal of
overall table quality.

• Binary relationships between columns: The re-
lationships between the subject column (say, Pres-
ident) and other columns of the table (say, Vice-
President or the more obscure Chief-of-Staff), are
often described using complicated text in the source
page. These descriptions are often bundled along with
general text in the page, and it can be hard to disen-
tangle the column-specific description.

Researchers [19] developed a dictionary of pairwise at-
tributes found in search queries and web text (e.g.,
Countries and GDP or Coffee Production). They
used that dictionary to identify the parts of the sur-
rounding page that likely refer to a specific column,
and annotate each column with the resulting text.

3.2 Google Tables
The keyword-driven table search application was one that

we found exciting from the very start of the WebTables
project. The prototype from the initial paper became avail-
able to users as Google Tables2 (now in maintenance mode),
an experimental public site for finding tables on the Web.
While it was not the killer application that we had hoped,
it demonstrated the value of WebTables and paved the way
for the follow-up applications at Google.

Google Tables was built on Google’s internal scalable search
infrastructure. It integrated table-specific ranking signals,
including (1) some traditional page ranking information,
such as link analysis; (2) detailed information about which
portion of each extracted table received the keyword match
(such as whether on a cell value, or the table’s caption
text); and (3) signals derived from the enhanced semantic
information. This latter information also enabled semantics-
powered query expansion.

Google Docs Integration: Google Tables was used for
finding useful tables, but also as the first step in finding data
import targets for other Google applications. Google Docs’
Explore panel — originally called the Google Research Tool
— provides users a convenient way to search for information
while they are working on their documents. Users can insert
citations, links, and images into the document directly from
the tool. Searching for tabular data turned out to be a
natural new feature.

From November 2013 to September 2016, table search
functionality was integrated into various parts of Google
Docs. Compared to users of the Google Tables product, who
intentionally came to the table search engine to find relevant
data, Google Docs users are typically less familiar with tab-
ular data and may not want to scroll over many results pages
to find the data they want. Thus, we are more selective in

2http://research.google.com/tables

the search result and apply a higher bar for search quality.
We considered only a subset of our table corpus, which is
roughly 10% of the table search corpus. We selected those
higher-quality tables by applying a few simple rules, such as
requiring much higher quality scores, or requiring the pres-
ence of both header rows and subject columns.

3.3 Fusion Tables Integration
Google Fusion Tables [20] was introduced in June 2009

as a lightweight data management tool for the lay person.
Users could upload structured data from spreadsheets or
CSV files and see the data easily on maps and other visu-
alizations. In a sense, Fusion Tables complemented WebTa-
bles – instead of creating an HTML table on a Web page,
users can directly create the data in Fusion Tables, and we
would not have to extract it from a Web page. Fusion Tables
was used in many applications, the most notable ones were
in journalism and in disaster response where professionals
needed quick ways of making data visualizations available
to many people.

Fusion Tables was later integrated into table search. Users
could point to an HTML table on a Web page and have
it directly imported into Fusion Tables, thereby making it
easier to use the HTML table for visualizations or to be
joined with other tables.

3.4 Tables in Featured Snippets
The team eventually found two important applications

for WebTables in Google’s core search application—Tables
in Features Snippets described in this subsection and Struc-
tured Snippets in the next subsection. While Google Tables
and Fusion Tables demonstrated the potential of WebTa-
bles, users of those products were a rather focused group.
In contrast, these next applications brought WebTables to
billions of users.

Featured Snippets3 is a special block at the top of the
search results page that includes a summary of the answer,
extracted from a webpage, and is one of most prominent
features in Google’s search results. The team noticed user
questions could often be best answered by tabular form data,
and integrated WebTables into the Search results, launching
Tables in Features Snippets in May 2014. The right side of
Figure 2 shows an example.

The queries that are most amenable to Tables in Features
Snippets (e.g., “literacy rate of Malaysia” in Figure 3) typ-
ically belong to the longer-tail content that would not be
suitable for curation and storage in the Google Knowledge
Graph. We return to this point in Section 4.

The integration with Google search raised multiple chal-
lenges beyond dedicated Google Tables. First, we needed to
identify “fact-seeking” queries where the user could conceiv-
ably benefit from a table of data. Second, when a query is
fact-seeking, we need to identify the pages that contain rel-
evant tables; when there are multiple such tables, we had to
choose which one to highlight in the result page. Finally, we
needed to design a UI that is most effective in the very lim-
ited space. A challenging task in presenting table search re-
sults lies in generating a helpful result summary. Engineers
used the keyword hits on the table to automatically choose
projections and selections to generate a query-specific snip-
pet for each table result. Figure 3 shows two similar search

3https://www.blog.google/products/search/reintroduction-
googles-featured-snippets/

2144



Figure 3: Tables in Featured Snippets will modify
the projected columns in response to different user
search terms.

Figure 4: The original Wikipedia table that provides
tabular data for the Malaysia queries.

queries that retrieve the same table, but generate different
query-sensitive table snippets.

3.5 Structured Snippets
While Tables in Features Snippets produced a subset of a

single table and were displayed at the top of the search re-
sult page, we discovered another opportunity for using tables
within the snippets4 of the regular search results. Launched
in August 2014, Structured Snippets5 has become one of
the main search result snippet features. This was a pleasant
surprise in two main aspects. First, we had not envisioned
that table data could be used to impact search result snip-
pets, a fundamental feature for search. Second, the feature
was powered by vertical tables, a class of tables that were
originally considered much less interesting and rich than the
horizontal ones. This new application posed new challenges,
the primary one being fact quality, i.e., to identify which
facts from the vertical table are relevant and interesting to
search users. For example, as shown in Figure 5, for a Ken-
tucky Derby winning horse, the facts breeder will be more
interesting than Country. This is in some ways similar to
identifying high quality columns of the table, except that the
columns and rows are transposed and the signals for identi-
fying interesting facts may come from outside of the table.
We leveraged a number of ranking techniques to achieve very
high fact quality. We note that since Structured Snippets
applied to all the results on the page and did not have to
appear as prominently as Tables in Featured Snippets, they
appeared much more often.

Richer snippet presentation using “knowledge carousels”
constructed from horizontal tables was explored in [12]. Knowl-
edge carousels found a surprisingly powerful application in

4Snippets are small samples of content that gives search
users an idea of what’s in the webpage for each page in the
search result.
5https://ai.googleblog.com/2014/09/introducing-
structured-snippets-now.html

Figure 5: Structured Snippets providing long tail
structured data as part of Google search result’s
snippet

news, where readers of a news article can easily get ac-
cess to structured data knowledge that are super-relevant
to the content. The main challenge here is to understand
the matching between the news article and the structured
table. The feature was launched in the Google News An-
droid app in August 2017.

3.6 Microsoft Products
At Microsoft, Chakrabarti, et al. [9] described how web

tables have been used in their synonym and web tables ser-
vices. For the synonym service, web tables were used to fil-
ter spurious synonyms (if they appear in the same columns)
and identify novel synonyms (if they appear in the same
rows) [21]. This service is used in Bing Snapp, Ask Cortana,
Bing Knowledge API, and Bing synonym API. Vertical-
specific search engines on customer websites often use the
synonym API to disambiguate keyword searches. The web
tables service has been integrated into Excel PowerQuery
(in 2013) as a keyword table search feature, where users can
search for tables to populate excel sheets through a search
interface, and into Bing Search (in 2015), where tables are
returned for 2% of search queries with 98% precision.

4. THE LANDSCAPE OF CONSUMER

STRUCTURED DATA
One major change over the past ten years has been the

explosion of consumer demand for structured data. Mo-
bile apps, voice assistants, structured “infobox-style” web
search results, and other consumer structured data applica-
tions were all either nonexistent or in their infancy at the
time of the original WebTables paper. Today, they are all
very popular and powered by structured data. These diverse
consumer applications are powered by an equally diverse
range of structured data resources.

In this section we review this landscape and its character-
istics with the goal of motivating future opportunities.

We can think of at least four different classes of sources
that power consumer structured data applications, ordered
roughly from most to least structured:

1. Relational Data with a standard schema, sometimes
in stream form, such as weather or stock quotes. These
data products have been commercially available for

2145



many years. The number of unique topics is fairly
small, but the data is of extremely high-quality.

2. Knowledge Graph Data is information that usually
has a relational-like schema6. Like applications of the
relational data mentioned above, the contents of the
knowledge graph is maintained with very high levels of
accuracy. KGs cover a large range of popular topics ei-
ther through human curation or automatic extraction.
The KG content grows relatively slowly and is often
maintained by developers in an “entity-centric” rather
than a “schema-centric” manner. Coverage of KGs is
highly biased to popular entities, relations and events,
resulting in a very sparse graph. Google’s Knowledge
Graph7, YAGO [31], Microsoft’s Satori8, and Wiki-
Data [33] are all good examples.

3. WebTables offers “long-tail” structured tables found
on Web pages online. Unlike most knowledge graphs,
the WebTables corpus is curated entirely automati-
cally. As a result, the WebTables corpus can cover far
more topics than the products above, including some
topics that are quite obscure.

4. Web Documents may not appear structured at all,
but many of them have enough detectable structure
that they can be used in certain consumer data prod-
ucts. Traditional web search, of course, is the most
well-known and popular system. But these “unstruc-
tured” texts can sometimes be used in search-driven
question answering (such as medical question answer-
ing), and in voice assistant use cases. Of course, web
documents cover a vast number of topics.

The points in the spectrum above also differ in other ways.

Query access: Relational data generally permits the most
expressive queries, enabling full SQL. Knowledge graph and
WebTables data can support single-record queries, but due
to limited coverage generally cannot provide accurate ag-
gregations. Finally, raw web documents only support NLP
questions.

Conforming to integrity constraints: Data systems at
the top of the list have comparatively more machinery for
checking model compliance than systems at the bottom. A
relational database, of course, will not maintain data that
violates its schema. Knowledge graphs will enforce attribute
types (e.g., that height is an integer), but generally rely on
non-technical mechanisms to ensure good modeling (e.g.,
that people have a height, weight, and birthday) and to avoid
missing values. WebTables applies probabilistic methods for

6It may seem surprising to say that knowledge graph data
has a relational schema rather than a graph-oriented data
model. It is true that most knowledge graph products do not
have a single administrator-designed relational schema, and
also true that graph-style measures such as centrality can
be well-defined on knowledge graphs. However, in practice,
knowledge “graphs” act more like “collections of relational
tables with informal schema enforcement”: entities tend to
exhibit a small number of fixed attributes, and computing
graph-style measures is a rare use case.
7https://www.google.com/intl/en_us/insidesearch/
features/search/knowledge.html
8https://blogs.bing.com/search/2013/03/21/
understand-your-world-with-bing/

attribute typing, and relies on indirect hints to detect good
modeling (such as distribution of rows and columns). Web
documents have no real data model at all, apart from being
a “high-quality” page.

Diversity of topics: The diversity of data topics increases
as we go down the list of web data resources, perhaps be-
cause the costs of building model-compliant data decreases.
It is much harder to build a relational database than to type
some text into a page.

Objective vs. subjective facts: Web query results carry
some amount of implicit responsibility for the facts they
present; single-answer systems (such as QA or voice assis-
tants) tend to carry more, while search result pages — filled
with links to the original publisher — carry less. In the for-
mer case, the search engine is perceived as giving a definite
answer, while in the latter, it is just an intermediary between
the user and relevant content. Data systems thus require
more objective, neutral sources for the most sensitive user
applications, but can use potentially-subjective sources for
other applications. Applications using relational databases
and KGs are engineered to contain primarily objective facts,
making them suitable for returning factual answers. In con-
trast, WebTables and Web documents today are mixtures of
objective and subjective information, making them appro-
priate for a broader range of information needs.

It’s important to note that whether data is objective vs.
subjective is a schema level decision. For example, the at-
tribute cute of an animal would be subjective – there is no
ground truth. In contrast, the number of people attending
an event (e.g., a presidential inauguration) is an objective
fact whose value may or may not be known and could be
wrong in a particular database.

To date, knowledge graphs have simply not modeled at-
tributes that are subjective thereby limiting their potential
coverage of facts of interest to users quite a bit, but at the
time avoiding more urgent and thorny issues.

Factual Accuracy: The accuracy of purely factual claims
also generally declines as one goes down the list. One reason
is that wider populations of users can contribute to, and
edit, the corpora lower in the list, thus opening more room
for casual fact-checking or vandalism.

Consumer structured data applications benefit from data
resources that are highly-structured, high-coverage, and accu-
rate. More structure means more distinct applications can
use the data; more coverage means more user queries can
be answered; and more accuracy means users can trust the
application results. Applications also need objective input
data, so that users do not receive a false sense of confidence
about the application. At the same time, the role of subjec-
tive data is important to note — users often seek opinions
which guide their decisions. Modeling subjective data and
its provenance is an exciting direction for future research.

The current landscape of data resources partially fills these
needs, but there is lots of room to do better. In the next
section we will discuss how researchers can potentially im-
prove these resources, and thereby makes things better for
the huge numbers of people now using consumer structured
data applications.

2146

https://www.google.com/intl/en_us/insidesearch/features/search/knowledge.html
https://www.google.com/intl/en_us/insidesearch/features/search/knowledge.html
https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/


5. FUTURE OPPORTUNITIES
As we discussed, highly-structured resources are often not

high-coverage, and high-coverage resources may not be ac-
curate. Improving these resources is a hard challenge and
would have a direct positive impact on the huge number of
people now using consumer structured data applications.

Unfortunately, the technical path for improving these data
resources is arduous. Knowledge graphs are very useful, but
because of high standards for factual accuracy, they are gen-
erally thought to be extremely expensive to construct and
expand their coverage. WebTables offer better coverage, but
their unclear objectivity and accuracy means they can only
power certain consumer applications. Meanwhile, relational
databases and Web documents have the same vices (low cov-
erage for the former; low objectivity and accuracy for the
latter), but are far older, better understood, and to our mind
offer worse prospects for near-term improvement in their im-
pact on consumer data systems than knowledge graphs or
WebTables.

Moreover, there is substantial work still to be done in
exploring possible software architectures for consumer data
systems, and in pursuing applications for deeper engagement
with tables on the Web. In this section, we propose a few
exciting directions for continuing these lines of work.

5.1 Improving Structured Data Resources
We need structured data resources that have the struc-

ture, accuracy, and objectivity of relational databases and
KGs, but the coverage (and accompanying cost-effectiveness)
of WebTables and web documents.

The WebTables project was a major step in the right di-
rection, by creating a class of data that has web-like cost and
coverage properties, but can still be used in some structured
applications. Later projects developed signals for detecting
extremely high-quality tables. For instance, Biperpedia [19]
leveraged an existing ontology to identify high quality web
tables whose semantics can be identified. Similar approaches
towards identifying high quality tables have used highly-
structured corpora [25, 17]. Even so, there is still oppor-
tunity to develop better tools for structured extraction [42,
11], data cleaning [28], and objectivity-testing [38, 29].

Another opportunity is to spark a virtuous cycle that en-
courages users to create and publish data in web documents
in a structured form. Projects such as Fusion Tables [20]
and Exhibit [23] are structured data authoring tools for end
users that provide value-add in the form of visualization and
presentation. Similarly, the presence of WebTables in search
results that conform to a standard structure bring awareness
to millions of potential data authors.

Finally, it may be possible to grow ”effective coverage” by
rethinking how query systems show information lineage to
users. The existence of a hyperlink on a search result page is
now popularly understood to mean the search engine itself
has no control over the link target’s content, and has limited
responsibility in surfacing the link at all. It may be possible
for consumer data applications to use WebTables informa-
tion more in more cases, if applications communicate that
a particular query answer may be subjective or unreliable.
Solving this problem effectively will require a combination
of expertise in HCI, social science, and data management.

5.2 Enabling More Diverse Architectures
Despite the problems we listed above, if you had told us

10 years ago that in 2018 there would be a flourishing sys-
tem of (1) general-purpose structured data resources and
(2) consumer applications that consume those resources, we
would have been thrilled! However, we probably would have
predicted that the software architecture itself would more
closely resemble the open Web. Instead, the data resources
and consumer clients (such as structured search and voice
assistants) have become tightly integrated and usually under
the control of individual organizations.

These monolithic systems — in which the data resources
and clients are tied to each other and cannot be easily mod-
ified by users or third parties — have some real advantages.
It is easier to ensure semantic compatibility between the
clients and structured datasets. For example, a voice assis-
tant engineer can know in advance the label that the backing
knowledge graph uses for the height attribute. It may also
make it easier to hide known data quality or coverage prob-
lems, through clever client query rewriting.

However, monolithic architectures also pose clear down-
sides. It is difficult for individual users to modify the backing
data resources, so users cannot easily add idiosyncratic or
small-audience datasets. For example, a user might want
a voice assistant that can answer questions about her em-
ployee’s org chart, but today’s knowledge graphs do not ac-
cept arbitrary contributions from third parties. Publishing
the data via WebTables is possible, but WebTables’ data
quality issues and the fact that their semantics is not fully
understood by the agent mean it is challenging to use for
voice applications.

Similarly, it is difficult for users to swap out new client
software without also swapping the back-end KG or WebTa-
bles resources. A startup that specializes in, say, medical
question understanding will also need to take on the burden
of building the entire data backend.

Building a non-monolithic open consumer data stack —
in which anyone can contribute a novel dataset and specify
the breadth of its possible use, and users can always rely on
objective, accurate, high-coverage answers — poses serious
technical challenges. Client engineers cannot assume that
the data resources will use the clients’ preferred attribute
names. Objectivity and accuracy checking probably has to
be entirely automated, in order to keep up with data con-
tributions from every corner of the internet. Data authors
cannot assume they know the query workload in advance,
because there will always be novel and specialized clients to
service. In many ways, the technical challenges here repre-
sent the ”cost curve” ones in the section above, but at an
extreme scale.

5.3 Supporting Human-Scale Use Cases
The growth of popular consumer data applications is an

absolutely massive benefit for researchers interested in struc-
tured data online, because it enables workload- and metrics-
driven technical improvement: percentage of queries an-
swered, percentage of facts correctly recognized as correct,
and so on. Many of these applications are not only exciting
but were part of the early vision for WebTables and other
structured data projects, so it is entirely natural to focus on
them. There is lots of opportunity in improving support for
consumer data applications, and the database community
should seize it.

2147



However, there has also been a thread of this work that
focuses on workloads that will never see a billion users or
a billion dollars: analysts with limited resources who are
trying to solve problems however they can. One of the mo-
tivations behind WebTables was to dramatically lower the
cost of data discovery and acquisition for domain experts
who were familiar with data, but did not have a large com-
pany or university to back them. This motivation came
to fuller fruition in the form of Fusion Tables, and in Mi-
crosoft Excel’s PowerBI table search features, which com-
bined WebTables’ inexpensive data search with usable and
inexpensive analytical tools.

We believe these applications are extremely important
and would like to see the database community support in-
dividual analysts even more. To a large extent, this work
is taking place as part of the broader effort to build tools
that support data scientists. That effort could be made even
more effective by focusing on the data acquisition toolchain.

6. REFERENCES
[1] Common crawl. http://commoncrawl.org/.

[2] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A
system for keyword-based search over relational
databases. In Proceedings of the 18th International
Conference on Data Engineering, San Jose, CA, USA,
February 26 - March 1, 2002, pages 5–16, 2002.

[3] S. Balakrishnan, A. Y. Halevy, B. Harb, H. Lee,
J. Madhavan, A. Rostamizadeh, W. Shen, K. Wilder,
F. Wu, and C. Yu. Applying webtables in practice. In
CIDR 2015, Seventh Biennial Conference on
Innovative Data Systems Research, Asilomar, CA,
USA, January 4-7, 2015, Online Proceedings, 2015.

[4] T. Berners-Lee, J. Hendler, and O. Lassila. The
semantic web. Scientific American, 284(5):34–43, May
2001.

[5] C. Bizer. The emerging web of linked data. IEEE
Intelligent Systems, 24(5):87–92, Sept. 2009.

[6] M. J. Cafarella, A. Y. Halevy, and N. Khoussainova.
Data integration for the relational web. PVLDB,
2(1):1090–1101, 2009.

[7] M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu,
and Y. Zhang. Webtables: exploring the power of
tables on the web. PVLDB, 1(1):538–549, 2008.

[8] M. J. Cafarella, A. Y. Halevy, Y. Zhang, D. Z. Wang,
and E. Wu. Uncovering the relational web. In 11th
International Workshop on the Web and Databases,
WebDB 2008, Vancouver, BC, Canada, June 13,
2008, 2008.

[9] K. Chakrabarti, S. Chaudhuri, Z. Chen, K. Ganjam,
Y. He, and W. Redmond. Data services leveraging
bing’s data assets. IEEE Data Eng. Bull., 2016.

[10] H.-H. Chen, S.-C. Tsai, and J.-H. Tsai. Mining tables
from large scale html texts. In Proceedings of the 18th
Conference on Computational Linguistics - Volume 1,
COLING ’00, pages 166–172, Stroudsburg, PA, USA,
2000. Association for Computational Linguistics.

[11] Z. Chen, M. J. Cafarella, and H. V. Jagadish.
Long-tail vocabulary dictionary extraction from the
web. In Proceedings of the Ninth ACM International
Conference on Web Search and Data Mining, San
Francisco, CA, USA, February 22-25, 2016, pages
625–634, 2016.

[12] F. Chirigati, J. Liu, F. Korn, Y. Wu, C. Yu, and
H. Zhang. Knowledge exploration using tables on the
web. PVLDB, 10(3):193–204, 2016.

[13] X. Chu, Y. He, K. Chakrabarti, and K. Ganjam.
TEGRA: table extraction by global record alignment.
In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
Melbourne, Victoria, Australia, May 31 - June 4,
2015, pages 1713–1728, 2015.

[14] D. Deng, Y. Jiang, G. Li, J. Li, and C. Yu. Scalable
column concept determination for web tables using
large knowledge bases. PVLDB, 6(13):1606–1617,
2013.

[15] J. Eberius, K. Braunschweig, M. Hentsch, M. Thiele,
A. Ahmadov, and W. Lehner. Building the dresden
web table corpus: A classification approach. In 2nd
IEEE/ACM International Symposium on Big Data
Computing, BDC 2015, Limassol, Cyprus, December
7-10, 2015, pages 41–50, 2015.

[16] H. Elmeleegy, J. Madhavan, and A. Y. Halevy.
Harvesting relational tables from lists on the web.
PVLDB, 2(1):1078–1089, 2009.

[17] J. Fan, M. Lu, B. C. Ooi, W. Tan, and M. Zhang. A
hybrid machine-crowdsourcing system for matching
web tables. In IEEE 30th International Conference on
Data Engineering, Chicago, ICDE 2014, IL, USA,
March 31 - April 4, 2014, pages 976–987, 2014.

[18] W. Gatterbauer, P. Bohunsky, M. Herzog, B. Krüpl,
and B. Pollak. Towards domain-independent
information extraction from web tables. In Proceedings
of the 16th International Conference on World Wide
Web, WWW 2007, Banff, Alberta, Canada, May 8-12,
2007, pages 71–80, 2007.

[19] R. Gupta, A. Y. Halevy, X. Wang, S. E. Whang, and
F. Wu. Biperpedia: An ontology for search
applications. PVLDB, 7(7):505–516, 2014.

[20] A. Y. Halevy. Data publishing and sharing using
fusion tables. In CIDR 2013, Sixth Biennial
Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 6-9, 2013, Online
Proceedings, 2013.

[21] Y. He, K. Chakrabarti, T. Cheng, and T. Tylenda.
Automatic discovery of attribute synonyms using
query logs and table corpora. In Proceedings of the
25th International Conference on World Wide Web,
WWW 2016, Montreal, Canada, April 11 - 15, 2016,
pages 1429–1439, 2016.

[22] V. Hristidis and Y. Papakonstantinou. DISCOVER:
keyword search in relational databases. In VLDB
2002, Proceedings of 28th International Conference on
Very Large Data Bases, August 20-23, 2002, Hong
Kong, China, pages 670–681, 2002.

[23] D. F. Huynh, D. R. Karger, and R. C. Miller. Exhibit:
lightweight structured data publishing. In Proceedings
of the 16th international conference on World Wide
Web, pages 737–746. ACM, 2007.

[24] O. Lehmberg, D. Ritze, R. Meusel, and C. Bizer. A
large public corpus of web tables containing time and
context metadata. In Proceedings of the 25th
International Conference on World Wide Web, WWW
2016, Montreal, Canada, April 11-15, 2016,
Companion Volume, pages 75–76, 2016.

2148

h


[25] G. Limaye, S. Sarawagi, and S. Chakrabarti.
Annotating and searching web tables using entities,
types and relationships. PVLDB, 3(1):1338–1347,
2010.

[26] X. Ling, A. Y. Halevy, F. Wu, and C. Yu.
Synthesizing union tables from the web. In IJCAI
2013, Proceedings of the 23rd International Joint
Conference on Artificial Intelligence, Beijing, China,
August 3-9, 2013, pages 2677–2683, 2013.

[27] R. Pimplikar and S. Sarawagi. Answering table queries
on the web using column keywords. PVLDB,
5(10):908–919, 2012.

[28] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré.
Holoclean: Holistic data repairs with probabilistic
inference. PVLDB, 10(11):1190–1201, 2017.

[29] T. Rekatsinas, M. Joglekar, H. Garcia-Molina,
A. Parameswaran, and C. Ré. Slimfast: Guaranteed
results for data fusion and source reliability. In
Proceedings of the 2017 ACM International
Conference on Management of Data, pages 1399–1414.
ACM, 2017.

[30] A. D. Sarma, L. Fang, N. Gupta, A. Y. Halevy,
H. Lee, F. Wu, R. Xin, and C. Yu. Finding related
tables. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
SIGMOD 2012, Scottsdale, AZ, USA, May 20-24,
2012, pages 817–828, 2012.

[31] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a
core of semantic knowledge. In Proceedings of the 16th
international conference on World Wide Web, pages
697–706. ACM, 2007.

[32] P. Venetis, A. Y. Halevy, J. Madhavan, M. Pasca,
W. Shen, F. Wu, G. Miao, and C. Wu. Recovering
semantics of tables on the web. PVLDB, 4(9):528–538,
2011.

[33] D. Vrandecic and M. Krötzsch. Wikidata: a free
collaborative knowledgebase. Commun. ACM,
57(10):78–85, 2014.

[34] C. Wang, K. Chakrabarti, Y. He, K. Ganjam,
Z. Chen, and P. A. Bernstein. Concept expansion
using web tables. In Proceedings of the 24th
International Conference on World Wide Web, WWW
2015, Florence, Italy, May 18-22, 2015, pages
1198–1208, 2015.

[35] D. Z. Wang, L. Dong, A. D. Sarma, M. J. Franklin,
and A. Halevy. Functional dependency generation and
applications in pay-as-you-go data integration
systems. In WebKB, 2009.

[36] J. Wang, H. Wang, Z. Wang, and K. Q. Zhu.
Understanding tables on the web. In Conceptual
Modeling - 31st International Conference ER 2012,
Florence, Italy, October 15-18, 2012. Proceedings,
pages 141–155, 2012.

[37] Y. Wang and J. Hu. A machine learning based
approach for table detection on the web. In
Proceedings of the Eleventh International World Wide
Web Conference, WWW 2002, May 7-11, 2002,
Honolulu, Hawaii, USA, pages 242–250, 2002.

[38] Y. Wu, P. K. Agarwal, C. Li, J. Yang, and C. Yu.
Toward computational fact-checking. PVLDB,
7(7):589–600, 2014.

[39] M. Yakout, K. Ganjam, K. Chakrabarti, and
S. Chaudhuri. Infogather: entity augmentation and
attribute discovery by holistic matching with web
tables. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
SIGMOD 2012, Scottsdale, AZ, USA, May 20-24,
2012, pages 97–108, 2012.

[40] X. Yin, W. Tan, and C. Liu. FACTO: a fact lookup
engine based on web tables. In Proceedings of the 20th
International Conference on World Wide Web, WWW
2011, Hyderabad, India, March 28 - April 1, 2011,
pages 507–516, 2011.

[41] R. Zanibbi, D. Blostein, and J. R. Cordy. A survey of
table recognition. IJDAR, 7(1):1–16, 2004.

[42] C. Zhang, J. Shin, C. Ré, M. J. Cafarella, and F. Niu.
Extracting databases from dark data with deepdive.
In Proceedings of the 2016 International Conference
on Management of Data, SIGMOD Conference 2016,
San Francisco, CA, USA, June 26 - July 01, 2016,
pages 847–859, 2016.

[43] M. Zhang and K. Chakrabarti. Infogather+: semantic
matching and annotation of numeric and time-varying
attributes in web tables. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, SIGMOD 2013, New York, NY, USA, June
22-27, 2013, pages 145–156, 2013.

2149


	Introduction
	WebTables: A Brief Recap
	Extraction and Data Model
	Schema Statistics
	Applications

	Previous Work

	A Decade of Research
	Extraction
	Table Search
	Table Enhancement

	Making Some Real Impact
	Production Corpus Construction
	Google Tables
	Fusion Tables Integration
	Tables in Featured Snippets
	Structured Snippets
	Microsoft Products

	The Landscape of Consumer Structured Data
	Future Opportunities
	Improving Structured Data Resources
	Enabling More Diverse Architectures
	Supporting Human-Scale Use Cases

	References

