
JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS

Vol. 23, No. 6, November–December 2000

Tensegrity Flight Simulator
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In thispaperwe proposeanewmotionsimulatorbasedona tendon-controlledtensegrity structure. The simulator
is equipped with a nonlinearcontroller that achieves robust tracking of desired motions.The controller parameters
can be tuned to guarantee tracking to within a prespeci� ed tolerance and with a prescribed rate of exponential
convergence. The design is veri� ed through numerical simulations for speci� c longitudinalmotions of a symmetric
aircraft.

Nomenclature
b = side length of the base and cabin triangles
Cd = aerodynamic coef� cient of drag
Cl = aerodynamic coef� cient of lift
CM = aerodynamic coef� cient of the pitching moment
c̃ = mean aerodynamic chord of aircraft wing
D = drag
Dr = rest-length of diagonal tendons
D0 = length of diagonal tendons in a prestressable

con� guration
g = gravitational acceleration constant of the Earth
hg = overlap
I = identity matrix
J = inertia matrix of the simulator’s second stage
Ja = aircraft moment of inertia around the pitch axis
K = Hessian of the potential energy
k = tendon stiffness
ka

i = stiffness of the i th active tendon
kn = stiffness of the nth tendon
L = lift
l = length of bars
la
i = length of the i th active tendon

ln = length of the nth tendon
la
ri

= rest-length of the i th active tendon
lrn = rest-length of the nth tendon
M(q) = tensegrity simulator inertia matrix
Mt = mass of the second stage
My = aerodynamic pitching moment about the aircraft

mass center
ma = aircraft mass
nu = number of active tendons
P = pretension coef� cient
q = generalized coordinates vector for simulator
qa = generalized coordinates vector for aircraft
qg = simulator equilibrium con� guration
q0 = simulator prestressable con� guration
q̃ = tracking error
r = tracking tolerance
S = lifting surface of the wing
Sr = rest-length of saddle tendons
S0 = length of saddle tendons in a prestressable

con� guration
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TD = tension in diagonal tendons in a prestressable
con� guration

TS = tension in saddle tendons in a prestressable
con� guration

Tn = tension in the nth tendon
Tr = aircraft thrust
Ta = vector of tensions in active tendons
T p = vector of tensions in passive tendons
t = time
V = potential elastic energy
v = aircraft speed
X, Y, Z = Cartesian coordinatesof the mass center of

the second stage
Xa = aircraft horizontal range
Za = aircraft altitude
a a = aircraft angle of attack
c = rate of exponential convergence
d e = elevator de� ection angle
d f = � ap de� ection angle
h a = aircraft pitch angle
q a = air density
s = time constant
w , u , h = Euler angles of the second-stage reference frame
x y = aircraft pitch rate

Introduction
The credit for making simulated � ight a reality goes to Edwin

Link for providing aviation with the � rst � xed-based � ight trainer.
Link’s trainer of 1932 was, in the inventor’s words, part piano, part
pipe organ, and a little bit of airplane,1 and it played a major part
in aviation training for the � rst 20 years of commercial and military
� ight. Since then the technology of � ight simulation has kept pace
with the technological advances in the aerospace industry.

The six-degree-of-freedom (DOF) Stewart platform is the most
popularmotion base for � ight/motion simulators.2 A very advanced
six-DOF Stewart platform � ight simulator is the one operated by
NASA Ames at Moffett Field, California. This simulator, which
became operational in 1993, is an exact replica of the cockpit of a
United Airlines Boeing 747-400and it has unique researchcapabil-
ities. A detailed descriptionof this facility can be found in Sullivan
and Soukup3 and Blake.4

The Stewart platform is a complex and expensive mechanism
because the control of its motion presents great technologicaldif� -
culties becauseof the telescopicactuators. It is a well-known fact in
motion simulators circles that the operation of a telescopic actuator
presents dif� culties, especially at large amplitudes and large accel-
erations. This is because of the large and rapid excursions of the
actuators, generating large loads on the structure of the simulator.
These loads, of both an inertial and dissipative nature, result in a
heavy structure and a large associated cooling system. The life of a
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telescopicactuator is also limited becauseof the signi� cant wearing
that occurs during its operation.

To reduce the complexity of the motion base, there has been
renewed interest in reduced-DOF simulators. However, relatively
little work has been devoted to the design of reduced-DOF mo-
tion bases or to the evaluation of the quality of motion sensations
that can be produced by these devices.5 Pouliot et al.6 analyzed the
simulation realism that can be achieved using motion bases with
only three DOF; the advantage of the reduced complexity of the
design is important for large transport aircraft for which it produces
good quality motion simulation. The weak point of the proposed
three-DOF simulators is their inability to simulate high frequency
accelerations (see Pouliot et al.6). Also, because the motion of the
reduced DOF simulators is controlled by telescopic actuators, the
problems associated with these actuators are not eliminated.

Another important problem for motion simulators is that of con-
trol system design.Many control synthesistechniqueshavebeen ap-
plied to simulatormotion control system design, includingclassical,
adaptive,7,8 and optimal control.9,10 Reid and Nahon11 and Nahon
and Reid12 implemented classical, adaptive, and optimal control al-
gorithms on the University of Toronto Institute for Aerospace Stud-
ies six-DOF � ight simulator to obtain pilot evaluationsof the corre-
sponding motion quality. They indicated that classical and adaptive
algorithms are generally preferred by pilots. As a result, a combi-
nation of the best features of classical and adaptive schemes into a
hybrid scheme was later performed, including the incorporationof
nonlinear adaptive � lters.13

Additional dif� culties in the control of motion simulators result
from uncertainties in the simulator dynamics. These uncertainties
are due, for example, to changes in the simulator inertial properties
and uncertaintiesin the drive system dynamics.Hence, a robust con-
trol design strategy should be applied. Idan and Sahar14 proposed
a robust controller for a six-DOF � ight simulator. The controller
design is based on a linearizedmodel of the simulator dynamics to-
gether with an uncertainty model that describes the variation of the
simulator weight. The design is performed using l -synthesis tech-
niques and the controller is designed for lateral motion simulation,
for which the linearized model of a DC-8 aircraft is used. Numeri-
cal simulations show that good quality lateral motion simulation is
achieved.

In this paper we propose a six-DOF motion simulator that elim-
inates the problems created by telescopic actuators. The structure
of the simulator is a tensegrity structure that has no bar to bar con-
nections and no rigid bodies sliding with respect to each other. The
motion of the simulator is controlled by tendons, leading to the
elimination of telescopic actuators.

A tensegrity structure is a special type of space structure com-
posed of a set of tendons that are prestressed against a system of
rigid bodies,usuallybars.15 Tensegritystructuresoffer excellentop-
portunities for physically integrated structure and controller design
because the elastic components provide excellent opportunities for
the sensing and actuating functions.

Although the origins of tensegrity structurescan be pinpointedto
1927 (see Snelson16 ), the main investigationshave been carried out
during the last 40 years. Tensegrity structures were looked on from
an engineering perspective for the � rst time by Fuller.17 Geometri-
cal investigationsfollowed, most of them being reported in Fuller17

and Pugh.18 Approaches using mechanics have been developed re-
centlyand research into tensegritystructureshas becomesystematic
and aimed at establishingthe theoretical framework for the analysis
and design of these structures. Pellegrino and Calladine,19 Motro
et al.,20 and Hanaor21 have made important contributions toward
further knowledge of the statics of these structures.Linear dynamic
analysis results have been publishedby Motro et al.20 and Furuya.22

Nonlinear dynamics and control design studies have been reported
by Skelton and Sultan23 and Sultan and Skelton.24 Applications of
tensegrity structures are now being proposed, ranging from tenseg-
rity domes (see Hanaor25 and Wang and Liu26 ) to tensegrity sensors
(Sultan and Skelton27 ) and space telescopes (Sultan et al.28 ).

In this paper, we design a nonlinear robust tracking controller for
simulator motion control. The controller, which has been derived
in Zenieh and Corless,29 assures exponential convergence of the

tracking error to a ball of prespeci�ed radius, with a prespeci� ed
rate of convergence. This controller has two important advantages
over other trackingcontrollers:It is a continuouscontroller,and it is
simple to implement because it does not involve the computationof
the regressor matrix.30 It is a known fact that exact tracking usually
results in discontinuous controllers that are undesirable for several
reasons (see Corless31).

The paper is organized as follows. First a description of the pro-
posed tensegritysimulator is given, followed by the derivationof its
equationsof motion. The statics of the simulator is analyzedand the
equilibrium con� gurations are mathematically characterized.Next,
the design of the nonlinear robust tracking controller is presented.
The performance of the simulator equipped with this controller is
then evaluatedby simulatingspeci� c longitudinalmotionsof a sym-
metric aircraft.

Tensegrity Simulator
A perspective view of a two-stage tensegrity simulator is given

in Fig. 1. The � rst stage consists of a base with three bars
(Ai1 Bi1 , i = 1, 2, 3) rigidly attached (clamped) to it. The second
stage consistsof a cabinwith threebars (Ai2 Bi2 , i = 1, 2, 3) clamped
to it. Twelve tendonsconnect the end points of the bars. The six ten-
dons characterized by Bi1 A j2 are classi� ed as saddle tendons. The
remaining six, Ai1 A j2 and Bi1 B j2 , are called diagonal tendons. For
mathematical modeling we assume that the tendons are massless
and linear elastic, whereas the base, cabin, and bars are rigid.

For simplicity, the base and cabin triangles A11 A21 A31 and
B12 B22 B32, respectively, are chosen to be congruent equilateral tri-
angles. We also assume that all bars are identical and that they are
connected to the base and cabin so that the angles made by their
axes of symmetry with the perpendicular to triangle A11 A21 A31 or
B12 B22 B32 are all equal; we call this angle d and we restrict it to sat-
isfy 0 < d < 90 deg. For d = 0 the bars are orthogonalto the triangles
and for d = 90 deg their axes of symmetry belong to the triangles.
The angles made by the projections of the bars Ai1 Bi1 (i =1, 2, 3)
onto the A11 A21 A31 plane with the vector A11A31 are a , a + 240,
a + 120, respectively (see Fig. 2 for the de� nitions of a and d ).
Similarly the angles made by the projections of the bars Ai2 Bi2

(i =1, 2, 3) onto the B12 B22 B32 plane with B12B32 are a , a + 240,
a + 120, respectively.

As an inertial reference frame, we choose an orthonormaldextral
set of vectorse1 , e2, e3 with originat the geometriccenterof triangle
A11 A21 A31 . The vector e3 is orthogonal to this triangle, pointing
upward, whereas e1 is parallel to A11A31 . We introduce a reference
frame s1, s2 , s3, called the second-stage reference frame and � xed
in this stage. Its origin is at the mass center of the second stage,
which is assumed to coincide with the geometric center of triangle

Fig. 1 Two-stage tensegrity simulator.
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Fig. 2 De� nition of ® and ±.

B12 B22 B32. The vector s3 is orthogonal to this triangle, pointing
upward, whereas s1 is parallel to B12B32 .

The simulator has six degreesof freedom. As independentgener-
alized coordinates we choose w , u , h , the Euler angles for a 3-1-2
sequence to characterize the orientation of the second-stage refer-
ence frame relative to the inertial reference frame, and X , Y , Z , the
Cartesian coordinates of the mass center of the second stage rela-
tive to the inertial reference frame. Thus, the vector q of generalized
coordinates is given by

q = [w u h X Y Z ]T (1)

Tensegrity Simulator Dynamics
The derivationof the second-ordernonlinearordinarydifferential

equations that describe the dynamics of the tensegrity simulator,
carried out using the Lagrange methodology, yields the following:

M(q)q̈ + c(q, Çq) + A(q)T(q) + Ĝ = 0 (2)

The system inertia matrix M(q) has the structure

M(q) =
X T J X 0

0 Mt I
(3)

where

X =

¡ cos( u ) sin(h ) cos(h ) 0

sin( u ) 0 1

cos( u ) cos(h ) sin(h ) 0

The inertia matrix of the second stage J is calculated with respect
to the second-stage reference frame. The components of the vector
c(q, Çq) are quadratic functions of Çq and are given by

ci =
6

j = 1

6

m = 1

@Mi j

@qm
¡

1
2

@M jm

@qi
Çq j Çqm for i = 1, . . . , 6

(4)

The vector c(q, Çq) can be expressed as

c(q, Çq) = C(q, Çq) Çq (5)

The matrix C (q, Çq) is not unique, however, if it is chosen according
to

Ci j =
1

2

6

m = 1

@Mi j

@qm

+
@Mim

@q j

+
@M jm

@qi
Çqm

for i = 1, . . . , 6 and j = 1, . . . , 6 (6)

then the matrix ÇM(q) ¡ 2C(q, Çq) is skew-symmetric. The vector
A(q)T(q) represents the generalized forces because of the tendons
in tension,where Amn = @ln / @qm (m =1, . . . , 6, n = 1, . . . , 12) and
Tn = (kn / lrn )(ln ¡ lrn ) (n =1, . . . , 12). The expressions for ln are
given in Appendix A. The vector Ĝ = [0 0 0 0 0 Mt g]T repre-
sents the generalized forces due to the gravitational force� eld.

Tensegrity Simulator Statics
Using Eq. (2), all equilibrium con� gurations qg of the tensegrity

simulator are given by

A(qg)T(qg) + Ĝ = 0 (7)

In addition all tendons should be in tension. Mathematically, this is
characterizedby

Tn (qg) > 0 for n = 1, . . . , 12 (8)

An equilibriumcon� guration in which all of the tendons are in ten-
sion is called a feasible equilibriumcon� guration.We are interested
in feasible equilibrium con� gurations for which the cabin and base
triangles are parallel and their mass centers are vertically aligned,
i.e., qg is given by

qg = [ w g 0 0 0 0 Zg]T (9)

At a feasible con� guration characterized by Eq. (9) the diagonal
tendons Ai1 A j2 have the same length, D1 , the diagonal tendons
Bi1 B j2 have the same length, D2 , the saddle tendons Bi1 Ai2 have
the same length, S1, and the saddle tendons B11 A32 , B21 A12 , B31 A22

have the same length, S2. These lengths are given by

D1 = (2b2 / 3)[1 + cos( w g ¡ 60)] + h2
g + l2 ¡ 2lhg cos( d )

+ 2/
p

3 lb sin( d )[cos( a + 30) + sin( w g ¡ a )]
1
2 (10)

D2 = (2b2 / 3)[1 ¡ cos( w g)] + h2
g + l2 ¡ 2lhg cos( d )

+ 2/
p

3 lb sin(d )[cos(w g ¡ a + 30) ¡ cos(a ¡ 30)]
1
2 (11)

S1 = (2b2 /3)[1 + cos( w g ¡ 60)] + h2
g + l2 sin2( d )

+ 2/
p

3 lb sin( d )[sin( w g ¡ a ¡ 60) ¡ sin( a )]
1
2 (12)

S2 = (2b2 / 3)[1 ¡ cos( w g )] + h2
g + l2 sin2( d )

+ 2/
p

3 lb sin(d )[sin(a ¡ 60) + cos(w g ¡ a ¡ 30)]
1
2 (13)

respectively.The overlap hg , de� ned as the distance between trian-
gles A12 A22 A32 and B11 B21 B31 and related to Zg byhg = 2l cos( d ) ¡
Zg , is positive (hg > 0) if the distance between A12 A22 A32 and
A11 A21 A31 is smaller than the distance between B11 B21 B31 and
A11 A21 A31 .

For simplicitywe assume that all tendonshave the same stiffness
k, all the diagonal tendons have the same rest-length Dr , and all
the saddle tendons have the same rest-length Sr . Hence tensions in
tendons of length D1, D2, S1 , S2 are equal to

TD1 = k(D1 ¡ Dr ) / Dr , TD2 = k(D2 ¡ Dr ) / Dr

TS1 = k(S1 ¡ Sr ) / Sr , TS2 = k(S2 ¡ Sr ) / Sr (14)

respectively.
The requirement that the feasible equilibrium con� gurations

are characterized by Eq. (9) must hold for Ĝ varying in a certain
domain, i.e., the design should tolerate variations in the mass of the
cabin. If we substitute Eq. (9) into Eqs. (7) and (8), we obtain the
conditions these feasible equilibrium con� gurations must satisfy

AgTg + [0 Mt g]T = 0

TD1 > 0, TD2 > 0, TS1 > 0, TS2 > 0 (15)

Here Tg = [TD1 TD2 TS1 TS2 ]
T and Ag is a 2 £ 4 matrix given in

Appendix B. To solve these conditions for the feasible equilibrium
con� gurations ( w g and Zg ), we have to choose the rest-lengths of
the tendons. In the following we shall choose the rest-lengths of
the tendons using certain feasible equilibrium con� gurations of the
tensegrity structure, called prestressable con� gurations.

Prestressable Con� gurations
Consider the case when no gravity is present, i.e., Ĝ =0. The cor-

respondingfeasible equilibriumcon� gurationsare called prestress-
able con� gurations.Let q0 denote a prestressablecon� guration.We
impose the condition that at the equilibrium q0 the second stage is
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obtainedfrom the � rst througha clockwiserotationof 60deg around
the axis e3 , i.e., w 0 =300 deg and

q0 = [300 0 0 0 0 Z0] (16)

With this geometry, all saddle and diagonal tendons have the same
lengths given by

S0 = h2
0 + b2 /3 + l2 sin2( d ) ¡ 2/

p
3 lb sin( d ) cos( a ¡ 30)

1
2

(17)

D0 = l2 + b2 / 3 + h2
0 ¡ 2lh0 cos( d ) ¡ 2/

p
3 lb sin( d ) sin( a )

1
2

(18)

respectively.Here h0 =2l cos( d ) ¡ Z0 is theoverlap in theprestress-
able con� guration q0 .

In this con� guration, the tensions in the saddle and diagonal ten-
dons are equal to TS and TD , respectively, hence the � rst condition
in Eq. (15) reduces to

cos( a ) / D0 cos( a + 60) / S0

[h0 ¡ l cos( d )]/ D0 h0 / S0

TD

TS
= 0 (19)

The second of the preceding equations (h0 ¡ l cos( d ))(TD / D0) +
h0(TS / S0) =0 and the condition that 0 < d < 90 deg show that in
order for the tensions to be positive (TD > 0, TS > 0), we must have

0 < h0 < l cos( d ) (20)

Equation (19) must hold for nonzero [TD TS ]T , thus the determi-
nant of the 2 £ 2 matrix multiplying [TD TS ]T must be zero; this is
equivalent to

h0 = ¡
l cos( d ) cos( a + 60)

cos( a ¡ 60)
(21)

The constraint 0 < h0 < l cos( d ) leads to 30 deg < a < 90 deg or
210 deg < a < 270 deg. Solving Eq. (19) for the tensions,we obtain
that

TS = PT0S , TD = PT0D
(22)

where

T0S T0D =
1
p

6

l cos( d ) ¡ h0

h0

D0

S0

£ 1

k {[(l cos( d ) ¡ h0) / h0](D0 / S0)}k
(23)

is a normalized vector such that the Euclidean norm of the vector T
of all tensions is one for P =1.

Using the expressions for the tensions TS and TD ,

TS = (k / Sr )(S0 ¡ Sr ), TD = (k / Dr )(D0 ¡ Dr ) (24)

we get the followingexpressionsfor Sr and Dr in terms of h0 and P :

Sr = kS0 T0S P + k , Dr = k D0 T0D P + k (25)

An important issue in tensegrity structures research is the sta-
bility of the prestressable con� gurations.16 It can be shown that
for ( a , d ) 2 (30, 90) £ (0, 90) the prestressable con� gurations pre-
viously analyzed are stable. Indeed, consider the potential energy
of the structure in the absence of the gravitational � eld:

V =
12

n = 1

kn

lrn

ln ¡ lrn

2
(26)

The second derivative of the potential energy with respect to the
generalized coordinates is given by

K i j =
@V

@qi @q j
, i = 1, . . . , 6, j = 1, . . . , 6 (27)

If we evaluate K at a prestressable con� guration characterized by
q0 =[300 0 0 0 0 2l cos( d ) ¡ h0] with h0 given by Eq. (21) and
use the correspondingrest-lengths given by Eq. (25) we get

K0 = diag[K11 K11 /2 K11 /2 K44 K44 K44] (28)

where

K11 = 2b2(TS / S0 + TD / D0) + 2
p

3lb sin( d )

£ [(TS / S0) sin( a + 60) + (TD / D0) sin( a )] (29)

K44 = 12(TS / S0 + TD / D0) (30)

For ( a , d ) 2 (30, 90) £ (0, 90) and for P > 0 we have K11 > 0 and
K44 > 0, yielding K0 > 0, which proves that these prestressablecon-
� gurations are stable.

For simulator design we choose the values of a and d such that
suf� cient clearance between the bars is guaranteed. For this pur-
pose we proceed as follows. Consider a pair ( a , d ) and compute the
minimum distance dmn

i j between two bars Ai j Bi j and Amn Bmn . The
problemofminimumdistancebetween theiraxesof symmetry leads
to a constrained quadratic optimization problem:

dmn
i j = min

w
(w T Hw + f T w + c), w = [w1 w2]

0 · w1,2 · 1 (31)

H =
k v1 k 2 ¡ v1 ¢ v2

¡ v1 ¢ v2 k v2 k 2

f T = [ ¡ 2a ¢ v1 2a ¢ v2], c = k ak 2 (32)

where a =Ai j Amn , v1 = Ai j Bi j , v2 =AmnBmn .
We denote by d( a , d ) the minimum of dmn

i j over all pos-
sible combinations of bars, i.e., over all (i, j ), (m , n) pairs
[i =1, 2, 3, j = 1, 2, m = 1, 2, 3, n = 1, 2, (i, j ) 6= (m, n)]. Follow-
ing this analysis we choose a = d =60 deg that, for l =5 m,
b =3.33 m, yields a clearance d( a , d ) =1.2 m. This procedure as-
sumes that theprestressablecon� gurationand theactualequilibrium
con� guration (when the gravitational � eld is acting) do not differ
too much.

Feasible Equilibrium Con� gurations
The feasible equilibriumcon� gurations of interest are character-

ized by Eqs. (15). We assume that the rest-lengths of the tendons
are given by Eq. (25). For Mt =0, G = Mt g =0 and we know that
Eqs. (15) have a solution; thus we expect them to have a solution
for small Mt 6=0. A continuationprocedure can be applied to solve
for these solutions as follows: slightly increase Mt and solve the
two nonlinear equations AgTg + [0 Mt g]T =0 for w g and hg (us-
ing classical nonlinear solvers like Newton–Raphson), then check
if Tgi > 0 (i =1, . . . , 4). If this happens, then we have found a new
feasible equilibrium con� guration with qg =[w g 0 0 0 0 Zg ]T

where Zg =2l cos( d ) ¡ hg . We continue to increase Mt and repeat
the procedureuntil one of the tendonsbecomesslackor when the Mt

of interest is reached. To illustrate the applicationof this procedure,
a graph of the variation of w g and Zg with the mass of the second
stage (top), Mt , is given in Fig. 3 for the following characteristics:

l = 5 m, b = 3.33 m, a = 60 deg, d = 60 deg

P = 2000, k = 5000 N, g = 9.81 m s ¡ 2 (33)

At all points on these curves the distances between bars were com-
puted to ascertain if the bars intersect. This did not happen (the
minimum distance between two bars was 0.7 m).
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Fig. 3 Variation of Ãg and Zg with mass of second stage.

Robust Tracking Controller
The control inputs for the simulatorare the rest-lengthsof someof

the tendons.For furtheranalysis,we separate the tendons into active
tendons of controlledrest-lengthsand passive tendons of � xed rest-
lengths. Using Eqs. (2) and (5), the behavior of the simulator is
described by

M(q)q̈ + C(q, Çq) Çq + A p(q)T p(q) + Aa(q)Ta + Ĝ = 0 (34)

where the components of T p and Ta are the tensions in the passive
and active tendons, respectively.

For robust control design we consider that the mass of the second
stagemay beuncertain.The uncertaintyis representedby thelumped
uncertain term l 2 D , where D is a known nonempty set. Thus the
equations of motion transform to

M(q, l )q̈ + C(q, Çq, l ) Çq + A p(q)T p(q)

+ Aa(q)Ta + Ĝ( l ) = 0 (35)

For further analysis we write the equations of motion as

M(q, l )q̈ + C(q, Çq, l ) Çq + u0 + Ap (q)T p (q) + Ĝ( l ) = u (36)

where

u = ¡ Aa (q)Ta + u0 , u0 = Aa(qg)Ta (qg ) (37)

Here qg is a feasible equilibrium con� guration. Under the assump-
tion of invertibility of Aa (q), Eq. (37) can be solved for the active
rest-lengths la

r1
, . . . , la

rnu
; speci� cally,

la
ri

=
ka

i la
i

ka
i + T a

i

for i = 1, . . . , nu (38)

where Ta , the vector of active tensions, is given by Ta =
Aa (q) ¡ 1(u0 ¡ u).

The issue of active tendon selection is addressed next. Be-
cause the number of generalized coordinates is six, the system
will be controlled with six tendons. The six are chosen by an-
alyzing the properties of the matrix A(qg ). Speci� cally, we con-
sider the set of all matrices created by combining any six columns
of A(qg ); let these matrices be denoted by Ai (i = 1, . . . , 924).
We compute the corresponding set of minimum singular values
r i = r min(Ai ) (i =1, . . . , 924). The Ai , which yields the maximum
of {r i , i =1, . . . , 924}, provides the set of active tendons.Applying
this procedurewith the data in Eqs. (33) and with qg corresponding
to the nominalmass Mt =140 kg of the simulator,we obtain that the
set of saddle tendons is the best choice for the set of active tendons.

Let qd (¢ ) : IR ! IR6 be a desired motion of the simulator. Ideally,
we wish to designa controllersuch that every motionq(¢ ) : IR ! IR6

of the closed-loopsystem convergesto the desiredmotion exponen-
tially. We also want to specify the rate of convergence c a priori.

The requirement that the trackingerror q̃ =q ¡ qd converges to zero
usually leads to a discontinuouscontrollerthat is undesirablefor sev-
eral reasons (see Corless31). However, if we only require tracking
to within some prespeci� ed tolerance r we can design a contin-
uous controller (see Zenieh and Corless29 ). Speci� cally, given r ,
c > 0, we can design a controller so that the closed-loopsystem is a
robust r ¡ c tracker; namely, there existsscalarsc1 and c2 such that,
for any desired (twice continuously differentiable) trajectory qd (¢ )
and any uncertainty l 2 D every solution satis� es

k q̃(t ) k · (c1 k q̃(t0) k + c2 k Çq̃(t0) k ) exp( ¡ c (t ¡ t0)) + r

for t ¸ t0 (39)

which means that the tracking error exponentially converges with
rate c to the ball of radius r de� ned by k q̃k ·r .

To apply the resultsof Zenieh and Corless29 for controllerdesign,
it is assumed that there exists positive constants b 0 , b 1 , b 2, b 3, such
that for all q, Çq, and l ,

0 < b 0 I · M(q, l ) · b 1 I, k C(q, Çq, l ) k · b 2 k Çqk

k u0 + Ap(q)T p(q) + Ĝ( l ) k · b 3 (40)

If we express C(q, Çq, l ) as C(q, Çq, l ) =diag( ÇqT )C̃(q, l ) we
get k C(q, Çq, l ) k · k C̃(q, l ) k k Çqk . Thus b 2 can be chosen to an up-
per bound on the maximum singular value of C̃(q, l ).

Because analytical determination of the bounds b 0, b 1 , b 2 , b 3 is
not usually possible, they are numerically determined. One ap-
proach is to discretize the problem by gridding D and the do-
main in the space of generalized coordinates in which it is
reasonable to assume that the system trajectories lie. Let (qi , l i )
(i =1, . . . , N ) denote N grid points. We evaluate the minimum
and maximum eigenvaluesof M(qi , l i ) (called k mini and k maxi , re-
spectively), the maximum singularvalue of C̃ (qi, l i ) (called r max i

),
and the quantity Fi = k u0 + A p(qi)T p (qi) + Ĝ( l i ) k . Any positive
number smaller than the minimum of {k mini , i =1, . . . , N} can be
chosen as b 0 , whereas any number greater than the maximum of
{k maxi , i =1, . . . , N} can be chosen as b 1 . Similarly any number
greater than the maximum of {r maxi , i = 1, . . . , N} can be chosen
as b 2 and a number greater than the maximum of {Fi , i =1, . . . , N }
can be chosen as b 3 . A � ner grid can be used to test if the chosen
values are satisfactory.

In Zenieh and Corless29 the following nonlinear,continuouscon-
troller has been proposed for robust tracking control of a general
class of mechanical systems:

u = ¡ Q´ ¡ ( k q ´ k + ²) ¡ 1 q 2´, q = b 1 k Çº k + b 2 k º k + b 3

º = Çqd ¡ K q̃, ´ = Ç̃q + K q̃ (41)

Here Q, K , and ² satisfy

Q > c b 1 I , 0 < ² · ( c r)2 k min(Q)( b 0 / b 1), k > c I
(42)

where k min(Q) denotes the minimum eigenvalue of the positive-
de� nite symmetric matrix Q.

The resulting closed-loop system has been shown to be a robust
r ¡ c tracker with

c1 = 1 + k max( K )c2, c2 = b 1 / b 0( c 1 ¡ c )

c 1 = k min(Q) / b 1 (43)

where k max( K ) is the maximum eigenvalue of the positive-de�nite
symmetric matrix K (see Zenieh and Corless29).

Simulating Longitudinal Motions
of a Symmetric Aircraft

In � ight simulation, the desired motion qd (¢ ) to be tracked by the
simulator is generated by the motion of an aircraft. We consider
here the longitudinalmotion of a symmetric aircraft.A longitudinal
motion of a symmetric aircraft can occur when the resultant force
belongs to the longitudinal plane of symmetry of the aircraft and
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the resultant torque is orthogonal to it. Using a single rigid-body
model to describe the longitudinal motion of a symmetric aircraft
and assuming no wind, the following equations of motion can be
derived through the application of the laws of mechanics:

ÇXa = v cos(h a ¡ a a ), ÇZa = ¡ v sin(h a ¡ a a ), Çh a = x y

ma Çv = Tr cos a a ¡ D ¡ ma g sin(h a ¡ a a )

mav Ça a = ¡ Tr sin a a ¡ L + ma g cos(h a ¡ a a ) + mav x y

Ja Çx y = My (44)

The horizontal range (Xa ) and the altitude (Za ) of the aircraft are
measured with respect to a dextral set of unit vectors f1, f2 , f3, at-
tached to the Earth. The motion is assumed to take place in the
vertical f1 ¡ f3 plane with f3 vertical. In this model, we neglect the
gyroscopic couples (because of rotating rigid bodies) as well as a
propulsioncontributionto the pitchingmoment (becauseof offsetof
the resultant thrust from the aircraft center of mass). For simulator
design we shall use the vector qa of generalized coordinates of the
aircraft de� ned by

qa = [w a u a h a Xa Ya Za]T (45)

By thechoiceof the inertialreferenceframe attachedto theEarth, the
aircraftmotion takesplacein a verticalplaneand we have w a = u a =
Ya =0.

The aerodynamic forces L , D, and the pitching moment My are
given by

L = q a Sv2 2 Cl , D = q a Sv2 2 Cd

My = q a Sv2c̃ 2 CM (46)

For small variations of the Mach number, the aerodynamic coef� -
cients can be consideredindependentof this parameter.For a certain
aircraft, whose dynamic properties are analyzed in Sultan,32 these
coef� cients depend on a a , d e, and d f , and are given in Appendix C.
The atmosphere model used here yields the following dependency
of the air density q a on the altitude Za :

q a = 1.22625exp[4.256 log(1 ¡ Za /44300)] kg m ¡ 3 (47)

where Za is given in meters.

Evaluation of the Tensegrity Simulator
In the followingwe analyze the ability of the tensegritysimulator

to track longitudinalmotions of an aircraft. First we de� ne what we
mean by tracking and desired motion in this context.

The main task of a � ight simulator is to give the pilot the same
sensations one would have when � ying the real aircraft. In the � rst
approximation we neglect the in� uence of the vestibular system of
the pilot. For simplicitywe also assume that the pilot’s head location
with respect to the mass center of the second stage of the simulator
is the same as its location would be with respect to the mass center
of the aircraft. Thus, in case the simulator tracks reasonably well
the acceleration and angular velocity of the aircraft, the pilot will
have the same sensations when � ying the simulator as when � ying
the real aircraft.

Mathematically, the tracking problem means that the simulator
and the aircraft should have the same accelerations and angular
velocities. Usually, they start from different initial con� gurations
and velocities. The simulator is in equilibrium with zero velocity,
which is dynamically equivalent to a rectilinear uniform translation
of the aircraftat an arbitraryvelocity.It is suf� cient for the simulator
to track the aircraft motion because of a certain command as seen
from an inertial reference frame attached to the aircraft that is in
rectilinearuniform motion before the command is applied.Thus the
desired motion is given by

qd (t ) = qa (t ) ¡ Çqa0 t ¡ qa0 + q0 + Çq0t (48)

where q0, Çq0, qa0 , Çqa0 are the initial conditions of the simulator and
aircraft (usually Çq0 =0). In this paperwe are mainly interestedin the

capability of the tensegrity simulator equipped with the nonlinear
robust tracking controller to track the desired motion at the onset of
the acceleration, i.e., immediately after an aerodynamic or throttle
command is applied.

We now considerthe followingscenario.The aircraftis in uniform
rectilinear translation; correspondingly,the simulator is in equilib-
rium, characterizedby qg . Then, a command that does not take the
aircraft out of its longitudinal � ight is performed. As a result the
simulator should undergo a motion to track the desired trajectory:

qd = [w g 0 h d Xd 0 Z d ]T (49)

where

h d = h a ¡ h a0 , X d = Xa ¡ ÇXa0 t ¡ Xa0

Z d = Za ¡ ÇZa0 t ¡ Za0
+ Zg (50)

For simplicity we assume that the second-stage reference frame
is central principal for the second stage such that its inertia matrix J
is diagonal, J = diag[J1 J2 J3]. We choose the following nominal
inertial parameters for the simulator:

Mt = 140 kg, J1 = 300 kg m2

J2 = 400 kg m2 , J3 = 500 kg m2 (51)

The geometric and elastic parameters are those given in Eqs. (33).
The controller is designed using the following parameters:

c = 25, r = 0.2, b 0 = 90, b 1 = 700, b 2 = 500

b 3 = 40000, ² = 56252, K = 26I, Q = 17501I
(52)

The bounds b i (i =0, 1, 2, 3) have been determinedbased on a grid
of the set £ D where D = [90, 190] kg and

= [w g ¡ 30, w g + 30] £ [ ¡ 30, 30] £ [ ¡ 30, 30]

£ [ ¡ b/ 3, b /3] £ [ ¡ b/ 3, b /3]

£ [Zg ¡ b/ 3, Zg + b /3]

Here w g and Zg are the nominal values (corresponding to Mt =
140 kg) of w and Z at equilibrium.The incrementsused in gridding
were 5 deg for w , u , and h , b /6 for X, Y, Z , and 2 kg for l = Mt .

The mass of the aircraft is ma =1400 kg and the pitchingmoment
of inertia is Ja = 60,000 kg m2. The lifting surface is S = 11.9 m2

and the mean aerodynamic chord is c̃ = 1.22 m.

Elevator Command
Here we evaluate the ability of the system to simulate the motion

of the aircraft when subjected to an elevator step input command.
Assume that the aircraft is initially in level � ight characterized by
the following trim conditions:

Za0 = 3000 m, h a0 = 0, a a0 = 0, ÇXa0 = 86.4 m s ¡ 1

d f0 = 0, d e0 = ¡ 1.34 deg, Tr0 = 1479 N (53)

The correspondingsimulator equilibrium is characterizedby

w g = 302.2 deg, Zg = 3.46 m, X = Y = u = h = 0
(54)

The elevator, which is approximated as a � rst-order system with
time constant s = 0.2 s, is given a step command at time t0 = 0.5 s.
This results in the elevator de� ection,

d e = d e0 + d A
e {1 ¡ exp[ ¡ (t ¡ t0) / s ]} (55)

We present next the time histories of the most signi� cant ac-
celerations (Fig. 4), the control inputs (Fig. 5), and the actuator
forces (Fig. 6) for d A

e =2 deg. The followingnotationhas been intro-
duced for the tendons: tendon 1 = A12 B21, 2 = A12 B11, 3 = A22 B21,
4 = A22 B31, 5 = A32 B11 , 6 = A32 B31.
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Fig. 4 Elevator command: desired (——) and simulator (– – – ) accel-
erations.

Fig. 5 Elevator command: control time histories.

Fig. 6 Elevator command: actuator force time histories.

The simulator is very effective in tracking the accelerations even
throughout the initial phase. Numerical simulations indicate that
even better tracking is achieved for the generalizedcoordinatesand
velocities and for the angular velocity of the aircraft. The time his-
tories of the control inputs and actuator forces show that their varia-
tions and ranges are acceptable.The simulationsshow that through-
out the motion none of the tendons becomes slack, and there is
always suf� cient clearance between bars.

Flap Command
Here we evaluate the ability of the system to simulate the motion

of the aircraft because of a � ap step input command. Assume that
the aircraft is initially in level � ight characterizedby

Za0 = 100 m, h a0 = 0, a a0 = 0, ÇXa0 = 74.8 m s ¡ 1

d f0 = 0, d e0 = ¡ 1.34 deg, Tr0 = 1479 N (56)

and that approaching landing the � aps are given a de� ection,

d f = d f0 + d A
f {1 ¡ exp[ ¡ (t ¡ t0) / s ]} (57)

with d A
f = 5 deg, t0 = 0.5 s, and s =0.5 s. The equilibrium con� gu-

ration of the simulator is the same as before.
Numerical simulations (Fig. 7) show that the simulator is very

effective in tracking the accelerations.As in the elevator step com-
mand case, numerical simulations indicate that even better tracking
is achieved for the generalized coordinates, generalized velocities,
and angular velocity of the aircraft, although none of the tendons
becomes slack and suf� cient clearance between bars is guaranteed.
The correspondingcontrol input time histories,given in Fig. 8, show
that their variations and ranges are acceptable (the same is true of
the control forces).

Throttle Command
Finally, we evaluate the ability of the system to simulate the mo-

tion of the aircraft when subjected to a throttle step input command.
We suppose that the aircraft is initially in level � ight characterized

Fig. 7 Flap command: desired (——) and simulator (– – – ) accelera-
tions.

Fig. 8 Flap command: control time histories.
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Fig. 9 Throttle command: desired (——) and simulator (– – –) accel-
erations.

Fig. 10 Throttle command: control time histories.

by the parameters of the previous section and is given the throttle
command,

Tr = Tr0 + T A
r {1 ¡ exp[ ¡ (t ¡ t0) / s ]} (58)

with T A
r = 500 N, t0 =0.5 s, and s = 0.5 s. The time histories of the

signi� cant accelerationsand the controls are given in Figs. 9 and 10,
respectively.

As in the case of the aerodynamic commands, tracking is very
good, and none of the tendons becomes slack and there is suf� -
cient clearancebetween bars.Here the control time historiesexhibit
smoother variations than in the case of the aerodynamiccommands.

Robustness of the Design
In the followingwe evaluatethe robustnessof ourdesign.We con-

sider that thecontrolleris designedfor the nominal simulator,whose
inertialpropertiesare Mt = 140 kg, J1 =300kg m2 , J2 = 400 kg m2,
J3 = 500 kg m2 , and that it is used to control the motion of the sim-
ulator when its inertial properties change.

For illustration, we consider an elevator step command with
d A

e = 5 deg, t0 = 0.5 s, s = 0.2 s applied to the aircraft, which is ini-
tially in level � ight characterizedby the parameters in the subsection
ElevatorCommand. Figure 11 shows the vertical accelerationof the
aircraft and the correspondingvertical accelerationsof three simu-
lators: the nominalone and two perturbedsimulators,whose inertial
properties are varied between +50% and ¡ 50%, respectively, from
the nominal ones (this means that the values of Mt , J1 , J2, J3 are
varied between +50% and ¡ 50%, respectively, from the nominal
ones). The response of the perturbed simulator whose inertial prop-
erties are varied +50% is represented in Fig. 11 by + , whereas the

Fig. 11 Robustness evaluation: desired (——), nominal (– – –), and
perturbed (+, £ ) simulators.

response of the one whose inertial properties are varied with ¡ 50%
is represented by £ . We ascertain that, even for these large per-
turbations in the inertial properties, the tracking is very good. The
perturbed simulators responses are very close to the responseof the
nominal simulator and to the one of the aircraft. Our simulations
con� rm that even better tracking is obtained for the generalizedco-
ordinatesand velocitieswhile noneof the tendonsbecomeslackand
none of the bars touch each other.

It is also important to mention that, even though for controller
design we assumed variations only in the mass of the cabin Mt , the
design is very robust with respect to variations in all inertial param-
eters of the simulator. We also remark that the perturbed simulators
masses considered in the preceding example are out of the range
used for controller design (D =[90, 190] kg). However the per-
turbed simulators equipped with the nominal controller track the
desired motion very well.

Conclusions
Motivatedby the desire to eliminatecomplicatedstrutactuators,a

tensegritymotion simulator is proposed.The main advantage that a
tensegrity motion simulator has over a Stewart platform based sim-
ulator is that it does not have telescopicstruts.Tensegritysimulators
do not include rigid bodies sliding with respect to each other, nor
do they have complicated bar to bar joints. The actuating and the
sensing functions can be carried by the tendons.

For the proposed simulator, a nonlinear continuous robust track-
ing controller is designed. The controller guarantees exponential
convergence of the tracking error—with a prespeci� ed rate of
convergence—to a ball of a prescribed radius. The physical con-
trols are the rest-lengths of six of the 12 tendons of the tensegrity
structure.

The proposedtensegritysimulatorequippedwith the robusttrack-
ing controller is very effective in tracking the longitudinalsymmet-
ric motions of a certain aircraft. In general, the motions generated
by throttle commands are better tracked than those due to aerody-
namic control surfaces commands. Further numerical simulations
indicated that the design is very robust to variations in the inertial
properties of the cabin.

Appendix A: Tendon Lengths
The lengths of the tendons l j ( j =1, . . . , 12) are given by

l1 = q5 ¡ A2 ¡ b
p

3/ 6 cos(q1) cos(q2) ¡ b
p

3/3

+ l sin( d ) sin( a )
2

+ q4 ¡ A1 + b
p

3/ 6 sin(q1) cos(q2)

+ l sin( d ) cos( a )
2

+ q6 + (b /2) cos(q2) sin(q3)

¡ b
p

3/6 sin(q2) ¡ 2l cos( d )
2 1

2
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l2 = q4 ¡ A1 + b
p

3/ 6 sin(q1) cos(q2)

+ l sin( d ) sin( a ¡ 30) + b /2
2

+ [q5 ¡ A2 + A3

¡ l sin( d ) cos( a ¡ 30)]2 + q6 + (b/ 2) cos(q2) sin(q3)

¡ b
p

3/6 sin(q2) ¡ 2l cos( d )
2 1

2

l3 = q4 ¡ b
p

3/3 sin(q1) cos(q2) ¡ l sin( d ) cos( a ¡ 60)
2

+ [q5 ¡ 2A3 ¡ l sin( d ) sin( a ¡ 60)]2

+ q6 + b
p

3/ 3 sin(q2) ¡ 2l cos( d )
2 1

2

l4 = q4 ¡ b
p

3/3 sin(q1) cos(q2) ¡ b /2

+ l sin( d ) sin( a ¡ 30)
2

+ q6 + b
p

3/3 sin(q2)

¡ 2l cos( d )
2

+ q5 + b
p

3/ 6 cos(q1) cos(q2)

+ b
p

3/ 6 ¡ l sin( d ) cos( a ¡ 30)
2 1

2

l5 = q4 + A1 + b
p

3/ 6 sin(q1) cos(q2) ¡ l sin( d ) cos( a ¡ 60)

+ b /2
2

+ [q5 + A2 + A3 ¡ l sin( d ) sin( a ¡ 60)]2

+ q6 ¡ (b/ 2) cos(q2) sin(q3)

¡ b
p

3/6 sin(q2) ¡ 2l cos( d )
2 1

2

l6 = q5 + A2 ¡ b
p

3/ 6 cos(q1) cos(q2) + l sin( d ) sin( a )

+ b
p

3/ 6
2

+ q4 + A1 + b
p

3/ 6 sin(q1) cos(q2)

+ l sin( d ) cos( a ) ¡ b /2
2

+ q6 ¡ b/ 2 cos(q2) sin(q3)

¡ b
p

3/6 sin(q2) ¡ 2l cos( d )
2 1

2

l7 = b /2 + q4 + A1 + b
p

3/ 6 sin(q1) cos(q2) + l sin( d )

£ cos( a + 60)
2

+ [A3 + q5 + A2 + l sin( d ) sin( a + 60)]2

+ q6 ¡ (b/ 2) cos(q2) sin(q3)

¡ b
p

3/6 sin(q2) ¡ l cos( d )
2 1

2

l8 = b
p

3/3 ¡ q5 + A2 + b
p

3/6 cos(q1) cos(q2) + l sin( d )

£ cos( a + 30)
2

+ A1 ¡ q4 ¡ b
p

3/ 6 sin(q1) cos(q2)

¡ l sin( d ) sin( a + 30)
2

+ q6 + (b /2) cos(q2) sin(q3)

¡ b
p

3/6 sin(q2) ¡ l cos( d )
2 1

2

l9 = b /2 ¡ q4 + b
p

3/3 sin(q1) cos(q2) + l sin( d ) cos( a )
2

+ b
p

3/ 6 + q5 + b
p

3/3 cos(q1) cos(q2)

¡ l sin( d ) sin( a )
2

+ q6 + b
p

3/3 sin(q2) ¡ l cos( d )
2 1

2

l10 = b/ 2 ¡ l sin( d ) cos( a ) + q4 ¡ A1

+ b
p

3/6 sin(q1) cos(q2)
2

+ [A3 ¡ l sin( d ) sin( a )

+ q5 ¡ A2]2 + q6 + (b /2) cos(q2) sin(q3)

¡ b
p

3/6 sin(q2) ¡ l cos( d )
2 1

2

l11 = l sin( d ) cos( a + 60) + q4

¡ b
p

3/3 sin(q1) cos(q2)
2

+ [ ¡ l sin( d ) sin( a + 60)

¡ q5 + 2A3]2 + q6 + b
p

3/ 3 sin(q2) ¡ l cos( d )
2 1

2

l12 = b /2 ¡ l sin( d ) sin( a + 30) ¡ q4 ¡ A1

¡ b
p

3/6 sin(q1) cos(q2)
2

+ [ ¡ A3 + l sin( d ) cos( a + 30)

¡ q5 ¡ A2]2 + ¡ q6 + (b /2) cos(q2) sin(q3)

+ b
p

3/6 sin(q2) + l cos( d )
2 1

2

where the tendons are labeled as follows: tendon 1 = A12 B21,
tendon 2 = A12 B11, tendon 3 = A22 B21 , tendon 4 = A22 B31 , ten-
don 5 = A32 B11 , tendon 6 = A32 B31, tendon 7 = A11 A32 , tendon
8 = A21 A12 , tendon 9 = A31 A22 , tendon 10 = B11 B12 , tendon 11 =
B21 B22 , tendon 12 = B31 B32, and A1, A2 , A3 are given by

A1 = (b/ 2)[cos(q1) cos(q3) ¡ sin(q1) sin(q2) sin(q3)]

A2 = (b/ 2)[sin(q1) cos(q3) + cos(q1) sin(q2) sin(q3)]

A3 = b
p

3/ 6 [1 ¡ cos(q1) cos(q2)]

Appendix B: Matrix Ag

The elements of matrix Ag are given by

Ag11 = (b / D1) b cos( w g + 30) + l
p

3 sin( d ) cos( w g ¡ a )

Ag12 = (b / D2) b sin( w g ) + l
p

3 sin( d ) sin( a ¡ w g ¡ 30)

Ag13 = (b/ S1) b cos( w g + 30) + l
p

3 sin( d ) cos( w g ¡ a ¡ 60)

Ag14 = (b / S2) b sin( w g ) + l
p

3 sin( d ) cos( w g ¡ a + 60)

Ag21 = (3/ D1)[l cos( d ) ¡ h], Ag22 = (3/ D2)[l cos( d ) ¡ h]

Ag23 = ¡ (3h / S1), Ag24 = ¡ (3h / S2)

Appendix C: Aerodynamic Coef� cients
The aerodynamic coef� cients of the aircraft are given as follows

(all angles in radians):

Cd = C l
d + C d e

d + C
d f

d , Cl = C a a
l + C d e

l + C
d f

l

CM = C a a
M + C

d f

M + C d e
M + C0

M

C a a
l = 0.3492 + 6.2083a a ¡ 4.0012a 2

a ¡ 5.727a 3
a

C d e
l = d e 0.40165 + 0.9437a a ¡ 4.756a 2

a

C
d f

l = d f 1.153 ¡ 0.2016a a ¡ 3.993a 2
a

C l
d = 0.01 4.2084 + C a a

l ¡ 5.049 + 8.8544C a a
l

C d e
d = d e ¡ 0.0573 + 0.4815a a + 0.627a 2

a

C
d f

d = d f 0.1514 + 0.3226a a + 0.6544a 2
a

C0
M = ¡ 0.07, C a a

M = ¡ 2.13a a + 0.46a 2
a + 1.73 a 3

a

C d e
M = d e ¡ 3 + 0.71a a + 4.1 a 2

a

C
d f

M = d f ¡ 0.92a a + 6.74a 2
a
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