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Tendon-based stiffening for a pneumatically actuated soft manipulator

Ali Shiva, Agostino Stilli, Yohan Noh, Angela Faragasso, Iris De Falco, Giada Gerboni,

Matteo Cianchetti, Member, IEEE, Arianna Menciassi, Senior Member, IEEE,

Kaspar Althoefer, Member, IEEE, and Helge A Wurdemann, Member, IEEE

Abstract— There is an emerging trend towards soft robotics
due to its extended manipulation capabilities compared to
traditionally rigid robot links, showing promise for an extended
applicability to new areas. However, as a result of the in-
herent property of soft robotics being less rigid, the ability
to control/obtain higher overall stiffness when required is yet
to be further explored. In this paper, an innovative design is
introduced which allows varying the stiffness of a continuum
silicon-based manipulator and proves to have potential for
applications in Minimally Invasive Surgery. Inspired by mus-
cular structures occurring in animals such as the octopus, we
propose a hybrid and inherently antagonstic actuation scheme.
In particular, the octopus makes use of this principle activating
two sets of muscles - longitudinal and transverse muscles -
thus, being capable of controlling the stiffness of parts of its
arm in an antagonistic fashion. Our designed manipulator is
pneumatically actuated employing chambers embedded within
the robot’s silicone structure. Tendons incorporated in the
structure complement the pneumatic actuation placed inside
the manipulator’s wall to allow variation of overall stiffness.
Experiments are carried out by applying an external force in
different configurations while changing the stiffness by means of
the two actuation mechanisms. Our test results show that dual,
antagonistic actuation increases the load bearing capabilities
for soft continuum manipulators and thus their range of
applications.

I. INTRODUCTION

Taking inspiration from nature, researchers have created

new robotic systems to overcome limitations of traditional

robots composed of rigid joints and links [1]. In particular,

animals’ appendages such as the elephant trunk or the

octopus arm have become the focus of studies creating soft,

hyper-redundant robots, with capabilities similar to those of

the biological role models [2]–[5]. The application of these

types of robots can result in significant improvements within

a number of fields where traditional robots are currently

deployed [6]–[8]. One of these areas is Minimally Inva-

sive Surgery (MIS) - also called laparoscopic or keyhole

surgery [9], [10]. Most commonly, during minimally inva-

sive procedures, rigid laparoscopic instruments are inserted
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Fig. 1. Sideview and crosssection view of a segment of the STIFF-FLOP
manipulator with integrated stiffening mechanism based on the antagonistic
principle: three pairs of pneumatically actuated chambers are embedded into
a silicone body and combined with three stretchable silicone tubes integrated
inside the wall of the manipulator to guide tendons for stiffening. At the
tip of the robot arm, the tendons are securely fixed to a plastic cap; one the
other end, the base, the tendons are connected to three actuators.

through so-called Trocar ports which are in turn inserted into

a patient’s abdomen through small incisions allowing sur-

geons to carry out surgical interventions inside the patient’s

body [11]. In particular during colo-rectal surgery, clinicians

have observed considerable challenges when conducting

keyhole procedures (such as the Total Mesorectal Excision

(TME)) due to the limited manoeuvrability of the available

surgical tools which are mostly rigid [11], [12]. It has been

reported that soft robotics has great potential to overcome the

aforementioned limitations [11]. A soft manipulator structure

for MIS is beneficial because of increased dexterity and a

more gentle interaction with soft tissue. A decreased risk

of injury to healthy tissue is another benefit to be noted.

The large number of Degrees of Freedom (DoFs) of a soft,

continuum robot provides enhancements when navigating

around organs inside the patient’s body towards the target,

rather than "cutting through". A challenging task when

employing soft robots is how to exert effective forces against

the environment and how to achieve an increased stiffness

where required [13].

An overview on stiffening techniques for continuum robots

is presented in Section II. Section III describes the proposed

antagonistic actuation principle and summarises the scientific

contributions of this paper. The mechanical design of the

soft, stiffness-controllable robot arm is presented in Sec-

tion IV along with the overall control architecture. Section V

introduces the experimental methodology to validate the

tunable stiffness mechanism and presents the paper’s main

achievements. Conclusions and future works are discussed

in Section VI.



II. BACKGROUND

In recent years, researchers have investigated several so-

lutions to the complex problem of changing and controling

the stiffness of soft manipulators. A silicone-based, pneu-

matically actuated soft robot arm has been developed as

part of the EU-funded project STIFF-FLOP. STIFF-FLOP fo-

cuses on exploring the bio-mechanical characteristics of the

octopus and attempts to extract relevant biological features

to develop medical robotics systems for Minimally Invasive

Surgery (MIS) [14] that are integrated with pose and force

sensors [15]–[18]. Stiffness variation is realised with an em-

bedded chamber within the silicone body filled with granules

that can be jammed by applying a vacuum [13], [19]–[21].

Hence, the robot’s configuration can be frozen once a desired

configuration is achieved. The concept of polymeric artificial

muscles described in [22] to actuate a robot manipulator

was furthered in [23] by integrating granule-filled chambers

which when exposed to varying degrees of vacuum could

actuate, soften and stiffen the manipulator’s joints. A similar

concept is proposed in [24]. A hollow snake-like manipulator

consists of multiple overlapping layers of thin Mylar film.

By applying vacuum pressure, the friction between the

film layers increases which results in a stiffening capability

that is tunable. Researchers have further investigated smart

materials to achieve different stiffness levels: A number

of design parameters have been simulated and prototypes

built/investigated in [25] in order to identify the impact of

the overall structure on stiffness variation. In [26], the authors

report on a thermally tunable composite for mechanical

structures - the used flexible open-cell foam coated in wax

can change stiffness, strength, and volume. Altering between

a stiff and soft state and vice versa introduces a time delay

as the material does not instantly react to the heating-up or

cooling-down process. A similar approach has been chosen

by [27]: a cPBE-PDMS composite has been created that can

change its stiffness with in a duration of 6 s when exposed to

an external voltage. Taking inspiration of sea cucumbers, a

type of polymer nanocomposites has been explored in [28].

Being stimulated by a chemical regulator, a Young’s modulus

change was achieved and, hence, a variation in stiffness.

In our recent work, we have presented a new stiffening

mechanism [29]–[32] inspired by the collaboration of longi-

tudinal and transversal muscles in the tentacles of octopus.

The created manipulator combines a pneumatic and tendon-

driven actuation mechanism in an entirely soft outer sleeve.

The hybrid actuation mechanism and design of the manip-

ulator result in a new type of robotic manipulator that can

collapse entirely, extend along its main axis, bend along the

main axis and vary its stiffness. The proposed robot arm is

inherently flexible, manufactured from segments that consist

of an internal stretchable, air-tight balloon and an outer, non-

stretchable sleeve preventing extension beyond a maximum

volume. Tendons connected to the distal ends of the robot

segments run along the outer sleeve allowing the sleeve to

bend when the coorresponding tendon is pulled.

In this paper, the hybrid actuation principle has been trans-

ferred to a silicone-based soft robotic manipulator created

within EU FP7 project STIFF-FLOP. The contributions of

this paper are as follows:

• The antagonistic actuation principle (pneumatic and

tendon-driven actuation) is applied to a soft robotic

segment made of a silicone structure, extending from

the manipulator structure described in [29]–[32], which

is composed of a fabric sleeve with an internal latex

bladder.

• Pneumatic actuation is used to bend and elongate the

robotic arm (i.e. manoeuvring the robot’s tip); tendon

actuation is used to effectively lock the robot’s config-

uration and, hence, increase its stiffness in the achieved

pose.

Our work here shows the potential of "hybridising" soft

robots with a tendon-based actuation type, to achieve stiffen-

ing, similar to what can be achieved using granular jamming.

III. BIO-INSPIRATION

The work presented in this paper has been inspired by

biology - especially by the octopus with its soft tentacles

and virtually infinite number of degrees of freedom (DoFs).

Biologically studies identified that the octopus arm is com-

posed of longitudinal and transverse muscle groups that are

bonded by connective tissue [33]. The octopus is capable of

actuating the different types of muscles in such a way that

it can control the stiffness of its arm, enabling the animal to

catch fish, move stones or even walk across the seabed.

Taking inspiration from the antagonistic behaviour of

the octopus arm, our robotic manipulator makes use of

two fundamental actuation means, pneumatic actuation and

tendon-based actuation, able to oppose each other and thus

capable of varying the arms’ stiffness over a wide range.

The proposed antagonistic actuation method unites the ad-

vantages of intrinsic, pneumatic and extrinsic, tendon-driven

actuation. Tendon-based actuation is beneficial for applica-

tions requiring accurate position control with high payloads

in a miniaturised robotic system. This is achievable due to the

thin structure and high tensile strength of tendons. Electrical

drives used to displace the length of each tendon are located

outside the manipulator [34], [35]. Pneumatic actuation is

suitable for driving compliant manipulators that operate in

the vicinity of humans and, hence, need to be inherently

safe. The application of this hybrid actuation principle to a

silicone-based soft manipulator has the following character-

istics:

• Air pressure is used for stretching out and controlling

the motion and direction of the soft manipulator result-

ing in bending and elongation.

• The compliance of the manipulator is varied by chang-

ing the stiffness, through the appropriate control of the

two opposing actuation means, pneumatic and tendon-

based actuation.

The ability to achieve variable stiffness in a confined op-

erational space of inside a patient’s body is what we seek

to employ for MIS by exploiting the proposed antagonistic

manipulation approach.



TABLE I

TECHNICAL PROPERTIES OF ECOFLEXr 00− 50 SUPERSOFT SILICONE1

Shore Hardness Tensile Strength Elongation at Break

00− 50 315 psi 980%

IV. INTEGRATION OF THE ANTAGONISTIC STIFFENING

MECHANISM

As mentioned earlier, the work described in this paper is

the result of transferring the antagonistic actuation principle

presented in [29]–[32] to a soft robot, such as the one

developed in the EU FP7 project STIFF-FLOP: one segment

of the STIFF-FLOP manipulator (see Figure 2) is a cylinder

of silicone made of Ecoflexr 00−50 Supersoft Silicone with

material properties as shown in Table I. The segment has an

overall length of 47mm and an outer diameter of 23mm.

Along the wall of this cylinder, three pairs of fibre-reinforced

pressure chambers (6mm diameter) are implemented and

actuated pneumatically. Each pair of chambers is connected

to one inlet air pipe creating the ability to bend the segment

by increasing the air pressure in one chamber pair relative to

the other two chamber pairs. Simultaneous pressurisation of

the all dual chambers will result in an overall elongation of

the segment. It is noted that the created segment (Figure 2)

has an inner free chamber of 9mm diameter - this space is

incorporated to pass through tubes from additional segments

and wires when creating a manipulator with a series of

multiple segements. A detailed description of the STIFF-

FLOP manipulator can be found in [9], [10], [21].

A. Embedding tendon-driven actuation into a STIFF-FLOP

segment

The tendon-driven actuation mechanism is embedded into

a single cylindrical silicone segment modelled after the

STIFF-FLOP manipulator [10]. Figure 2 shows a side and

cross-sectional view of the robot arm with the integrated

antagonistic actuation principle. In this prototype, a stretch-

able, silicone-based tube (Cole-Parmer Instrument Co. Ltd.)

with an outer diameter of 1.5mm and an inner diameter

of 0.8mm is aligned in between each set of the fluidic

chambers, parallel to the longitudinal axis of our robot. The

three hoses are placed 120◦ from each other and housing the

tendons for extrinsic actuation. This design will allow the

tendons sliding within the tubes and avoiding any cuts into

the silicone body. Due to the tube’s material properties, the

STIFF-FLOP segment keeps its key characteristics of being

soft and squeezable; the silicone tubes move in a compliant

way when intrinsically actuating the robot.

The used tendons are braided microfilaments (PowerPro

Super Line) of 0.15mm diameter. The three tendons are

fixed to a plastic cap at the tip of the robot arm to distribute

forces onto the soft tip surface when under tension. The

overall structure is shown in Figure 2.

1Smooth-On, Inc. Ecoflexr Series Available on http://www.

smooth-on.com/tb/files/ECOFLEX\_SERIES\_TB.pdf,
Accessed on May 2015.

B. Setup of the antagonistic actuation architecture

The overall actuation system consists of an air compressor,

three pressure regulators, a data acquisition board (DAQ),

three stepper motors, and a modified STIFF-FLOP segment

as described in Section IV-A. Figure 2 illustrates the logical

interconnection between the installed equipment.

As mentioned earlier, a hybrid actuation mechanism is

employed here: On the pneumatic actuation side, an air

compressor (BAMBI MD Range Model 150/500) supplies

the required pressurised air of 5 bar to three independent

pressure regulators (SMC ITV0030-3BS-Q). Their outputs,

which connect to the three chamber pairs of the soft mod-

ule, are varied via input signals proportinoally controling

associated chamber pressures in a range between 0.001 and

0.5MPa. Each pressure regulator adjusts the outlet pressure

for each chamber pair according to the command received

from the computer through a DAQ board (NI USB-6411).

On the tendon side, each tendon is connected to a step-

per motor (Changzhou Songyang Machinery & Electronics

Co. SY57ST56-0606B) which provides a maximum holding

torque of 0.59Nm. Each stepper motor has a pulley attached

to its output shaft which the tendon is wound around. The

pulley has a 6.4mm radius, which results in a maximum

of 92.6N of tension. Since one STIFF-FLOP segment has

three tendons, three stepper motors are used. Each stepper

motor is driven via a driver (Big Easy Driver ROB-11876)

which communicates with the computer via a DAQ board.

The computer runs a Windows based operating system; our

software is written in C++.

V. TEST PROTOCOL, EXPERIMENTAL RESULTS AND

DISCUSSION

A. Methodology

Several stiffness experiments have been carried out mount-

ing the module upside down and applying forces to the tip. In

all scenarios, a motorised linear mechanism is programmed

Fig. 2. Schematic overview of the antagonistic actuation setup: The air
chambers are connected to three pressure regulators. An air compressor
supplies pressurised air to the regulators. Each tendon is wound around a
pulley which is fixed to the shaft of a stepper motor. The analogue input
for the three motors and three pressure regulator is controlled via a data
acquisition board.



to create a displacement of 1 cm by sliding horizontally along

its rails. Reaction forces created by the module to resist this

displacement were recorded using a Nano17 Force/Torque

sensor by ATI Industrial Automation. Three main scenarios

were considered, equivalent to the investigations presented

in [9], [14] (Hence, the obtained results will be comparable.):

Scenario 1:

The module is held vertically downwards. The force is

applied laterally to the tip as shown in Figure 3(a). In this

scenario, four different sub-cases are investigated:

A No air pressure and no tendon tension.

B Equally air-pressurised chambers (i.e. elongation) with

no tendon tension.

C No air pressure with initial equal tendon tension.

D Equally air-pressurised chambers with initial equal ten-

sion in tendons.

Scenario 2:

The module is held vertically and one of the dual chambers

is pressurised to form a 90o curved shape, and the force

is applied laterally as shown in Figure 3(b). Two different

sub-cases are investigated:

A One pressurized chamber and no tendon tension.

B One pressurized chamber and tension in tendons.

Scenario 3:

The module is pressurised to be configured as in Scenario

2. However, the force is applied opposing the tip as shown

in Figure 3(c). Also in this scenario, two different sub-

cases are investigated:

A One pressurised chamber and no tendon tension.

B One pressurized chamber and tension in tendons.

B. Experimental results

Data from the ATI Nano17 F/T sensor and the correspond-

ing displacement of the motorised linear rail were recorded

at 1 kHz using a DAQ card (NI USB-6211). Four trials were

performed for each sub-case.

Experimental results of all four sub-cases of Scenario 1

are presented in Figure 4(a). When the module is neither

pressurised nor stiffened by tendons, the amount of its

resistive force subjected to a 1 cm lateral displacement is

about 1.32N. This value is 0.55N when all three chambers

are pressurised. When subjected to tendon stiffening, the

resistive forces displayed by the module reach values of

2.56N and 0.93N, respectively, showing a 94% and 69%

increase compared to the first and second sub-case.

Results of the two sub-cases of Scenario 2 are shown

Figure 4(b). When the module is only pressurised, the value

of the resistive force is 0.75N. With tendon stiffening is

added to the module, this resistive force increases to 0.98N

showing a 31% growth.

Results of the two sub-cases for Scenario 3 are presented

in Figure 4(c). It can be seen that in the presence of pressure

only, the module generates a resistive force of 2.43N.

However, by introducing tendon stiffening, the resistive force

due to 1 cm displacement intensifies to 3.02N, displaying a

(a) (b)

(c)

Fig. 3. An ATI Nano17 Force/Torque sensor is mounted on a motorised
linear mechanism displacing the manipulator’s tip by 1 cm: The configura-
tions in (a), (b) and (c) show Scenarios 1, 2 and 3, respectively.

24% growth.

Table II summarises the calculated maximum stiffness

results. For each sub-case, the maximum stiffness, hysteresis

and percentage of increase is calculated. Hysteresis was cal-

culated by taking the area between the loading and unloading

curves, and normalizing it by dividing it by the loading curve.

C. Discussion

Looking at the summary of the experimental results in

Table II and Figure 3, using the antagonistic actuation

principle allows us to increase the overall stiffness of the soft

manipulator by almost 100%. Hence, the soft manipulator

when tensioned using the tendons is more rigid and capable

of performing tasks that require larger force exertions - as

for example required at times in the tight environment inside

a patient’s body. This gives the surgeon the ability to move

the manipulator about primarily with pressure actuation, and

TABLE II

SUMMARISED CALCULATED RESULTS OF MAXIMUM STIFFNESS Kmax

TESTS FOR SCENARIOS 1, 2 & 3.

Scenarios Kmax Hyst. Increase

1-A Tens. No Press. No 1.32N/cm 21.6% n/a

1-B Tens. No Press. Yes 0.55N/cm 27.2% n/a

1-C Tens. Yes Press. No 2.56N/cm 18.9% 93.9%
1-D Tens. Yes Press. Yes 0.93N/cm 28.5% 69.1%

2-A Tens. No Press. Yes 0.75N/cm 21.8% n/a

2-B Tens. Yes Press. Yes 0.98N/cm 33.46% 30.7%

3-A Tens. No Press. Yes 2.43N/cm 27.47% n/a

3-B Tens. Yes Press. Yes 3.02N/cm 14.86% 24.3%



(a)

(b)

(c)

Fig. 4. Experimental data for Scenarios 1, 2 and 3. Forces have been
recorded for displacements of 1 cm of the manipulator’s tip. Table II
summarises the data analysis. The curves including the error bars show
the loading cycle.

TABLE III

FORCE RESULTS FOR GRANULAR JAMMING APPLYING A 10mm

DISPLACEMENT AS REPORTED IN [9].

Scenarios Granular jamming Kmax Increase

1-A Off 2.2N/cm n/a

1-A On 3.1N/cm 40.9%

2-A Off 2.3N/cm n/a

2-A On 2.7N/cm 17.4%

3-A Off 2.8N/cm n/a

3-A On 3.3N/cm 17.9%

thereafter, use the tendon stiffening to acquire not only

higher stiffness, but also fine-tune the final position of

the end effector, more accurately maneuvering the attached

instrument to the desired target.

In [9], a 8mm diameter channel of granular material,

coffee, was embedded into a prototype of the silicone-based

STIFF-FLOP segment; the length of this segment was 50mm

with the silicone structure having a diameter of 25mm.

The pneumatically actuated chambers were not reinforced;

a crimped, braided sheath of a 35mm covered the silicone

structure and prevented a balooning effect. Neglecting the

outer cover, the STIFF-FLOP module has dimensions similar

to the ones of the segment described in this paper. The key

experimental results for stiffness tests at a displacement of

10mm are summarised in Table III. The test configurations

of three scenarios are equivalent to the ones described in

Section V-A - however, granular-jamming-based stiffening

is achieved by applying a vacuum.

Comparing Tables II and III, the actual maximum forces

Fmax measured during the experimental tests of Scenarios

1 and 2 are larger using granular jamming. The presence

of coffee granulars (under atmospheric or vacuum pressure)

integrated into the silicone-based robot results in a stiffer

module. Looking, however, at the percentage increase caused

by granular jamming on the one hand and the antagonistic

mechanism on the other hand, the tendon-based stiffening

principle is able to generate a larger increase.

VI. CONCLUSIONS

In this paper, we have transferred the antagonistic stiff-

ening principle presented in [29]–[32] to a segment of a

silicone-based soft manipulator. The mechanism is inspired

by the longitudinal and transverse muscle fibres that the

octopus uses to stiffen its tentacles. In our soft robot, air pres-

sure is used for bending and elongating the soft manipulator.

Tendons are used to act in an antagonistic way opposing the

pneumatic actuation, increasing stiffness. The experimental

results obtained using the antagonistic actuation principle are

compared to a similar study where stiffening is achieved

using granular jamming. The advantages of pneumatic and

tendon-based actuation are the simultaneous ability to control

the robot’s pose and stiffness. Tendon actuation could not

only be used for stiffening as presented in this paper, but

potentially allows more accurate position control. Since the

tendons are embedded inside the manipulator’s wall, this



ability is achieved without increasing the diameter of the

manipulator.

Future work will include the integration of this hybrid

actuation principle into a miniaturised silicone-based ma-

nipulator suitable for minimally invasive surgery through a

standard Trocar port. In addition, we will mathematically de-

scribe the behaviour and motion of a single antagonistically

actuated soft manipulator. This model will be based on beam

theory as proposed in [36]: the manipulator is divided into a

series of layers whose kinematic change due to the effect of

internal forces (from pressurised air and from tension applied

by tendons) and externally applied forces. The layers are then

superpositioned to describe the manipulator’s tip position and

orientation in space. We also intend to experimentally verify

this model.
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