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We uncover a topological classification applicable to open fermionic systems governed by a general

class of Lindblad master equations. These “quadratic Lindbladians” can be captured by a non-Hermitian

single-particle matrix which describes internal dynamics as well as system-environment coupling. We show

that this matrix must belong to one of ten non-Hermitian Bernard-LeClair symmetry classes which reduce

to the Altland-Zirnbauer classes in the closed limit. The Lindblad spectrum admits a topological

classification, which we show results in gapless edge excitations with finite lifetimes. Unlike previous

studies of purely Hamiltonian or purely dissipative evolution, these topological edge modes are

unconnected to the form of the steady state. We provide one-dimensional examples where the addition

of dissipators can either preserve or destroy the closed classification of a model, highlighting the sensitivity

of topological properties to details of the system-environment coupling.
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Introduction.—Topological band theory was developed to

predict and explain robust features in the electronic structure

of insulators and superconductors close to their ground states

[1,2]. While these ideas have already found fundamental

applications in quantum metrology [3] and quantum com-

putation [4], there has been a recent effort to understand the

role of topology in the dynamics of many-body systems in

highly nonequilibrium environments [5–12].

A growing body of literature has been dedica-

ted to studying topological aspects of “non-Hermitian

Hamiltonians,” which generate nonunitary time evolution

in certain dissipative classical and quantum settings [13–16].

While this versatile approach applies in various limits, it

is insufficient to describe the full time evolution of a generic

open quantummany-body system coupled to a bath.Anopen

system is described by a (possibly mixed) density matrix ρ

which propagates irreversibly due to dissipative coupling

with its environment. For suitably generic baths, ρ is

governed by the Liouville equation: i_ρ ¼ LðρÞ, where L

is the “Lindbladian”—a non-Hermitian superoperator that

acts linearly on ρðtÞ. While calculating the complex

spectrum of the Lindbladian can always be viewed as a

non-Hermitian eigenvalue problem, L possesses an inher-

ent structure which further constrains the topological

signatures of open systems.

In this Letter, we show that there exists a robust

topological classification of the full complex spectrum of

the Lindbladian, L, for the case of a Markovian bath with

linear fermionic dissipators. In this case, the Lindblad

spectral problem reduces to solving for the eigenvalues of a

non-Hermitian quadratic Fermi operator [17,18]. An under-

standing of the symmetry properties of this operator allows

us to compute the set of topologically distinct Lindblad

spectra, which exhibit properties that are stable against

continuous deformations. In particular, we make use of the

real-line gap topological classification of Bernard-LeClair

symmetry classes [19], recently uncovered by Kawabata

et al. [14].

Surprisingly, we find that our classification—which

applies in the presence of both dissipation and coherent

internal dynamics—differs qualitatively from the two limit-

ing cases that have previously been much studied, of purely

Hamiltonian systems (Hermitian Lindbladian) [1,2] and of

purely dissipative systems (anti-Hermitian Lindbladian)

[20–23].

As in closed systems, the topological classification has

consequences for dynamics near the system boundary. We

show that a topologically nontrivial Lindbladian possesses

robust edge modes whose phase-oscillation frequencies are

pinned to lie in the energy gap, but which generically pick

up finite lifetimes (see Fig. 1). (These edge modes will

appear in spectroscopic measurements as broadened peaks

within the bulk gap.) However, we find that, unlike

previous classifications for purely Hamiltonian or purely

dissipative systems, properties of the spectrum and steady

state are completely independent: The existence of spectral

edge modes implies nothing about the steady state density

operator. For example, these universal topological proper-

ties of the complex excitation spectrum—which have direct

physical consequences in spectroscopy—are unconnected

to the classification of steady-state density matrices

employed in Refs. [21,24–26]. Our work highlights the

various manifestations of band topology in a very general

class of exactly solvable open systems, and provides

formalisms which can be applied to understand generic

interacting systems in future work.
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Quadratic Lindbladians.—Before discussing topologi-

cal edge modes in an open environment, we describe the

general setup considered in this work. Our starting point

is the Gorini-Kossakowski-Sudarshan-Lindblad master

equation

i
dρ

dt
¼ LðρÞ ¼ ½H; ρ� þ i

X

μ

ð2LμρL
†
μ − fL†

μLμ; ρgÞ ð1Þ

which describes nonunitary time evolution of a density

matrix ρ subject to unitary dynamics generated by a

Hamiltonian H and dissipation due to operators Lμ which

can add and/or remove particles via a Markovian envi-

ronment [27]. Typically there exists a unique steady state

ρSS satisfying LρSS ¼ 0; all other eigenoperators have

complex eigenvalues with negative imaginary part, cor-

responding to terms decaying in time. Note that we have

multiplied the typical definition of L by i such that the

master equation resembles a non-Hermitian Schrödinger

equation: Real parts of eigenvalues (called energies) indicate

phase oscillation frequencies of eigenoperators, while neg-

ative imaginary parts correspond to the decay rate.

For a system of N fermions, one can always solve for

the spectrum λ of the “Lindbladian” L by projecting onto

some basis ρ ¼
P

i;j ρi;jjϕiihϕjj, which has dimension

2N × 2N ¼ 22N . Exact diagonalization of the resulting

square matrix is numerically expensive, since the basis

grows exponentially with the number of particles. However,

further progress can be made if the Hamiltonian is quadratic

in Fermi operators, and the dissipators are linear—such

systems we refer to as quadratic Lindbladians, and are the

subject of this work. In this case, Prosen [17,18] showed that

the spectrum of the Lindbladian can be found by diagonal-

izing a non-Hermitian fermionic superconductor with 2N

particles in Bogoliubov-de Gennes form. The factor of 2 can

be understood becausewe assign a fermion to both “bra” and

“ket” space. The number of eigenstates is again 22N since

each of the 2N Bogoliubov quasiparticles can either be

excited or not.

We briefly review this approach forN complex fermions.

The Hamiltonian and dissipators can be expressed in terms

of 2N Majorana fermions

H ¼
X

2N

i;j¼1

αiHi;jαj; Lμ ¼
X

2N

i¼1

lμ;iαi; ð2Þ

where H ¼ H†; H ¼ −HT . Majorana operators satisfy the

anticommutation relation fαi; αjg ¼ 2δij. Define a 2N ×

2N Hermitian matrix M ¼ lTl�. The Lindbladian can then

be represented as a superoperator acting on a doubled

Hilbert space spanned by 2N complex fermions fcjg

L ¼ 2ð c† c Þ

�

−ZT Y

0 Z

��

c

c
†

�

ð3Þ

where c ¼ ðc1;…; c2NÞ, Y ¼ 2Im½M�, Z ¼ H þ iRe½M�.
The c superoperators explicitly act on the density matrix via

c†jρ ¼ ½αjρþ ðPFρÞαj�=2 and cjρ ¼ ½αjρ − ðPFρÞαj�=2,

where PF is the fermion parity superoperator [28].

Because of this upper triangular form Eq. (3), one can

now diagonalize the Lindbladian in terms of 2N quasi-

particles

L ¼ 4

X

2N

j¼1

λjβ̄
†
jβj ð4Þ

where λj are the eigenvalues of thematrix−Z. Quasiparticles

obey generalized fermionic statistics: fβ̄†i ; βjg ¼ δi;j;

fβ̄†i ; β̄
†
jg ¼ fβi; βjg ¼ 0. In the doubled Hilbert space, the

steady state is represented as a 22N-dimensional vector that is

annihilated by all quasiparticles: βiρSS ¼ 0. The states β̄†i ρSS
represent eigenoperators of L, propagating with complex

energy 4λi.

The single-particle Lindblad spectrum fλg satisfies two

generic conditions: (1) Im½λi� ≤ 0, since elements of the

density matrix can only decay (not amplify) as a function of

time, and (2) eigenvalues must come in anti-complex-

conjugate pairs fλg ¼ f−λ�g where the brackets indicate

the set of spectral eigenvalues; this ensures Hermiticity of

the density matrix at all times.

Non-Hermitian tenfold way.—In what follows, we will

be interested in studying the robust features of the complex

Lindblad spectrum associated with a topological insulator

or superconductor in the presence of general linear fer-

mionic dissipation. We begin by addressing the symmetries

of the matrix whose eigenvalues determine the spectrum of

quadratic Lindbladians. From Eq. (3), the upper triangular

FIG. 1. Complex spectra of one-dimensional examples of [(a),

dark blue] closed Hermitian systems; [(b), green] purely dis-

sipative systems studied in Refs. [20,21,25]; and [(c), light blue]

generic quadratic Lindbladians studied in this work. Hermitian

systems in a topological phase possess in-gap states with zero

eigenvalue (dark blue dot), however the topology of purely

dissipative systems is not reflected in the Lindblad spectrum.

On the other hand, a quadratic Lindbladian which is gapped in the

real direction can possess robust zero-frequency edge modes

(light blue dot).
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structure of the matrix implies that the spectrum does

not depend on Y, and hence it is fully determined from

the eigenvalues of the 2N-dimensional square matrix

Z ¼ H þ iRe½M�.
The Hamiltonian of noninteracting fermions can be

sorted into one of ten Altland-Zirnbauer [29] symmetry

classes based the presence or absence of the following three

symmetries:

TRS∶ H ¼ UTH
�U†

T ; UTU
�
T ¼ �I ð5aÞ

PHS∶ H ¼ −UCH
�U†

C; UCU
�
C ¼ �I ð5bÞ

chiral∶ H ¼ −USHU†

S; U2

S ¼ I; ð5cÞ

where the matrices UT;C;S are all unitary. Physically, these

stem from time-reversal, particle-hole, and chiral (sublat-

tice) symmetry, respectively. Our use of Majorana fermions

ensures that Eq. (5b) is automatically satisfied withUC ¼ I;

however, if charge is conserved then one can decouple

particle and hole sectors, each of which separately does not

respect PHS. A topological classification of noninteracting

models based on these ten classes is called the tenfold way

[30,31], and describes symmetry-protected topological

phases of free fermions.

We now ask whether Z can inherit these symmetries once

dissipators are introduced, i.e., M ≠ 0; Z ≠ Z†. If TRS is

imposed on Z in the form Eq. (5), i.e., Z ¼ UTZ
�U†

T , then

wewill find that a damping modewith eigenvalue λmust be

paired with a mode of eigenvalue λ�—this has the same

frequency Re½λ� but a negative damping rate Im½λ�, and is

thus unphysical. (See Fig. 2.) Similarly, PHS cannot be

represented via an expression of the form Z ¼ −UCZ
TU†

C,

since this would ensure that eigenvalues come in positive-

negative pairs: fλg ¼ f−λg. Indeed Z cannot respect any

symmetry which associates a decaying mode with an

amplifying one. We find a unique way to extend the

Hamiltonian symmetries, Eq. (5), to Lindbladian sym-

metries which does not suffer from this problem, namely,

TRS∶ Z ¼ UTZ
TU†

T ; UTU
�
T ¼ �I ð6aÞ

PHS∶ Z ¼ −UCZ
�U†

C; UCU
�
C ¼ �I ð6bÞ

PAH∶ Z ¼ −USZ
†U†

S; U2

S ¼ I: ð6cÞ

Different combinations of these symmetries generate ten

Lindbladian symmetry classes which reduce to the Altland-

Zirnbauer classes in the absence of dissipation. While the

non-Hermitian Bernard-LeClair symmetries generate a

much larger number of unique classes compared to their

Hermitian counterparts [19], the inherent structure of

quadratic Lindbladians ensures that the spectral matrix Z
must belong to one of the ten classes defined above.

Although the new form of time-reversal symmetry appears

unusual, we show in the Supplemental Material [32] that

this symmetry arises naturally when the microscopic

Hamiltonian of the system and environment as a whole

respect the Hermitian TRS, Eq. (5) (even though the system

alone propagates irreversibly). Note also that pseudo-anti-

Hermiticity (PAH) generalizes chiral symmetry, i.e., it is

guaranteed if a model has TRS and PHS.

Recent studies have used Bernard-LeClair symmetries to

construct a topological classification for non-Hermitian

models [14]. In this context, there exist different choices for

defining a spectral gap—some range of energy within

which no bulk eigenvalues are present. The positivity

condition Im½λi� ≤ 0 again puts constraints on these pos-

sibilities. If one chooses a point gap at the origin (λi ≠ 0),

or an imaginary line gap (Im½λi� ≠ 0), then the eigenvalues

of Z can be continuously deformed to a single point without

crossing these gaps, and so an analysis under these

conditions will not identify any robust spectral properties.

However, one can choose a real line gap condition

Re½λi� ≠ 0, i.e., we insist that all bulk modes have a finite

oscillation frequency [Fig. 1(c)]. Note that this is in stark

contrast to the pure-dissipation case [20,21,25].

According to Ref. [14], the classification table for the ten

Bernard-LeClair classes which stem from Eqs. (6) under a

real line gap is the same as that for the conventional tenfold

way, once the non-Hermitian symmetry classes are asso-

ciated with their corresponding Hermitian counterparts.

The relevant bulk topological indices can be calculated for

all the negative-frequency bands, and if their sum is

nonzero then we expect in-gap states to appear at the

system boundary, just as in Hermitian band theory. Since

the gap is chosen along the imaginary axis, an edge mode of

the Lindbladian will be pinned to zero frequency, but

generically will have a finite damping rate, since the

classification is only sensitive to Re½λi�.
An intuitive picture is formed if one takes a topologically

nontrivial system and gradually turns on dissipators with-

out closing the frequency gap. If this procedure is carried

out while at all times respecting the symmetries Eq. (6),

then the topological classification of the new open system is

identical to its closed precursor. Our results show that

the gapless edge modes of the Hermitian system will

remain constrained to lie in the middle of the gap, and

acquire a finite lifetime. Similarly, as was found for the Su-

Schrieffer-Heeger (SSH) chain in Ref. [37], topological

invariants can be defined for the spectrum of the open

FIG. 2. Hermitian time-reversal symmetry (left) must be

implemented using transposition rather than conjugation

once non-Hermitian dissipative terms are included (right).

(Z ¼ H þ iRe½M�)
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system such that they are equal to those for the closed

system.

Independence of steady-state properties.—In isolated

systems, the topological properties of the ground state are

reflected in the spectrum of the Hamiltonian. In open

systems, the analogous state to consider is the nonequili-

brium steady state LðρSSÞ ¼ 0. Although ρSS is generically

not a pure state, one can still discuss its topological

properties by using appropriate invariants for density matri-

ces [25]. Studies of systems with pure dissipation (H ¼ 0)

have shown that an alternative tenfold way for open systems

arises based on these properties [20,21,24,26]. One might

expect that our spectral analysis reflects these steady state

properties, in parallel with closed systems.

However, we find that the spectral and steady state

topological properties of quadratic Lindbladians are inde-

pendent. We prove this by showing that for any Lindbladian

with a nontrivial steady state, there exists another

Lindbladian with the same symmetries and spectrum, but

with a trivial steady state. This auxiliary system has the

same Hamiltonian, but the (generally complex) dissipators

lμ;i are replaced by real values l̃μ;i which satisfy

l̃
T
l̃ ¼ M ≡ ReðlTl�Þ. Because the matrix Z depends only

on M and H, the spectrum is unaffected. However, one

finds that ρSS ∝ I, and is thus always a structureless

“trivial” steady state. In the Supplemental Material [32],

we show that a valid l̃μ;i always exists and is sufficiently

local such that one can define a continuous path of

Lindbladians that leaves the spectrum invariant (e.g.,

without closing the gap in real frequency) yet connects

the physical system to this auxiliary system with a trivial

steady state. Hence, the form of the spectrum is uncon-

nected to the form of the steady state.

Having uncovered the general symmetry-based topologi-

cal classification of quadratic Lindbladians, we now illus-

trate its relevant features in the context of an example system.

Dissipative Kitaev chain.—We consider the Kitaev chain

[38] in the presence of local, linear dissipators. The unitary

evolution is generated via the Hamiltonian

HKit ¼ iμ
X

N

j¼1

αj;Aαj;B þ iΔ
X

N−1

j¼1

αj;Bαjþ1;A ð7Þ

where αj;A=B represent the two types of Majorana fermions

on lattice site j of N, and μ;Δ ∈ R. We also consider N − 1

dissipators which connect nearest-neighbor sites: Lj ¼
γðαj;A þ iαjþ1;BÞ. A variant of this model has been studied

previously [28]; however, we shall emphasize the impor-

tance of the non-Hermitian Bernard-LeClair symmetries

which are responsible for the protection of gapless edge

modes.

The Kitaev chain Hamiltonian falls into class BDI,

which has a Z classification in 1D. In a Majorana

basis, the first-quantized (matrix) Hamiltonian obeys the

symmetries H ¼ −H�; H ¼ τzH
�τz; H ¼ −τzHτz where

τz ¼ IN ⊗ σz, and σz is the Pauli matrix which acts on

the Majorana sublattice index. If we turn on the dissipator
strength γ ≠ 0, then the dynamics of the open system is
determined from the Lindblad spectrum, found explicitly
by diagonalizing Z. Z inherits the following symmetries:

Z ¼ −Z�; Z ¼ τzZ
Tτz; Z ¼ −τzZ

†τz. Indeed we find that
such dissipators will keep the model in the same symmetry
class, and we expect the edge modes to obey Re½λedge� ¼ 0.

For spinless fermions, any dissipator which can be written

in the form Lμ ¼ eiϕμ
P

jðγμ;jαj;A þ iγ̄μ;jαj;BÞ, for ϕμ; γμ;j;

γ̄μ;j ∈ R will preserve the TRS condition Eq. (6).

The spectrum is calculated numerically, and plotted in
Fig. 3. We notice that indeed edge modes are constrained to
obey Re½λedge� ¼ 0, while the imaginary part of their energy
becomes negative. Mathematically, this is due to pseudo-

anti-Hermiticity: Z ¼ −τzZ
†τz which implies λedge ¼

−λ�edge⇒ Re½λedge� ¼ 0; Im½λedge� ≠ 0 [39]. We can also

understand this behavior physically: The linear fermionic
dissipators break fermion parity conservation of the closed
Kitaev chain, hence Majorana modes at a given edge can
couple to the environment and will acquire a finite lifetime
(called quasiparticle poisoning) [28,40,41]. If, instead,
dissipators obeyed fermion parity then we would expect
the steady state to retain its twofold degeneracy due to
decoupled parity sectors. (This type of dissipation falls
outside the scope of quadratic Lindbladians.) Coupling to
dissipators cannot, however, perturb the frequency of edge
mode phase oscillations, since we have demonstrated that
symmetries protect these zero-frequency eigenoperators of
the Lindbladian.

The spectrum of the Lindbladian can be inferred from

single-particle Green’s functions in the frequency domain,

i.e., the Fourier transform of hαiðtÞαjð0Þi. A particular

eigenvalue λ will give rise to a spectroscopic peak centred

on Re½λ� with a characteristic width Im½λ�. In experiment,

these can be determined from linear response functions

(see, e.g., Refs. [42,43]). For example, the zero-bias

tunneling peak characteristic of Majorana modes in topo-

logical superconductors should remain centered at zero

energy, but acquire a finite width.

FIG. 3. Lindblad spectrum for the Kitaev chain with linear,

nearest-neighbor dissipators, μ=Δ ¼ 0.1; γ2=Δ ¼ 0.04. A single

edge mode exists on each side of the chain (red dots), and is

symmetry protected to obey Re½λedge� ¼ 0. Majorana edge modes

of the closed system can couple to fermionic dissipators and

hence acquire a finite lifetime Im½λedge� < 0.
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In the Supplemental Material [32], we discuss a different

example (an open SSH chain) where the relevant symmetries

can be either preserved or violated by the dissipators

[whereas the PHS, Eq. (6b), intrinsic to superconducing

systems cannot be broken].

Outlook.—An immediate question is whether gapless

edge modes can exist in the imaginary spectrum, which

would lead to robustly nonunique steady-state density

matrices. While certain studies [20,21] have achieved

this via “topology by dissipation” where Hamiltonian

dynamics is fully switched off, such edge modes generi-

cally acquire a lifetime once Hamiltonian terms are added

back, implying that this effect is fragile against such local

perturbations. The existence of such a protected in-gap

state for free fermions would require bands which amplify

and bands which decay, such that the edge mode connects

the two bulk bands. This scenario is forbidden, since

the imaginary Lindblad spectrum is constrained to be

nonpositive.

While we have limited our discussion to the case of

“quadratic Lindbladians,” we expect the topological edge

modes described in this work to survive beyond this limit

as non-Hermitian analogues of interacting symmetry-

protected topological phases. For example, a quadratic

Lindbladian respecting only PHS represents a dissipative

topological superconductor, which will still be protected by

fermion parity symmetry (as well as the Hermiticity-

preserving nature of the Lindbladian) when solvability is

broken. We also expect that topological features of the

spectrum and steady state will remain decoupled in this

limit: Unlike the Lindblad spectrum, the ground state of a

closed system is not smoothly connected to the steady state

of an open system with vanishingly small dissipation. Thus

any topological properties of the former are not necessarily

preserved in the latter.

We note in passing that the ten Lindblad symmetry

classes uncovered in this Letter may have interesting

implications for the spectral statistics of random dissipative

systems [44–46]. Imposing symmetries on the Lindbladian

may result in universal features of the complex spectrum, in

analogy with the Altland-Zirnbauer random matrix classi-

fication of Hamiltonian dynamics.

In summary, we have discovered a topological classi-

fication which constrains the dynamics of open femionic

systems described by a Lindblad master equation.

Specifically, we have demonstrated that the addition of

symmetry-preserving dissipators will ensure that edge

modes of the Lindbladian have phase oscillations which

are pinned to lie in the frequency gap, but will generically

acquire a nonzero lifetime. This causes the topological

properties of the spectrum to decouple from those of the

steady state. Our work provides a framework to system-

atically understand the protection of topological edge

modes in the presence of both dissipation and internal

dynamics.
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