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Tens of thousands additional deaths annually in
cities of China between 1.5 °C and 2.0 °C warming
Yanjun Wang 1, Anqian Wang 2,3, Jianqing Zhai4, Hui Tao 2, Tong Jiang 1, Buda Su 2, Jun Yang5,

Guojie Wang1, Qiyong Liu6, Chao Gao 7, Zbigniew W. Kundzewicz1,8, Mingjin Zhan 9, Zhiqiang Feng10 &

Thomas Fischer 11

The increase in surface air temperature in China has been faster than the global rate, and

more high temperature spells are expected to occur in future. Here we assess the annual

heat-related mortality in densely populated cities of China at 1.5 °C and 2.0 °C global

warming. For this, the urban population is projected under five SSPs, and 31 GCM runs as well

as temperature-mortality relation curves are applied. The annual heat-related mortality is

projected to increase from 32.1 per million inhabitants annually in 1986–2005 to 48.8–67.1

per million for the 1.5 °C warming and to 59.2–81.3 per million for the 2.0 °C warming, taking

improved adaptation capacity into account. Without improved adaptation capacity, heat-

related mortality will increase even stronger. If all 831 million urban inhabitants in China are

considered, the additional warming from 1.5 °C to 2 °C will lead to more than 27.9 thousand

additional heat-related deaths, annually.
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C
limate change is the biggest global threat of the 21st
century1. Adverse weather events are projected to increase
dramatically in frequency, severity, and duration. Global

warming is projected to affect human health, with primarily
negative consequences of increasing number of excess deaths and
hospital admission worldwide2–5. In the recent past, numerous
extreme high temperature events with associated mortality have
taken place worldwide. For instance, the heat wave of 2003 in
Europe resulted in more than 70,000 additional deaths6,7. An
unprecedented high temperature event in Moscow and Western
Russia in the summer of 2010 led to nearly 55,000 excess
deaths8,9. A record-breaking high temperature event in Shanghai,
China in 2013 brought 160 excess deaths in Pudong New District
alone10. Considering ever worsening situation, it is of utmost
importance to project the adverse health effects of high tem-
perature to support the developing of targeted intervention
strategies for public health protection.

Impacts of future climate extremes on public health have been
a major research topic in recent years5,11–15. The Special Report
on Global Warming of 1.5 °C emphasized that, with high con-
fidence, an increase in heat-related mortality caused by high
temperature at 1.5 °C and 2.0 °C threshold levels is apparent16.
Although the decrease in cold season low-temperature extremes is
expected to result in lower mortality rates during the winter
months, the increase in heat-related mortality could outweigh
such reductions in cold-related mortality, even in regions with
colder climate3,17,18. Studies have consistently projected that a
warmer future will lead to increases in future mortality with tens
of thousands of additional premature deaths per year in the
United States, and over a hundred thousand per year globally19,20.
Still, projecting changes in future health impacts associated with
climate warming remains challenging and involves large uncer-
tainties. In particular, little is known about future impacts of heat
waves in less developed countries, where capacity to address cli-
mate change is comparatively low and vulnerability to climate-
related damages is high.

Most projections of heat-related mortality under climate
change did not account for population acclimatization to heat
stress. People may adapt to heat stress through modifications in
activities, increased use of air conditioning, and alternative
building designs21. Projecting future mortality effects of climate
change without considering human adaptability may lead to a
substantial overestimation22,23. On the other hand, due to dif-
ferences of the gender- and age-related physiological and ther-
moregulatory properties, increase in vulnerable population may
amplify future heat-related health impacts. The fact that changes
in these demographic structures have not been considered in
previous studies may have caused an underestimation of mor-
tality due to climate change5,14,24–27.

China is the largest developing country, and has a faster
increase in surface air temperature than the global average20,28,29.
The elderly population is increasing and will continue to increase
further in the 21st century even after the end of the one-child
policy. As a result, the heat-related health risk will probably be
aggravated in future. However, only a few studies focused on
heat-related health impacts in China11,14,20,27,30,31, and they often
ignored the changing population structure and adaptation capa-
city. In our study, the heat-related mortality in major cities of
China is assessed by applying case analyses from 27 metropolises
(Supplementary Fig. 1 and Supplementary Table 1) for 1.5 °C and
2.0 °C global warming. The mortality projections are based on an
integrated assessment framework that combines projected high
temperature from multiple GCMs, predicted population by gen-
der and age structure under five SSPs, and a dynamic
temperature-mortality relationship with consideration of
improving adaptation capacity. In addition to the changes in the

mortality-inducing high temperature, the differences of mortality
between various climate and socioeconomic scenarios are also
assessed to deepen our understanding of the potential benefits of
climate change mitigation that will limit global warming.

Results
Definition of threshold temperature. Global mean surface air
temperature of 1986–2005 was by 0.61 °C warmer than the pre-
industrial level32, and further increase to 0.87 °C (likely between
0.75 °C and 0.99 °C) for the decade 2006–2015 was reported16.
The ensemble mean of 31 GCM outputs (Supplementary Fig. 2
and Supplementary Table 2) of the Coupled Model Inter-
comparison Project phase 5 (CMIP5) shows that a 20-year
moving average of global mean temperature may reach 1.5 °C
global warming around 2030 under RCP2.6, and 2.0 °C around
2050 under RCP4.5. The projected temperature shows a low
variation after the 2060s under both pathways33–35. In order to
conduct an impact study under comparative stable climatic
conditions, we choose the time period of 1986–2005 as the
reference period and the future time horizon of 2060–2099 under
RCP2.6 for 1.5 °C global warming and under RCP4.5 for 2.0 °C
global warming, although there will be overshoot.

Existing studies identified a non-linear U-, V- or J-shaped
relationship between temperature and mortality, suggesting that
the mortality will sharply increase once a certain threshold is
exceeded5,36–40. We classified all heat-related mortality cases of
27 metropolises during the time period 2007–2013 into four
groups by gender (male and female) and age (working age: 15–64
years and non-working age: ≤14 and ≥65 years). In the follow-up,
a distributed lag non-linear model (DLNM) was applied to
identify the temperature-mortality relationship for each group.
The DLNM model is used to estimate the relative risk (RR) of
mortality for each temperature, and RR= 1 corresponding to the
mortality-inducing threshold temperature (see “Methods”, Sup-
plementary Fig. 3 and Supplementary Table 3). Once daily
maximum temperature reaches or exceeds the threshold, these
days are counted as days with high temperature. The intensity of
high temperature is defined as the range of temperature (in
degrees Celsius) over the threshold.

Trends in high temperature. Temperature thresholds of mor-
tality vary for different gender and age groups. The lowest
threshold corresponding to mortality-inducing temperature for
female non-working age population was selected to assess the
changes of frequency and intensity of high temperature in each
China metropolis. According to the ensemble mean of 31 GCM
outputs, annual frequency of high temperature averaged over 27
metropolises shows a significant positive trend of 1.5d/10a during
1961–2005, and continuously, a significant upward trend is
projected until the 2050s. The rate of the increase will go to zero
(RCP2.6) or slow down (RCP4.5) after the 2050s. With global
warming of 1.5 °C or 2.0 °C, on average, 67.1 or 73.8 days of high
(mortality-inducing) temperature, respectively, will occur per
year in 2060–2099. This is an increase by 32.6% or 45.8%,
respectively, relative to 50.6 days during 1986–2005 (Fig. 1a).

The annual mean intensity of high temperature during
1961–2005 shows an increasing trend of 0.07 °C/10a. Similar to
the frequency, the intensity will increase continuously until the
2050s under both pathways, RCP2.6 and RCP4.5. After the 2050s,
the intensity will not increase under RCP2.6, but will still increase
under RCP4.5. The intensity in the reference period was
approximately equal to 1.6 °C. Compared with the reference
period, the intensity of high temperature is projected to increase
by 1.2 °C and 1.9 °C at a global warming of 1.5 °C and 2.0 °C,
respectively (Fig. 1b).
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Changes in total mortality. As changing exposure and improved
adaptation capacity change the risks of climate extremes, an
adequate assessment of climate change impacts should take future
socioeconomic development into account. Therefore, the popu-
lation by age and gender, and the Gross Domestic Product (GDP)
of 27 metropolises in China for the 21st century are projected
under the framework of the Shared Socioeconomic Pathways
(SSPs), which represent different climate strategies for mitigation
and adaptation (Supplementary Fig. 4 and Supplementary
Table 4). The SSPs describe a set of plausible alternative futures of
societal development, which consider the effects of climate
change and new climate policies. The SSPs include a pathway of a
sustainable world (SSP1), a pathway of continuing historical
trend (SSP2), a strongly fragmented world (SSP3), a highly
unequal world (SSP4), and a growth-oriented world (SSP5)41,42.
All five SSPs combined with RCP2.6 and RCP4.5 can produce ten
plausible climatic-socioeconomic scenarios for the assessment of
risks from high temperature. Additionally, GDP per capita in
metropolises can be used as an indicator to evaluate the adapt-
ability of different cities to high temperature (Supplementary
Fig. 5).

On average, heat-related mortality in China metropolises was
32.1 per million by ensemble mean of the multiple GCMs in
1986–2005 (Fig. 2). Under the assumption that the socio-
economy remains stable at the 1986–2005 status, increasing
frequency and intensity of high temperature will double the heat-
related mortality to 64.3 per million at global warming of 1.5 °C,
and even stronger increase to 85.5 per million at 2.0 °C global
warming (Supplementary Table 5).

However, exposure and vulnerability to high temperature are
dynamic, and human adaptability to adverse climate is expected
to increase with the socioeconomic development. When
improved adaptation is integrated into assessment, interaction
between the severity of high temperature and an increase in
vulnerable population in the future will lead to increases in heat-
related mortality to 48.8–67.1 per million for 1.5 °C global
warming, across plausible development pathways, and to
59.2–81.3 per million for 2.0 °C global warming (Fig. 2). That is
to say, curbing the increase in global temperature to 1.5 °C can
reduce heat-related mortality in China metropolises by about 18%
compared with 2.0 °C.

Ignorance of contribution of adaptation actions could lead to
substantial overestimation of climate change impacts. Without

improved adaptation, heat-related mortality will be enlarged to
103.7–129.9 per million for 1.5 °C global warming under various
SSPs. Further increase in mortality to 137.3–169.9 per million was
projected for 2.0 °C warming (Fig. 2). For the urban population of
831 million in China, the extra heat-related mortality between 1.5
°C and 2.0 °C global warming will be in the range of 27.9–33.2
thousands, annually.

Changes in gender- and age-specific mortality. The heat-related
mortality in China metropolises in 1986–2005 is equal to 22.0
female and 10.1 male cases per million. Under various SSPs at 1.5
°C global warming, mortality will increase to 30.3–40.9 per mil-
lion (relative increase of 37.7%–85.9%) for the female population
and even faster (by 83.2%–160.4% to 18.5–26.3 per million) for
the male population. At 2.0 °C global warming, mortality in
female population will increase by 61.4%–118.2% to 35.5–48.0 per
million, and of the male population will increase by
134.7%–229.7% to 23.7–33.3 per million (Fig. 3a and Supple-
mentary Table 6). Overall, female mortality was and will be
continuously higher than for male, but the gap between genders is
projected to be narrowed, due to the assumed changes in sex ratio
in China from 105:100 in 1986–2005, for various SSPs, to
(96–101):100 in 2060–2099.

If no improvement in adaptation capacity is assumed, mortality
in the female and male population will be 71.2–88.0 and
32.4–42.0 per million, respectively, at 1.5 °C global warming,
and will further increase to 93.9–114.4 and 43.4–55.4 per million,
respectively, at 2.0 °C global warming. Improved adaptability can
reduce 36.8%–43.0% of mortality in the male population and
52.8%–57.5% of the female population at 1.5 °C global warming,
while it reduces 39.3%–45.5% of mortality in the male population,
and 57.2%–62.2% of the female population at 2.0 °C global
warming (Supplementary Fig. 6a).

For 1986–2005, heat-related mortality in the working age
population was 7.0 per million and that of the non-working age
population was 25.1 per million. With 1.5 °C global warming,
mortality in the working age population is projected to decrease
significantly by 42.9%–60.0% to 2.8–4.1 per million. In contrast,
mortality in the non-working age population is projected to
increase significantly to 44.7–64.4 per million. This is an increase
by 78.1%–156.6% compared to the reference period. With 2.0 °C
global warming, the mortality in the working age population will
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significantly decrease by 35.7%–57.1% to 3.0–4.5 per million. As
for the non-working age population, it will significantly increase
by 117.5%–211.6% to 54.7–78.2 per million. The increase of heat-
related mortality for the non-working age population and
decrease for the working age population in China metropolises
with the warming are mainly due to the projected demographic
structure changes (Fig. 3b and Supplementary Table 6).

Under scenario without improved adaptation capacity,
mortality will be 162.5%–167.9% higher for the working
age population, and 87.1%–108.5% higher for the non-
working age population than projections with improved
adaptability, at 1.5 °C global warming. Mortality will be
224.4%–240.0% higher for the working age population and
100.6%–124.7% higher for the non-working age population,
with the additional increase in global warming by 0.5 °C
(Supplementary Fig. 6b).

Discussion
With global warming, temperature extremes are likely to be
more frequent, more intense, and longer lasting. In addition,
demographics and adaptation capacities will change dramati-
cally in future. The assessment of future changes in heat-
related mortality requires projections of the climate conditions,
the population growth, the socioeconomic development, and
consideration of improved adaptation. As far as we are aware,
this is the first attempt to use locally defined concepts to
investigate the relationship between high temperature and
mortality for a large fraction of major cities in China. In this
study, recorded cases from 27 metropolises are applied to
deduce the threshold temperature for heat-related mortality.
Furthermore, daily maximum temperature from 31 GCM
outputs are combined with projected population under five
SSPs to estimate mortality at 1.5 °C and 2.0 °C global warming,
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by considering improved adaptation capacities under various
economic development scenarios.

Heat-related mortality increases above a certain threshold
temperature with a non-linear relationship. This threshold tem-
perature is the most critical information in preventing the health
impacts of high temperature, as it is an indicator for initiating
public health responses5,43,44. The threshold temperature is the
temperature at which adverse health effects from heat begin to
occur. The impacts are diverse for various categories, e.g. gender
and age groups or geography45. Kan et al. investigated the rela-
tionship between daily mean temperature and mortality in
Shanghai from January 2000 to December 2001 by using a gen-
eralized additive model, and found a gently sloping V-like rela-
tionship with the lowest mortality risk temperature of 26.7 °C46.
Another heat-related mortality study by Knowlton et al. found
that the threshold temperature in New York is ~23.1 °C13. In our
study, the gender- and age-specific mortality-inducing threshold
temperature in Shanghai ranges around 29.7–31.4 °C. In Beijing,
which is located almost at the same latitude as New York, the
threshold temperature is about 25.9–27.6 °C.

Direct comparisons of the impact estimations are biased as
different climate models, scenarios, downscaling methods, time
periods, and population growth scenarios are used. For example,
the increase in heat-related mortality in Jiangsu province of
eastern China was projected to reach 102 per million under
RCP4.5 for 2041–2065, relative to 1981–200511. An increase in
mortality by 134 per million in New York and 107 per million in
Philadelphia was found by Petkova et al., who used
RCP4.5 scenario for 2070–2099 relative to 1971–2000 for their
projections23. A study for 209 cities in the United States suggests
that heat-related mortality increase by about 44.3 per million
under RCP6.0 in 2086–2100 relative to 1976–200547. To allow a
rough comparison between this study and previous studies, we
computed the changes in future heat-related mortality per million
for scenarios not including improved adaptation capacity (Fig. 2
and Supplementary Fig. 6). Our findings of increases in future
heat-related mortality are broadly consistent with these assess-
ments. We deduced an annual heat-related mortality of 32.1 per
million in the reference period. No improvement in adaptation
capacity is considered, the range of heat-related mortality will be
103.7–129.9 per million at 1.5 °C global warming, and
137.3–169.9 per million at 2.0 °C global warming. The mortality
in China metropolises projected in our study is higher than in the
United States for the last forty years of the 21st century, which
indicates a lower adaptation capacity in China than in the United
States. Of course, other factors, such as the uncertainties in cli-
mate models, emission scenarios as well as baseline mortality
rates, are also contributing to the differences in mortality
estimations.

By incorporating future assumptions for an improved adapt-
ability into assessment, a much lesser increase of mortality will be
projected. Under improved adaptation capacity, annual heat-
related mortality is projected to be 48.8–67.1 per million at 1.5 °C
global warming, and 59.2–81.3 per million at 2.0 °C global
warming. That is to say, improved adaptation capacity will lead to
48.3–52.9% less mortality at 1.5 °C, and 52.1–56.9% less mortality
at 2.0 °C global warming. Comparing with 2.0 °C global warming,
some 18% of mortality can be reduced in China metropolises by
curbing temperature to 1.5 °C.

It is a common assumption that heat-related mortality is more
marked in the elderly and the female population, who are more
vulnerable to the impact of high temperature than the adult and
male population36,48. Some studies highlighted that females are at
higher risks of dying or being sick during high temperature
episodes45,49. According to the relative risk of specific tempera-
ture estimated by a distributed lag non-linear model, it is found

that the threshold temperature for males is ~0.8 °C higher than
for females, and for the working age population, it is 1.5 °C higher
than for the non-working age population (Supplementary
Table 3). With the warming, China will face adverse impacts due
to the aging population. Our findings also suggest that heat-
related female mortality is much higher than for males at both
global warming levels, but the gap between the mortality rates in
males and females will slightly narrow in future, due to changes in
the sex ratio in China.

The split of the working and non-working age population is
projected to change quite seriously from 75.9%:24.1% in
1986–2005 to 43.8%:56.2% in 2060–2099. As the population
structure will be extremely altered, the age-specific heat-related
mortality will be different at 1.5 °C global warming than at 2.0 °C
global warming. At 1.5 °C global warming, the mortality in the
working age population will be reduced by 42.9–60.0% relative to
the reference period. On the contrary, the mortality in the non-
working age population will increase significantly by
78.1–156.6%. At 2.0 °C global warming, the mortality in the
working age population will be slightly higher than for 1.5 °C
global warming, while for the non-working age population
mortality will be much higher with 2.0 °C compared to 1.5 °C.

Methods
Study area. In total, 27 major cities of China, i.e. metropolises, which include four
municipalities (Beijing, Tianjin, Shanghai, and Chongqing) and most of the pro-
vincial capitals, are selected to project heat-related mortality under future climatic
and socioeconomic scenarios. The population in each metropolis is above 2.0
million, and exceeds 10.0 million in Beijing, Chengdu, Chongqing, Guangzhou,
Harbin, Shanghai, Shijiazhuang, and Tianjin. The total population and GDP of the
27 major cities were about 247.6 million people and 13.0 trillion CNY in 2010,
which account for 18.6 and 29.7% of the national total, respectively (Supplemen-
tary Fig. 1 and Supplementary Table 1).

Mortality records. The daily mortality data in China metropolises during
2007–2013 were collected from the Chinese National Center for Chronic and Non-
communicable Disease Control and Prevention. The underlying cause of death was
coded based on the 10th Revision of the International Statistical Classification of
Diseases and Related Health Problems (ICD-10). Amongst, daily non-accidental
mortality (ICD-10: A00-R99), mortality due to cardiovascular disease (I00–I99),
respiratory disease (J00–J99), and so on were further categorized into four groups
by age and gender: working age (age: 15–64 years) and non-working age (age: ≤14
and ≥65 years); female and male. Details of the mortality data can be found in a
previous study by Yang et al.27.

Observed and simulated climate data. Ground-based, quality controlled, daily
maximum temperature observation records in 27 China metropolises during
1961–2017 were provided by the National Climate Center of China Meteorological
Administration.

The daily maximum temperature derived from 15 GCMs (CNRM-CM5,
CanESM2, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2G, HadGEM2-ES, IPSL-
CM5A-LR, MIROC-ESM, MIROC-ESM-CHEM, MIROC5, MPI-ESM-LR, MPI-
ESM-MR, MPI-CGCM3, NorESM1-M, and CSIRO-Mk3.6.0) with different runs,
altogether 31 outputs, are used to project changes of high temperature for 1.5 °C
and 2.0 °C global warming, relative to the reference period (Supplementary
Table 2). The GCM outputs were bias-corrected and downscaled statically to a
regular geographical grid of 0.5° resolutions, based on observations, to show the
GCMs have a good consistency in simulating high temperature in the major cities
of China (Supplementary Fig. 2).

Population and GDP. County-level population and GDP in China for 1986–2017
are from the Statistical Yearbook of China. Based on the most recent Sixth
Population Census in 2010 and the latest universal two-child policy, the parameters
of the Population-Development-Environment model are regionalized to project
population under Shared Socioeconomic Pathways (SSPs) in China for the 21st

century50,51. The GDP in China under SSPs is projected with regionalized para-
meters using the Cobb-Douglas production model52,53, and is standardized to 2010
price level to maintain the homogeneity of data series. All the GDP and population
are projected at the provincial scale first. Then, based on the county-level dis-
tribution of population and GDP in 2010, the area ratio method is applied to
downscale population and GDP into the 0.5° resolution. Finally, the population
and GDP within the boundaries of the city are summed.
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Distributed lag non-linear model. The temperature-mortality relationship is set
up using a distributed lag non-linear model, which can describe complex non-
linear and lagged dependencies through the combination of the conventional
exposure-response association and the additional lag-response association54.

A natural cubic B-spline of time with 8 degrees of freedom per year is applied to
control long-term trends and to indicate the days of a week55. The lag-response
association represents the temporal change in risk after a specific exposure, and
estimates the distribution and delayed effects that cumulate across the lag period.
We modeled the exposure-response curve with a quadratic B-spline with three
internal knots placed at the 10th, 75th, and 90th percentiles of location-specific
temperature distributions, and the lag-response curve with a natural cubic B-spline
with an intercept and three internal knots placed at equally spaced values in the log
scale. We extended the lag period to 10 days to include the long delay of the high
temperature effects as it usually lasts around a week36,56–58. The fitted meta-
analytical model is used to derive the best linear unbiased prediction of the overall
cumulative temperature and mortality association, and the minimum mortality
temperature. We define the minimum mortality temperature as the threshold
temperature.

log E Ytð Þs
� �

¼ αþ β � Temp; l þ NS Time; dfð Þ þ γ � Dowþ δ �Holiday ð1Þ

RRI;s ¼ exp β � Isð Þs ¼ 1; 2; 3; ¼ ¼ ; 27 ð2Þ

Where E(Yt) is the observed daily mortality at calendar day t; l refers to the
maximum lag days, and Temp, l is the cross-basis matrix for the two dimensions of
maximum temperature and lags; the natural cubic spline function NS() captures
the non-linear relationship between the covariate (time) and mortality; Dow and
Holiday are the dummy variables for the day of the week and public holiday; RRI,s
is the relative risk corresponding to high temperature with certain intensity for
metropolises, and greater or equal to 1; I is the intensity of high temperature,
deduced by difference between daily maximum temperature and the minimum
mortality temperature; and s represents the different metropolises.

All analyses were performed using the R software Version 3.5.1 (R Foundation
for Statistical Computing, Vienna, Austria) by using DLNM and MVMETA
packages.

Projection of future heat-related mortality. Heat-related mortality at 1.5 °C and
2.0 °C global warming are projected by combining the simulated daily maximum
temperature and the temperature-mortality relationship. We computed city-
specific heat-related mortality as follows:

Ms ¼ Ys ´ ERCI;s ´ POPs ð3Þ

ERCI;s ¼ RRI;s ´ 1� ACIð Þ � 1 ð4Þ

where s represents the different metropolises, I is the intensity of high temperature;
Ms is the daily heat-related mortality; Ys represents daily mortality rate per million
in the observational period; POPs is the population; ERCI,s is the increase in relative
risks along with intensification of high temperature, which is related to the
improved adaptation capacity ACI (Supplementary Fig. 5).

Data availability
The dataset generated and analyzed during this study are available (with some

institutional limitations) from the corresponding authors upon reasonable request. The

source data underlying Figs. 1a–b, 2, and 3a–b are provided as a Source Data file.
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