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Tensegrity Flight Simulator
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In this paper we propose anew motionsimulatorbased on a tendon-controlled tensegrity structure. The simulator
is equipped with a nonlinear controller that achieves robust tracking of desired motions. The controller parameters
can be tuned to guarantee tracking to within a prespecified tolerance and with a prescribed rate of exponential
convergence. The design is verified through numerical simulations for specific longitudinal motions of a symmetric

aircraft.

Nomenclature
b = side length of the base and cabin triangles
C, = aerodynamic coefficient of drag
C, = aerodynamic coefficient of lift
Cy = aerodynamic coefficient of the pitching moment
¢ = mean aerodynamic chord of aircraft wing
D = drag
D, = rest-length of diagonal tendons
D, = length of diagonal tendons in a prestressable
configuration
g = gravitational acceleration constant of the Earth
h, = overlap
1 = 1identity matrix
J = inertia matrix of the simulator’s second stage
Ju = aircraft moment of inertia around the pitch axis
K = Hessian of the potential energy
k = tendon stiffness
k¢ = stiffness of the ith active tendon
ky = stiffness of the nth tendon
L = lift
/ = length of bars
It = length of the ith active tendon
Ly = length of the nth tendon
Iy = rest-lengthof the ith active tendon
L, = rest-length of the nth tendon
M(q) = tensegrity simulator inertia matrix
M, = mass of the second stage

M = aerodynamic pitching moment about the aircraft
mass center

m, = aircraft mass

n, = number of active tendons

P = pretension coefficient

q = generalized coordinates vector for simulator
q. = generalized coordinates vector for aircraft
q, = simulator equilibrium configuration

q0 = simulator prestressable configuration

q = tracking error

r = tracking tolerance

S = lifting surface of the wing

S, = rest-length of saddle tendons

So = length of saddle tendons in a prestressable

configuration
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Tp = tensionin diagonal tendons in a prestressable
configuration

T = tensionin saddle tendons in a prestressable
configuration

T, = tension in the nth tendon

T, = aircraft thrust

T¢ = vector of tensions in active tendons

7 = vector of tensions in passive tendons

t = time

Vv = potential elastic energy

v = aircraft speed

X,Y,Z = Cartesian coordinatesof the mass center of
the second stage

X, = aircraft horizontal range

Z, = aircraft altitude

a, = aircraft angle of attack

¥ = rate of exponential convergence

[ = elevatordeflection angle

Sf = flap deflection angle

0, = aircraft pitch angle

Pu = air density

T = time constant

v, ¢,0 = Eulerangles of the second-stagereference frame

y = aircraft pitch rate

Introduction

The credit for making simulated flight a reality goes to Edwin
Link for providing aviation with the first fixed-based flight trainer.
Link’s trainer of 1932 was, in the inventor’s words, part piano, part
pipe organ, and a little bit of airplane,' and it played a major part
in aviation training for the first 20 years of commercial and military
flight. Since then the technology of flight simulation has kept pace
with the technological advances in the aerospace industry.

The six-degree-of-freedan (DOF) Stewart platform is the most
popular motion base for flight/motion simulators.> A very advanced
six-DOF Stewart platform flight simulator is the one operated by
NASA Ames at Moffett Field, California. This simulator, which
became operational in 1993, is an exact replica of the cockpit of a
United Airlines Boeing 747-400 and it has unique research capabil-
ities. A detailed descriptionof this facility can be found in Sullivan
and Soukup® and Blake *

The Stewart platform is a complex and expensive mechanism
because the control of its motion presents great technological diffi-
culties because of the telescopicactuators. It is a well-known fact in
motion simulators circles that the operation of a telescopic actuator
presents difficulties, especially at large amplitudes and large accel-
erations. This is because of the large and rapid excursions of the
actuators, generating large loads on the structure of the simulator.
These loads, of both an inertial and dissipative nature, result in a
heavy structure and a large associated cooling system. The life of a



1056 SULTAN, CORLESS, AND SKELTON

telescopicactuatoris also limited because of the significant wearing
that occurs during its operation.

To reduce the complexity of the motion base, there has been
renewed interest in reduced-DOF simulators. However, relatively
little work has been devoted to the design of reduced-DOF mo-
tion bases or to the evaluation of the quality of motion sensations
that can be produced by these devices.” Pouliot et al.® analyzed the
simulation realism that can be achieved using motion bases with
only three DOF; the advantage of the reduced complexity of the
design is important for large transportaircraft for which it produces
good quality motion simulation. The weak point of the proposed
three-DOF simulators is their inability to simulate high frequency
accelerations (see Pouliot et al.®). Also, because the motion of the
reduced DOF simulators is controlled by telescopic actuators, the
problems associated with these actuators are not eliminated.

Another important problem for motion simulatorsis that of con-
trol system design. Many control synthesistechniqueshave been ap-
plied to simulator motion control system design, including classical,
adaptive,”® and optimal control ' Reid and Nahon'' and Nahon
and Reid'? implemented classical, adaptive, and optimal control al-
gorithms on the University of Toronto Institute for Aerospace Stud-
ies six-DOF flight simulator to obtain pilot evaluations of the corre-
sponding motion quality. They indicated that classical and adaptive
algorithms are generally preferred by pilots. As a result, a combi-
nation of the best features of classical and adaptive schemes into a
hybrid scheme was later performed, including the incorporation of
nonlinear adaptive filters.'3

Additional difficulties in the control of motion simulators result
from uncertainties in the simulator dynamics. These uncertainties
are due, for example, to changes in the simulator inertial properties
and uncertaintiesin the drive system dynamics. Hence, a robust con-
trol design strategy should be applied. Idan and Sahar'* proposed
a robust controller for a six-DOF flight simulator. The controller
designis based on a linearized model of the simulator dynamics to-
gether with an uncertainty model that describes the variation of the
simulator weight. The design is performed using 1 -synthesis tech-
niques and the controller is designed for lateral motion simulation,
for which the linearized model of a DC-8§ aircraft is used. Numeri-
cal simulations show that good quality lateral motion simulation is
achieved.

In this paper we propose a six-DOF motion simulator that elim-
inates the problems created by telescopic actuators. The structure
of the simulator is a tensegrity structure that has no bar to bar con-
nections and no rigid bodies sliding with respect to each other. The
motion of the simulator is controlled by tendons, leading to the
elimination of telescopic actuators.

A tensegrity structure is a special type of space structure com-
posed of a set of tendons that are prestressed against a system of
rigid bodies, usually bars.'> Tensegrity structures offer excellentop-
portunities for physically integrated structure and controller design
because the elastic components provide excellent opportunities for
the sensing and actuating functions.

Although the origins of tensegrity structures can be pinpointedto
1927 (see Snelson'®), the main investigations have been carried out
during the last 40 years. Tensegrity structures were looked on from
an engineering perspective for the first time by Fuller.!” Geometri-
cal investigations followed, most of them being reported in Fuller!”
and Pugh.'® Approaches using mechanics have been developed re-
cently and research into tensegrity structureshas become systematic
and aimed at establishingthe theoretical framework for the analysis
and design of these structures. Pellegrino and Calladine,'® Motro
et al.,”® and Hanaor?' have made important contributions toward
further knowledge of the statics of these structures. Linear dynamic
analysisresults have been publishedby Motro et al.2’ and Furuya.??
Nonlinear dynamics and control design studies have been reported
by Skelton and Sultan®® and Sultan and Skelton.?* Applications of
tensegrity structures are now being proposed, ranging from tenseg-
rity domes (see Hanaor?>> and Wang and Liu?®) to tensegrity sensors
(Sultan and Skelton?”) and space telescopes (Sultan et al.?®).

In this paper, we design a nonlinear robust tracking controller for
simulator motion control. The controller, which has been derived
in Zenieh and Corless,” assures exponential convergence of the

tracking error to a ball of prespecified radius, with a prespecified
rate of convergence. This controller has two important advantages
over other tracking controllers: Itis a continuouscontroller,and it is
simple to implement because it does not involve the computation of
the regressor matrix.* It is a known fact that exact tracking usually
results in discontinuous controllers that are undesirable for several
reasons (see Corless’!).

The paper is organized as follows. First a description of the pro-
posed tensegrity simulatoris given, followed by the derivation of its
equations of motion. The statics of the simulatoris analyzed and the
equilibrium configurations are mathematically characterized. Next,
the design of the nonlinear robust tracking controller is presented.
The performance of the simulator equipped with this controller is
then evaluatedby simulating specific longitudinalmotions of a sym-
metric aircraft.

Tensegrity Simulator

A perspective view of a two-stage tensegrity simulator is given
in Fig. 1. The first stage consists of a base with three bars
(A;B;,i=1,2,3) rigidly attached (clamped) to it. The second
stage consistsof a cabinwith threebars (A;, B;», i =1, 2, 3) clamped
to it. Twelve tendons connect the end points of the bars. The six ten-
dons characterized by B;| A ;, are classified as saddle tendons. The
remaining six, A;; A, and B;; B}, are called diagonal tendons. For
mathematical modeling we assume that the tendons are massless
and linear elastic, whereas the base, cabin, and bars are rigid.

For simplicity, the base and cabin triangles A;;A;; A3 and
By, By, B35, respectively, are chosen to be congruent equilateral tri-
angles. We also assume that all bars are identical and that they are
connected to the base and cabin so that the angles made by their
axes of symmetry with the perpendicularto triangle A;; A, A3, or
By, By, By, are all equal; we call this angle 6 and we restrictit to sat-
isfy 0 < 6 < 90 deg. For 6 =0 the bars are orthogonalto the triangles
and for 6 =90 deg their axes of symmetry belong to the triangles.
The angles made by the projections of the bars A;| B;; (i =1, 2, 3)
onto the A1 A, Az plane with the vector A4z, are a, a + 240,
o+ 120, respectively (see Fig. 2 for the definitions of a and 6).
Similarly the angles made by the projections of the bars A;,B;,
(i =1, 2, 3) onto the B, By, B;, plane with B|,B3, are a, o + 240,
a + 120, respectively.

As an inertial reference frame, we choose an orthonormal dextral
setof vectorsey, e,, e3 with originat the geometric center of triangle
A1 A, Az . The vector e; is orthogonal to this triangle, pointing
upward, whereas e is parallel to A;;A3,;. We introduce a reference
frame s, §5, 53, called the second-stage reference frame and fixed
in this stage. Its origin is at the mass center of the second stage,
which is assumed to coincide with the geometric center of triangle

Aqq

Base

Fig.1 Two-stage tensegrity simulator.



SULTAN, CORLESS, AND SKELTON 1057

Perpendicular to triangle A, A, A

11721731
B
/ 1

-
-
—
-
o

11 A gt

Fig.2 Definition of o and 4.

B, By, B3;. The vector s; is orthogonal to this triangle, pointing
upward, whereas s, is parallel to B, B3,.

The simulator has six degrees of freedom. As independentgener-
alized coordinates we choose y, ¢, 8, the Euler angles for a 3-1-2
sequence to characterize the orientation of the second-stage refer-
ence frame relative to the inertial reference frame, and X, Y, Z, the
Cartesian coordinates of the mass center of the second stage rela-
tive to the inertial reference frame. Thus, the vector g of generalized
coordinatesis given by

g=I[y ¢ 0 X v ZzI (1)

Tensegrity Simulator Dynamics
The derivation of the second-ordernonlinearordinary differential
equations that describe the dynamics of the tensegrity simulator,
carried out using the Lagrange methodology, yields the following:

M(g)j + ¢(q. ¢) + A(@T(q) + G =0 )
The system inertia matrix M (q) has the structure
Mg = [QTJQ 0 } 3)
0 M

where
—cos(¢)sin(8) cos(0) O
Q= sin(¢) 0 1
cos(p)cos(8) sin(@) O
The inertia matrix of the second stage J is calculated with respect

to the second-stage reference frame. The components of the vector
c(q, ¢) are quadratic functions of ¢ and are given by

6 6
aMI] 1anm Lo .

j=1lm=1
)

The vector ¢(q, ) can be expressed as
c(q.9 =Cq. Pq &)

The matrix C(q, ¢) is not unique, however, if it is chosen according

to
6
1 M;; M, M;
Cj== E oMy Min | OMy G
T2 Gm 0q; 0q;

m=1

for i=1,...,6 and j=1,...,6 (6)

then the matrix M(g) —2C(q, ¢) is skew-symmetric. The vector
A(q)T(q) represents the generalized forces because of the tendons
intension,where A,,, =0l,/0q,, (m =1,...,6,n=1,...,12)and
T, =(k,/1,){1,—1,) (n=1,...,12). The expressions for [, are
given in Appendix A. The vector G=[0 0 0 0 0 M,g]” repre-
sents the generalized forces due to the gravitational forcefield.

Tensegrity Simulator Statics

Using Eq. (2), all equilibrium configurations g, of the tensegrity
simulator are given by

A(g)T(q,) + G =0 7

In addition all tendons should be in tension. Mathematically, this is
characterized by

T.(q;) >0 for n=1,...,12 ®)

An equilibrium configuration in which all of the tendons are in ten-
sionis called a feasible equilibrium configuration. We are interested
in feasible equilibrium configurations for which the cabin and base
triangles are parallel and their mass centers are vertically aligned,
ie.,q, is given by

g, =y, 0 0 0 0 Z]" 9)

At a feasible configuration characterized by Eq. (9) the diagonal
tendons A;; A, have the same length, D, the diagonal tendons
B;1 Bj; have the same length, D,, the saddle tendons B;; A;, have
the same length, S|, and the saddle tendons B As;, By Ay, B3 Aj
have the same length, S,. These lengths are given by

D, ={(2b*/3)[1 + cos(y, — 60)] + h% +[* = 2lh,, cos(5)

+ (2/V3)1b sin(®)lcos(a +30) + sin(y, )1} (10)

D, ={(2b*/3)[1 = cos(y,)] + h2 + > = 21h, cos(9)

+ (2/ \/g)lb sin(§)[cos(y, — a+ 30) — cos(a — 30)]}% a1

S, ={(2b*/3)[1 + cos(y, — 60)] + h2 + I sin*(5)

+ (2/ \/g)lb sin(8)[sin(y, — a —60) — sin(oc)]}17 (12)

S, ={(20%/3)[1 = cos(w,)] + h2 + I* sin*(9)

+ (2//3)1b sin(®[sin(c — 60) + cos(y, — o — 30)]}% (13)

respectively. The overlap h,, defined as the distance between trian-
gles A, A Ay, and By By B3 andrelatedto Z, by h, =21 cos(d) —
Z,, is positive (h, > 0) if the distance between A;A; A3, and
A1 A,y Az is smaller than the distance between BB, B3, and
A 1Ay Ay

For simplicity we assume that all tendons have the same stiffness
k, all the diagonal tendons have the same rest-length D,, and all
the saddle tendons have the same rest-length S,. Hence tensions in
tendons of length Dy, D,, S}, S, are equal to

T1)| =k(D1 - Dr)/Drs T[)z =k(D2 - Dr)/Dr

Ts, = k(Si — S)/S,, Ts, =k(S, = S,)/S,  (14)
respectively.

The requirement that the feasible equilibrium configurations
are characterized by Eq. (9) must hold for G varying in a certain
domain, i.e., the design should tolerate variations in the mass of the
cabin. If we substitute Eq. (9) into Egs. (7) and (8), we obtain the
conditions these feasible equilibrium configurations must satisfy

Ang +[O Mtg]T =O

Tp, >0, Tp, >0, Ts, >0, Ts, >0 (15
Here T, =[Tp, Tp, Ts, Ts,]" and A, is a 2 X4 matrix given in
Appendix B. To solve these conditions for the feasible equilibrium
configurations (y, and Z,), we have to choose the rest-lengths of
the tendons. In the following we shall choose the rest-lengths of
the tendons using certain feasible equilibrium configurations of the

tensegrity structure, called prestressable configurations.

Prestressable Configurations

Consider the case when no gravity is present, i.e., G =0. The cor-
responding feasible equilibrium configurations are called prestress-
able configurations. Let g, denote a prestressableconfiguration. We
impose the condition that at the equilibrium ¢, the second stage is
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obtained from the first througha clockwiserotation of 60 deg around
the axis es, i.e., Yy =300 deg and

qo=[300 0 0 0 0 Z] (16)

With this geometry, all saddle and diagonal tendons have the same
lengths given by

So ={h2 +b*13 + > sin*(8) — (2/ /3 )1b sin(6) cos(a — 30)}'7
an

1
Dy ={1? +b%/3 + h} = 2lh cos(8) — (2/ V3 )1b sin(8) sin(e)} >
(18)
respectively.Here hy =2I cos(d) — Z, is the overlapin the prestress-
able configuration g.
In this configuration, the tensions in the saddle and diagonal ten-
dons are equal to Ty and T, respectively, hence the first condition
in Eq. (15) reduces to

cos(a)/ D, cos(a+ 60)/Sy | | Th
[ho — 1 cos(8)]/ Dy hol Sy T,

:| =0 (19)

The second of the preceding equations (kg — [ cos(8))(Tp/ Dy) +
ho(Ts/Sp) =0 and the condition that 0 < § < 90 deg show that in
order for the tensions to be positive (Tp > 0, Ts > 0), we must have

0 < hy < lcos(d) (20)

Equation (19) must hold for nonzero [T, Tg]", thus the determi-
nant of the 2 X 2 matrix multiplying[Tp Ts]” must be zero; this is
equivalentto

_lcos(é) cos(a + 60)

ho =
cos(a — 60)

21

The constraint 0 < 4y < [ cos(8) leads to 30 deg < a < 90 deg or
210deg < o < 270 deg. Solving Eq. (19) for the tensions, we obtain
that

Ts = PTy,, T, = PT;, (22)
where
1 | lcos(6) — hy Dy
e

1
X [{[(Z cos(8) = ho)/ hol(Do/ So) M

is a normalized vector such that the Euclidean norm of the vector T'
of all tensionsis one for P =1.
Using the expressions for the tensions Ts and T)p,

(23)

Ts = (k15)(So = Sy), Tp = (kI D,)(Dy = D;)  (24)

we getthe following expressionsfor S, and D, in terms of i and P:

S, =kSo/(To, P + k), D, =kDy/(Ty, P +k)  (25)

An important issue in tensegrity structures research is the sta-
bility of the prestressable configurations.'® It can be shown that
for (a, ) € (30, 90) X (0, 90) the prestressable configurations pre-

viously analyzed are stable. Indeed, consider the potential energy
of the structure in the absence of the gravitational field:

12 k )
v=> =(,-1,) (26)

T
n=1 "

The second derivative of the potential energy with respect to the
generalized coordinates is given by

_ oV
04i0q; ’

i=1,....6, j=1,...,6 (27

ij

If we evaluate K at a prestressable configuration characterized by
4o =[300 0 0 0 O 2/cos(8) — hy] with h given by Eq. (21) and
use the correspondingrest-lengths given by Eq. (25) we get

K, =diaglK,, K./2 K./2 Ky Ku Kul (28
where
K1y =2b%(Ts/ Sy + Tp/ Do) + 2/31b sin(5)

X[(Ts/Sy) sin(ax + 60) + (Tp/ Dy) sin(a)] 29)
Ky =12(Ts/ Sy + Tp/ Dy) (30)

For (o, o) € (30, 90) X (0, 90) and for P > 0 we have K;; > 0 and
K44 > 0,yielding K, > 0, which proves that these prestressablecon-
figurations are stable.

For simulator design we choose the values of o and & such that
sufficient clearance between the bars is guaranteed. For this pur-
pose we proceed as follows. Consider a pair (¢, 8) and compute the
minimum distance d;’;” between two bars A;; B;; and A,,, B,,,,. The
problemof minimum distance between theiraxes of symmetry leads
to a constrained quadratic optimization problem:

T T —
di" _rr3V1n(w Hw + f'w +o0), w=[w; w,]

0<wi, =<1 (31

H = |: (vl Vi V2i|
—Vi*V2 [Iv2l?
[T =[-2a-v; 2a-v,], ¢ = llall? (32)
where a =AijAmns Vi =Ai_fBi_f1 V2 =Am,,Bm,,.

We denote by d(a, 6) the minimum of d!" over all pos-
sible combinations of bars, i.e., over all (i,j), (m,n) pairs
[i=1,2,3,j=1,2,m=1,2,3,n=1,2, (i, j) #(m, n)]. Follow-
ing this analysis we choose a =8=60 deg that, for [ =5 m,
b =3.33 m, yields a clearance d(a, 8) =1.2 m. This procedure as-
sumes that the prestressableconfigurationand the actualequilibrium
configuration (when the gravitational field is acting) do not differ
too much.

Feasible Equilibrium Configurations

The feasible equilibrium configurations of interest are character-
ized by Egs. (15). We assume that the rest-lengths of the tendons
are given by Eq. (25). For M, =0, G =M, g =0 and we know that
Eqgs. (15) have a solution; thus we expect them to have a solution
for small M, #0. A continuation procedure can be applied to solve
for these solutions as follows: slightly increase M, and solve the
two nonlinear equations A, T, + [0 M,g]" =0 for v, and h, (us-
ing classical nonlinear solvers like Newton-Raphson), then check
if T, >0 (i =1, ..., 4). If this happens, then we have found a new
feasible equilibrium configuration with ¢, =[y, 0 0 0 0 Z,]"
where Z, =21 cos(3) — h,. We continue to increase M, and repeat
the procedureuntil one of the tendons becomes slack or when the M,
of interest is reached. To illustrate the application of this procedure,
a graph of the variation of v, and Z, with the mass of the second
stage (top), M,, is given in Fig. 3 for the following characteristics:

I =5m, b =3.33m,

a =60 deg, 6 =60 deg

P =2000, k =5000N, g =98Ims2 (33)
At all points on these curves the distances between bars were com-
puted to ascertain if the bars intersect. This did not happen (the

minimum distance between two bars was 0.7 m).
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Fig.3 Variation of 1, and Z, with mass of second stage.

Robust Tracking Controller
The controlinputs for the simulator are the rest-lengthsof some of
the tendons. For furtheranalysis, we separate the tendons into active
tendons of controlledrest-lengths and passive tendons of fixed rest-
lengths. Using Egs. (2) and (5), the behavior of the simulator is
described by

M(q)§ + C(q. g + A”(@T"(g) + A(T* +G =0  (34)

where the components of 77 and T* are the tensions in the passive
and active tendons, respectively.

For robust control design we consider that the mass of the second
stagemay be uncertain.The uncertaintyis representedby the lumped
uncertain term p € A, where A is a known nonempty set. Thus the
equations of motion transform to

M(g, )G + C(q. 4. g + A" (T’ (q)
+ AYT* + G(u) =0 (35)
For further analysis we write the equations of motion as
M(q. 1§+ C(q.q. 1)q +uy + A"@T" (@) + G(u) =u  (36)
where
u=—AQT" +uy, uo = A%(g)T(q)  (37)

Here ¢, is a feasible equilibrium configuration. Under the assump-
tion of invertibility of A%(q), Eq. (37) can be solved for the active

rest-lengths /7, ..., [7  specifically,
L f i =1 (38)
T Ea T or i=1,...,mn,

where T“, the vector of active tensions, is given by T¢ =
AYg) " (up —u).

The issue of active tendon selection is addressed next. Be-
cause the number of generalized coordinates is six, the system
will be controlled with six tendons. The six are chosen by an-
alyzing the properties of the matrix A(q,). Specifically, we con-
sider the set of all matrices created by combining any six columns
of A(q,); let these matrices be denoted by A; (i =1,...,924).
We compute the corresponding set of minimum singular values
0 =0min(A;) (i =1,...,924). The A;, which yields the maximum
of {c;,i =1, ..., 924}, providesthe set of active tendons. Applying
this procedure with the data in Eqgs. (33) and with g, corresponding
to the nominal mass M, =140kg of the simulator, we obtain that the
set of saddle tendons is the best choice for the set of active tendons.

Let ¢?(-) : IR — IR® be a desired motion of the simulator. Ideally,
we wish to designa controllersuch that every motiong(-) : R — IR®
of the closed-loop system convergesto the desired motion exponen-
tially. We also want to specify the rate of convergence y a priori.

The requirement that the tracking error g =q — g¢¢ convergesto zero
usually leadsto a discontinuouscontrollerthatis undesirablefor sev-
eral reasons (see Corless®!). However, if we only require tracking
to within some prespecified tolerance r we can design a contin-
uous controller (see Zenieh and Corless®). Specifically, given r,
y > 0, we can design a controller so that the closed-loop systemis a
robust r — y tracker; namely, there exists scalarsc; and ¢, such that,
for any desired (twice continuously differentiable) trajectory g?(-)
and any uncertainty i € A every solution satisfies

llgOll < (eillg()ll + cllglo)ll) exp(=7 (t = 1)) +r
for ¢t >t, (39)

which means that the tracking error exponentially converges with
rate y to the ball of radius r defined by ||g|| <r.

To apply the results of Zenieh and Corless® for controllerdesign,
itis assumed that there exists positive constants 3y, 1, B, B3, such
that for all ¢, ¢, and u,

0< Bl =M(q, 1) <pil, IC(q. ¢. Wl < Bllgll

lluy + A?(@)T"(g) + G(w)Il < B (40)

If we express C(q,q, 1) as C(q, q, p) =diag(¢g")C(q, u) we
get |C(q, ¢, wll <lIC (g, wlligll. Thus B, can be chosen to an up-
per bound on the maximum singular value of C(q, u).

Because analytical determination of the bounds Sy, B, B,, B; is
not usually possible, they are numerically determined. One ap-
proach is to discretize the problem by gridding A and the do-
main D in the space of generalized coordinates in which it is
reasonable to assume that the system trajectories lie. Let (q;, i;)
(i=1,...,N) denote N grid points. We evaluate the minimum
and maximum eigenvaluesof M(q;, u;) (called Ay, and A,y , Te-
spectively), the maximum singular value of C(g;, p;) (called Gy, ),
and the quantity F; =|luo + A?(g)T?(q;) + G(u;)|l. Any positive
number smaller than the minimum of {A.;,,, i =1, ..., N} can be
chosen as ), whereas any number greater than the maximum of
{Amax;»i =1,..., N} can be chosen as ;. Similarly any number
greater than the maximum of {Gy,y,,i =1,..., N} can be chosen
as 3, and a number greater than the maximumof {F;,i =1, ..., N}
can be chosen as f;. A finer grid can be used to test if the chosen
values are satisfactory.

In Zenieh and Corless® the following nonlinear, continuouscon-
troller has been proposed for robust tracking control of a general
class of mechanical systems:

p =Billzll + Bllvil + B

n=q+Aq 41)

u=-0n-(lpnl+e'p’n,
v=4q'-Aq,
Here O, A, and € satisfy

Q>ypil, 0 < €< (71 Amin(Q)(Bo/ B1), A>yl

(42)

where A,;, (Q) denotes the minimum eigenvalue of the positive-
definite symmetric matrix Q.

The resulting closed-loop system has been shown to be a robust
r — y tracker with

c; =1+ Anax(A)ca, ¢ = BilBo(y1 —7)

71 = Amin(Q)/ B (43)

where A, (A) is the maximum eigenvalue of the positive-definite
symmetric matrix A (see Zenieh and Corless®).

Simulating Longitudinal Motions
of a Symmetric Aircraft
In flight simulation, the desired motion g¢(-) to be tracked by the
simulator is generated by the motion of an aircraft. We consider
here the longitudinalmotion of a symmetric aircraft. A longitudinal
motion of a symmetric aircraft can occur when the resultant force
belongs to the longitudinal plane of symmetry of the aircraft and
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the resultant torque is orthogonal to it. Using a single rigid-body
model to describe the longitudinal motion of a symmetric aircraft
and assuming no wind, the following equations of motion can be
derived through the application of the laws of mechanics:

Xu =V COS(Q,, - au): Zu =V Sin(eu - au): 911 =,

m,v =T, coso, — D —m,g sin(6, — o)
meva, = =T, sin Oy — L+ mq8 COS(Q,, - au) + mgv @y
Ju Ct)‘ = My (44)

The horizontal range (X, ) and the altitude (Z,) of the aircraft are
measured with respect to a dextral set of unit vectors fi, f>, f3, at-
tached to the Earth. The motion is assumed to take place in the
vertical fi — f5 plane with f; vertical. In this model, we neglect the
gyroscopic couples (because of rotating rigid bodies) as well as a
propulsioncontributionto the pitching moment (because of offsetof
the resultant thrust from the aircraft center of mass). For simulator
design we shall use the vector g, of generalized coordinates of the
aircraft defined by

q4a = [ Ve ¢ 0, Xo Yo Z, ] ’ (45)

By the choiceof the inertialreferenceframe attachedto the Earth, the
aircraftmotion takes placein a vertical plane and we have v, = ¢, =
Y, =0.

The aerodynamic forces L, D, and the pitching moment M, are
given by

L = (p,$v*[2)C,, D = (p,Sv*/2)C,
M, = (p,Sv2¢ [2)Cy (46)

For small variations of the Mach number, the aerodynamic coeffi-
cients can be consideredindependentof this parameter. For a certain
aircraft, whose dynamic properties are analyzed in Sultan,* these
coefficients depend on @, &,, and &;, and are given in Appendix C.
The atmosphere model used here yields the following dependency
of the air density p, on the altitude Z,,:

Pu = 1.22625exp[4.256log(1 — Z,/44300)] kg m™> 47)
where Z, is given in meters.

Evaluation of the Tensegrity Simulator

In the following we analyze the ability of the tensegrity simulator
to track longitudinal motions of an aircraft. First we define what we
mean by tracking and desired motion in this context.

The main task of a flight simulator is to give the pilot the same
sensations one would have when flying the real aircraft. In the first
approximation we neglect the influence of the vestibular system of
the pilot. For simplicity we also assume that the pilot’s head location
with respect to the mass center of the second stage of the simulator
is the same as its location would be with respect to the mass center
of the aircraft. Thus, in case the simulator tracks reasonably well
the acceleration and angular velocity of the aircraft, the pilot will
have the same sensations when flying the simulator as when flying
the real aircraft.

Mathematically, the tracking problem means that the simulator
and the aircraft should have the same accelerations and angular
velocities. Usually, they start from different initial configurations
and velocities. The simulator is in equilibrium with zero velocity,
which is dynamically equivalentto a rectilinear uniform translation
of the aircraftat an arbitrary velocity. It is sufficient for the simulator
to track the aircraft motion because of a certain command as seen
from an inertial reference frame attached to the aircraft that is in
rectilinearuniform motion before the command is applied. Thus the
desired motion is given by

g (1) = qu(t) = Gt — quy + o + Got (48)

where q, 4o, 44, 44, are the initial conditions of the simulator and
aircraft (usually g, =0). In this paper we are mainly interestedin the

capability of the tensegrity simulator equipped with the nonlinear
robust tracking controller to track the desired motion at the onset of
the acceleration, i.e., immediately after an aerodynamic or throttle
command is applied.

‘We now considerthe following scenario. The aircraftis in uniform
rectilinear translation; correspondingly, the simulator is in equilib-
rium, characterizedby ¢q,. Then, a command that does not take the
aircraft out of its longitudinal flight is performed. As a result the
simulator should undergo a motion to track the desired trajectory:

¢ =y, 0 0 x‘ 0o z7" (49)
where
0! =0, - 0,, X=X, = Xt = Xop
Z' =2, = Zyt — Zyy + Z, (50)

For simplicity we assume that the second-stage reference frame
is central principal for the second stage such that its inertia matrix J
is diagonal, J =diag[J; J,» J;]. We choose the following nominal
inertial parameters for the simulator:

M, =140 kg, J; =300kg m?

J, =400 kg m?, J; =500 kg m> (51)

The geometric and elastic parameters are those given in Egs. (33).
The controller is designed using the following parameters:

y =25, r=0.2, Bo =90, B =700, B, =500
B; =40000, € =56252, A =261, 0 =175011
(52)

The bounds ; (i =0, 1, 2, 3) have been determined based on a grid
of the set D X A where A =[90, 190] kg and

D = [y, — 30, y, +30] X[—=30, 30] X [=30, 30]
X[=b/3,b/3] X[=b/3, b/3]

X[Z, = b/3, Z, + b/3]

Here y, and Z, are the nominal values (corresponding to M, =
140kg) of y and Z at equilibrium. The increments used in gridding
were 5 deg for v, ¢, and 0, b/6 for X, Y, Z, and 2 kg for u =M, .

The mass of the aircraftis m, = 1400 kg and the pitchingmoment
of inertia is J, =60,000 kg m2. The lifting surface is S =11.9 m?
and the mean aerodynamic chord is ¢ = 1.22 m.

Elevator Command

Here we evaluate the ability of the system to simulate the motion
of the aircraft when subjected to an elevator step input command.
Assume that the aircraft is initially in level flight characterized by
the following trim conditions:

le() =3000 m, 911() = 0, au() = O, Xll() =86.4m S_1

8, =0, &, =-134deg, T, =1479N (53)

The corresponding simulator equilibrium is characterized by

v, =3022deg,  Z,=346m, X=Y=¢=0=0
(54)

The elevator, which is approximated as a first-order system with
time constant 7 =0.2 s, is given a step command at time 7, =0.5 s.
This results in the elevator deflection,

& =8, + & {1 —expl—(t —to)/ 7]} (55)

We present next the time histories of the most significant ac-
celerations (Fig. 4), the control inputs (Fig. 5), and the actuator
forces (Fig. 6) for & =2 deg. The following notation has been intro-
duced for the tendons: tendon 1 = A, B,,,2 =A,By;,3 =An By,
4 =A22B3ls 5 =A3ZBlls 6 =A32B31~
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The simulator is very effective in tracking the accelerations even
throughout the initial phase. Numerical simulations indicate that
even better tracking is achieved for the generalized coordinates and
velocities and for the angular velocity of the aircraft. The time his-
tories of the control inputs and actuator forces show that their varia-
tions and ranges are acceptable. The simulations show that through-
out the motion none of the tendons becomes slack, and there is
always sufficient clearance between bars.

Flap Command

Here we evaluate the ability of the system to simulate the motion
of the aircraft because of a flap step input command. Assume that
the aircraftis initially in level flight characterized by

Z,, =100m, 0, =0, & =0, X, =748 ms™!

61,

, =0, &, =-134deg, T, =1479N (56

and that approaching landing the flaps are given a deflection,
& =8y + {1 = expl=(1 = o)/ 71} (57)

with 5;‘ =5deg, 1) =0.5s, and r =0.5 s. The equilibrium configu-
ration of the simulator is the same as before.

Numerical simulations (Fig. 7) show that the simulator is very
effective in tracking the accelerations. As in the elevator step com-
mand case, numerical simulations indicate that even better tracking
is achieved for the generalized coordinates, generalized velocities,
and angular velocity of the aircraft, although none of the tendons
becomes slack and sufficient clearance between bars is guaranteed.
The correspondingcontrol input time histories, givenin Fig. 8, show
that their variations and ranges are acceptable (the same is true of
the control forces).

Throttle Command

Finally, we evaluate the ability of the system to simulate the mo-
tion of the aircraft when subjected to a throttle step input command.
We suppose that the aircraft is initially in level flight characterized
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by the parameters of the previous section and is given the throttle
command,

T, =T, + T {1 —exp[—(t — ty)/ ]} (58)

with T# =500N, £, =0.5 s, and 7 =0.5 s. The time histories of the
significantaccelerationsand the controls are given in Figs. 9 and 10,
respectively.

As in the case of the aerodynamic commands, tracking is very
good, and none of the tendons becomes slack and there is suffi-
cientclearance between bars. Here the control time histories exhibit
smoother variations than in the case of the aerodynamic commands.

Robustness of the Design

In the following we evaluate the robustnessof our design. We con-
sider that the controlleris designed for the nominal simulator, whose
inertial propertiesare M, = 140kg, J, =300kgm?, J, =400kg m?,
J; =500kg m?, and that it is used to control the motion of the sim-
ulator when its inertial properties change.

For illustration, we consider an elevator step command with
8" =5deg, ) =0.5s, 7 =0.2 s applied to the aircraft, which is ini-
tially in level flight characterizedby the parametersin the subsection
Elevator Command. Figure 11 shows the vertical accelerationof the
aircraft and the corresponding vertical accelerations of three simu-
lators: the nominal one and two perturbed simulators, whose inertial
properties are varied between +50% and —50%, respectively, from
the nominal ones (this means that the values of M;, J;, J,, J; are
varied between +50% and —50%, respectively, from the nominal
ones). The response of the perturbed simulator whose inertial prop-
erties are varied +50% is represented in Fig. 11 by +, whereas the
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Fig. 11 Robustness evaluation: desired (——), nominal (- - -), and

perturbed (+, X) simulators.

response of the one whose inertial properties are varied with —50%
is represented by X. We ascertain that, even for these large per-
turbations in the inertial properties, the tracking is very good. The
perturbed simulators responses are very close to the response of the
nominal simulator and to the one of the aircraft. Our simulations
confirm that even better tracking is obtained for the generalized co-
ordinatesand velocities while none of the tendonsbecome slack and
none of the bars touch each other.

It is also important to mention that, even though for controller
design we assumed variations only in the mass of the cabin M,, the
design is very robust with respect to variationsin all inertial param-
eters of the simulator. We also remark that the perturbed simulators
masses considered in the preceding example are out of the range
used for controller design (A =[90, 190] kg). However the per-
turbed simulators equipped with the nominal controller track the
desired motion very well.

Conclusions

Motivated by the desire to eliminate complicated strutactuators, a
tensegrity motion simulator is proposed. The main advantage that a
tensegrity motion simulator has over a Stewart platform based sim-
ulatoris thatit does not have telescopic struts. Tensegrity simulators
do not include rigid bodies sliding with respect to each other, nor
do they have complicated bar to bar joints. The actuating and the
sensing functions can be carried by the tendons.

For the proposed simulator, a nonlinear continuous robust track-
ing controller is designed. The controller guarantees exponential
convergence of the tracking error—with a prespecified rate of
convergence—to a ball of a prescribed radius. The physical con-
trols are the rest-lengths of six of the 12 tendons of the tensegrity
structure.

The proposedtensegrity simulatorequipped with the robusttrack-
ing controlleris very effective in tracking the longitudinal symmet-
ric motions of a certain aircraft. In general, the motions generated
by throttle commands are better tracked than those due to aerody-
namic control surfaces commands. Further numerical simulations
indicated that the design is very robust to variations in the inertial
properties of the cabin.

Appendix A: Tendon Lengths
The lengths of the tendons/; (j =1, ..., 12) are given by

I, = {[q5 - A, — (b \/5/6) cos(q,) cos(q,) — b/3/3
+1sin(8) sin(@)]” + [gs — Ay + (b+/3/6) sin(q1) cos(4n)
+ 1 sin(6) cos(oc)]2 + [q(, + (b/2) cos(q,) sin(gs)

— (6316) sin(ay) - Acox(a] )}
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L ={[qs — A, + (b3/6) sin(q)) cos(q>)
+ Lsin(3) sin(a — 30) + b/2]" + [gs — A, + A
— I'sin(8) cos(a — 30)I* + [g5 + (b/2) cos(qy) sin(gs)
— (b/376) sin(qn) — 2 cos(8)] '}

Iy ={[gs = (b~/3/3) sin(g1) cos(g) — I sin(3) cos(a — 60) |
+[g5s — 245 — sin() sin(a — 60)]
+[gs + (bV313) sin(qy) — 2 cos(9)]'}?

Iy = {[as = (p~/3/3) sin(q)) cos(qz) — b/2
+Isin(8) sin(a — 30)]” + [gs + (b¥/3/3) sin(g»)
—21cos(3)]" + [as + (b3/3/6) cos(q)) cos(q)

+ 5316 = 1sin(8) cos(a — 30) '}

Iy ={[qs + A, + (b~3/6) sin(q)) cos(g>) — [ sin(&) cos(a — 60)
+b/2] + [gs + Ay + Ay —Lsin(8) sin(a — 60)

+ [g5 — (b12) cos(q2) sin(gs)
— (b/376) sin(qn) — 2 cos(®)] '}

Iy = {[as + A2 = (b/3/6) cos(q)) cos(g,) + I sin(8) sin(a)
+b3/6]" + [q4 + A, + (bV/316) sin(qy) cos(q)
+Isin(8) cos(@) — b/2]" + [¢5 = b/2cos(q) sin(gs)

— (b/376) sin(qn) — 2 cos(®)] '}

I ={[b/2+ g4 + A, + (~/3/6) sin(qy) cos(g2) + I sin(&)

X cos(a +60)]" + [As + g5 + A, + I'sin(d) sin(a + 60) ]
+ [g5 — (b12) cos(q2) sin(gs)
— (b/376) sin(qn) — Lcos(®)]'}

Iy = {[p~3/3 = gs + Ay + (b~/3/6) cos(qr) cos(gn) + I sin(5)
X cos(a +30)|" + [A1 = qu = (b~/3/6) sin(g1) cos(gn)
— Lsin(3) sin(a + 30)]" + g6 + (b/2) cos(4n) sin(gs)

— (b/316) sin(ay) — Lcos®]'}?
ly = {[b12 = qu + (b/313) sin(q1) cos(g) + [ sin(d) cos(a) ]’

+ [b V316 + qs + (b \/5/3) cos(qy) cos(qs)

=

— Isin(8) sin(@)]” + [g6 + (b 3/3) sin(g2) — Icos(8)]")
Lo = {[b/2 = I'sin(8) cos(a) + g4 — A,

+ (b/3/6) sin(q1) cos(g2)]” + [As — Lsin(8) sin(a)

+qs — A2 + [g6 + (b/2) cos(qy) sin(q3)

— (b~/3/6) sin(q2) — ICOS@]Z}%

I, = {[l sin(d) cos(a + 60) + g4

— (63/3/3) sin(q1) cos(g2)]” + [~ sin(8) sin(a + 60)

=

— g5 + 2451 + [gs + (b~3/3) sin(gs) — Lcos(3)]’)
Liy = {[b/2 - I'sin(8) sin(a + 30) — ¢, — A,

- (b \/5/6) sin(ql)cos(qz)]2 + [—A; + [sin(5) cos(a + 30)

— g5 — Ay + [—q6 + (b/2) cos(q2) sin(gs)

L

+ (b \/5/6) sin(q,) + lcos(é')]z} :
where the tendons are labeled as follows: tendon 1 =A, B,
tendon 2 =A,B,;, tendon 3 =A,,B,,, tendon 4 = A,, B3, ten-
don 5 =Aj3, By, tendon 6 = A3, B3y, tendon 7 =A;;A3,, tendon

8 =A21A12, tendon 9 =A31A22, tendon 10=BHB]2, tendon 11 =
B; By, tendon 12 = B3, Bs,, and Ay, A,, Aj; are given by

Ay = (b/2)[cos(q:) cos(qs) — sin(qy) sin(ga) sin(gs)]
A, = (b/2)[sin(q,) cos(gs) + cos(q;) sin(g) sin(gs)]

Ay = (b \/5/6)[1 — cos(q;) cos(g»)]

Appendix B: Matrix A,
The elements of matrix A, are given by

Ay, = (bIDy)[bcos(y, + 30) + 13 5in(8) cos(y, — )]
Ay, = (b/Dy)[bsin(y,) + [V3sin(8) sin(e — y, — 30)]
Ay, = (b/S)[bcos(y, + 30) + 13 sin(8) cos(y, — o — 60)]

A, = (b/Sz)[b sin(y,) +1 \/gsin(é') cos(y, —a+ 60)]

Ag2| = (3/D1)[l COS(5) - h], Agzz = (3/D2)[l COS(5) - h]

Ay =—(30/S)), Ay, = —(3h15,)

Appendix C: Aerodynamic Coefficients

The aerodynamic coefficients of the aircraft are given as follows
(all angles in radians):

C,=CL+Ch+CY, C=Cr+Cr+C)
Cy =Cl+CJ+C 4+,

C/" =0.3492 + 6.2083c, — 4.001202 — 5.727¢
¢ = 6,(0.40165 + 0.9437a, — 4.75602)
¢, =5:(1.153 - 0.2016a, — 3.993¢?)

Cl, = 0.01[4.2084 + C; (—5.049 + 8.8544C; )]
CF =6,(—0.0573 + 0.48150, + 0.62702)
C) = 8,(0.1514 + 0.32260, + 0.65440?)

Y = -0.07, Ciif = =2.130, + 0.46a; + 1.73c;

Cf; - 5e(—3 +0.71e, + 4.1053)

Cy = 5,(~0.920, + 6.74c2)
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