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Abstract. The aim of the paper is to answer the question: which loading 

parameter determines the stress and strain fields near a crack tip, and 

thereby the growth of the crack, under creep conditions? As candidates for 

relevant loading parameters, the stress intensity factor K , the path-

independent integral C* , and the net section stress a have been 

proposed in the literature. The answer, which is attempted in this paper, 

is based on the time-dependent stress analysis of a stationary crack in 

Mode I tension. The material behavior is modelled as elastic-nonlinear 

viscous where the nonlinear term describes power law creep. At the time 

t=0 load is applied to the cracked specimen, and in the first instant 

the stress distribution is elastic. Subsequently, creep deformation 

relaxes the initial stress concentration at the crack tip, and creep 

strains develop rapidly near the crack tip. These processes may be 

analytically described by self-similar solutions for short times t . 

An important result of the analysis is that small scale yielding may 

be defined. In creep problems, this means that elastic strains dominate 

almost everywhere except in a small 'creep zone' which grows around the 

crack tip. If crack growth ensues while the creep zone is still small 

compared with the crack length and the specimen size, the stress intensity 

factor governs crack growth behavior. 
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If, however, the calculated creep zone becomes larger than the specimen 

size, the stresses become finally time-independent and the elastic strain 

rates can be neglected. In this limiting case, the stress field is the 

same as in the fully-plastic limit of power law hardening plasticity which 

has been treated in the literature. The loading parameter which determines 

the near tip fields uniquely is then the path-independent integral C* . 

It should be emphasized that K and C* characterize opposite 

limiting cases. Which case applies in a given situation can be decided by 

comparing the creep zone size with the specimen size and the crack length. 

Criteria for small scale yielding are worked out in several alternative 
forms. Besides several methods of estimating the creep zone size, a con­
venient expression for a characteristic time is derived also, which characterizes 

the transition from small scale yielding to extensive creep of the whole 

specimen. 

Key words: fracture mechanics, stress analysis, elevated temperature 

mechanical properties, creep. 
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Introduction 

Under elevated temperature creep conditions in ductile solids, 

macroscopic cracks grow by local failure of the highly strained material 

near the crack tip due to the initiation and joining of microcavities> 

sometimes aided by local corrosion. These processes are often confined 

to a small fracture process zone near the crack tip. The aim of the 

present paper is to analyze the stress and strain fields which encompass 

the process zone and set boundary conditions on its behavior. In the 

analysis, the fracture process zone is assumed to be negligibly small. 

This kind of analysis is necessary to gain insight into the problem of 

which macroscopic loading parameter governs crack growth under creep 

conditions. As candidates for relevant loading parameters, the stress 

intensity factor K [1], the net section stress a [2], the path 

independent integral C* [3,4], and the crack tip opening displacement 

rate 6 [5] have been proposed. For a more comprehensive survey of the 

recent literature, see references [6-8]. The question of the 'right' 

loading parameter is far from being academic: if, from laboratory crack 

growth tests, growth rates in large structures are to be predicted, 

it may be too conservative to use the stress intensity factor 

as the correlating parameter. This is clearly demonstrated in the work 

of Koterazawa and Mori [9], where the crack growth rate drops by two 

orders of magnitude if the specimen size is chosen as 20mm instead of 

8mm, although the nominal stress intensity factor is kept constant. 

On the other hand, the use of the net section stress as the correlating 

parameter between laboratory tests and large structures can lead to 

dangerous predictions in cases where the stress intensity factor should 

have been used. 
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Based on a Dugdale Model, Riedel [8] and Ewing [10] have worked 

out conditions under which the stress intensity factor is the relevant 

parameter for creep crack growth. More recently, Riedel [7] has confirmed 

these results by the analysis of a stationary shear crack (Mode III) in 

an isotropic material that is capable of elastic and creep deformation 

everywhere. The key feature of the analysis is that 'small scale yielding* 

conditions may be defined. In creep problems, small scale yielding means 

that elastic strains dominate almost everywhere in the specimen except 

in a small 'creep zone,' which grows around the crack tip. The creep 

zone boundary has been defined for stationary cracks as the locus where 

creep strain and elastic strain are equal. If crack growth ensues while 

the creep zone is still sufficiently small compared with the specimen 

size, the stress intensity factor governs crack growth. 

In the present paper, the stress analysis of a stationary crack 

under creep conditions is worked out for tensile loading (Mode I). Both 

small scale yielding as well as the case where the whole specimen creeps 

extensively ('fully yielded case') are considered. For small scale 

yielding, the stress intensity factor K governs crack growth initia­

tion, whereas the path-independent integral C* [3,4] is the relevant 

loading parameter for the case of extensive creep. Finally, it is 

pointed out that, for growing cracks, Kf and C* remain the loading 

parameters, which determine the crack growth rate. But the relation 

between the crack growth rate and the loading parameter may become 

complicated, for instance dependent on the previous history of loading 

and crack growth. The stress analysis of growing cracks will be further 

discussed in two forthcoming papers [11,12]. 
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Constitutive equations, initial and boundary conditions 
We consider the two­dimensional problems of plane stress or plane 

strain tension, known also as Mode I. A crack is embedded 
in a material that may be classified as a Maxwell­type elastic­nonlinear­
viscous material, where the non­linear behavior represents power law creep. 
Creep deformation is assumed to be incompressible. The deviatoric strain 
rate tensor, e_ is related to the deviatoric stress and stress rate 

• •' t 
tensors, o and a by: 

•• 1 •• 3 n ' n­1 ,.. 
^
 = 2G S.

 + J ^ °e •
 (1) 

Here, G is the elastic shear modulus. The creep exponent n and the 
temperature­dependent factor B are the parameters of the power law creep 
relation e = Bo , measured" in uniaxial tension creep tests. The 
equivalent tensile stress a is given by: 

a 
e 

3 ' ' 
2 — " — (2) 

If elastic compressibility is admitted, the traces of stress and strain 
tensors are related via the bulk modulus K : 

tr e = ■=— tr a . (3) 
— 3K — 

t In the tensor notation used throughout this.paper, underlined quantities 
are tensors. A dot between two tensors indicates summation over one index; 
a double dot indicates summation over two indices. I_ is the two­dimensional 
unit tensor; i.e., I_:J_ = 2, V̂  is the two­dimensional gradient operator, and 
V
2 is the two­dimensional Laplace­operator. A prime denotes the deviatoric 

part of a three­dimensional tensor. Traces are the sum of the three diag­
onal tensor components. 
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The material law stated in eqs. (1) to (3) is supplemented by the 
equilibrium condition 

V«£ = 0 (4) 

and by the compatibility relation which, for plane problems, has the form 

V-(V-£) = | V2(tr e) - V 2e 3 3 . (5) 

In the direction of the crack front (x -axis) , we have, an additional 
equation, either e__ = 0 (plane strain), or a__ = 0 (plane stress). 

The initial condition is that a load is applied suddenly to the 
cracked specimen at the time t=0 . According to the material law stated 
in eq. (1), the instantaneous response of the material is elastic. 
Therefore, at time t=0 , the elastic stress distribution [13] prevails 
in the cracked body. 

Boundary conditions are prescribed on the traction-free crack faces, 
n«o_ = 0 (n = normal vector on crack face), and at infinity. For small 
scale yielding (short time response) it suffices to regard the crack as 
being of semi-infinite extent, with the boundary condition at infinity 
being the requirement of asymptotic approach to the elastic singular field 
characterized by the stress intensity factor [13]. 

The problem stated in the preceding eqs. (J.-5) will now alternately 
be formulated in terms of the Airy stress function, <|> . It is related 
to the stress tensor by 

a = -VV<}> + Iv2<j) (6) 
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thus automatically fulfilling the equilibrium condition (4). Inserting 

the stress tensor according to eq. (6) into the material law (eqs. 1-3) 

and inserting the resulting strain rate tensor into the compatibility 

condition (eq. 5), one arrives at an equation for the Airy stress 

function <f> . 
t 

For plane strain, the deviatoric stress component o_, cannot 

be expressed in terms of <J> ; the plane strain condition e__ = 0 

forms an additional equation. Thus, for plane strain we have two 

coupled equations for <J> and o__ : 

2 ±j!- V2 (v2<H-o33) - B7.{V-[(l(V2((.-a33) - IVV^aJ1'1] } = 0 (7a) 

l-2v n2r 1 •' 
3E y E 33 + ^ e " " 1 " ° ' <7b) 

Here, E is Young's modulus, v is Poisson's ratio, and a dot means 

time derivative. The equivalent stress a is given in terms of- <J> 

and a33 as 

a=^j- {2(7V<t.:VV<(,) - (V2.),)2 + 3o 3 3
2} 1 / 2 . (8) 

For incompressible material (v-»-l/2) , eq. (7) is simplified since 

°33 = ° * 
For plane stress the governing equation for the Airy stress function 

has the form 

| v S - BV.{V-[(IV2<j> - 3VV<t>)a n _ 1 ] } = 0 (9) 
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and the equivalent stress is 

a = -L [3(VV<(.:VV<}.)-(V2<(,)2]1/2 . (10) e rr - ~ 
We use either a polar coordinate system (r,6) with 8=0 directly 

ahead of the crack and the origin at the crack tip, or cartesian coordi­

nates (x,y) with the x-direction parallel to 9=0 . 

The equations for § , (eqs. 7 and 9)., together with the expressions 

for a are non-linear partial differential equations of fifth order with 

three independent variables: r , 8 , t . Because of the complexity of 

the equations, no closed-form solutions can be expected, in general. On 

the other hand, numerical methods have particular stability problems with 

the rapid stress redistribution near crack tips in strongly non-linear 

elasto-viscous materials. We show here however, that an approximate, but 

rather complete, picture of the stress and strain fields can be achieved by 

analytical methods. In the following sections, first the asymptotic behavior 

near the crack tip is studied, which is common to the small scale yielding 

and the fully yielded case, and to intermediate cases. Then the fully 

yielded case follows which is relatively simple, and finally the small 

scale yielding case, which is more complicated, is treated by means of 

self-similar solutions. 

The asymptotic field near the crack tip 

Near the crack tip (r-K)) , the elastic strain rates can be 

neglected in the material law, eq. (1), compared with the creep rates. 

The reason is that the creep exponent usually is greater than 1 (n = 4 to 

6 is typical), which makes the creep rates ("o ) much larger than the 

elastic strain rates («a) , if the stress near the crack tip is unbounded. 
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As a consequence, the linear terms in the partial differential equations 

(7 and 9). can be neglected for r-K) . This leads to exactly the same 

asymptotic problem which is known from the analysis of rate-insensitive 

"power law" strain-hardening materials. Hutchinson [14] and Rice and 

Rosengren [15] (referred to as HRR hereafter) have given the form of the 

stress and strain singularities: 

a(r,0,t) = A(t)aC8)r"1/Cn+1) . (11) 

The creep strain and strain rate has an r J singularity. The 

angular functions £(0) are given graphically in refs. [14-17]. Here, 

we understand £(8) normalized as in [17], such that the function, 

a (8) , which belongs to the equivalent stress, is normalized to unity at 

its maximum value. The amplitude, A , of the HRR-stress field is a func­

tion of the time and of the applied load. It cannot be specified by 

analyzing the asymptotic problem alone. In the deformation theory of 

power-law hardening plasticity, the amplitude of the HRR-field could be 

specified by means of the J-integral [14,15]. Analogously, the amplitude 

of the HRR-field will be specified in terms of the C*-integral for the 

limiting case of extensive creep of the whole specimen (see next section). 

This case corresponds to steady-state creep, thus elastic strain rates 

vanish and the material responds as if it were purely viscous. For 

small scale yielding, however, the elastic as well as the creep strain 

rates are important. Neither J nor C* are then path-independent, 

and approximate methods must be applied to determine the amplitude A(t) . 
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Extensive creep of the whole specimen 

The material law stated in eq. CI) has the property that the 

stresses become time-independent (g->-0) after long times (t-*»>) if 

the load is kept constant and geometry changes can be neglected. This 

latter condition, in particular, implies that the crack must be 

effectively stationary. So, for g=0 , the constitutive equations 

(l)-(5) take the form of non-linear elastic materials, if the strain rate 

is replaced by strain. The same non-linear elastic material law also 

describes the fully plastic limit for power law hardening materials. 

This case has been studied extensively in the literature [18-22] and 

the results can immediately be used here by writing strain rate instead 

of strain, and the path-independent integral C* [3,4] instead of the 

J-integral [13]. The C*-integral can be measured at the loading pins 

of cracked specimens [3]. Its relation to the applied load has also been 

calculated numerically, reading C* instead of J in refs. [18-22]. 

On the other hand, C* is related to the amplitude of the near tip 

singular field [14,15] by 

A(t-*») = BI n 
l/(n+l) (12) 

In plane strain, numerical values of the factor I range from 3.8 

(for n=°°) to 6.3 (for n=l) [17] . Plane stress values of I are 

2.87 (for n=13) and 3.86 (for n=3)[16]. 

According to eq. (12), C* is the loading parameter which determines 

the near-tip singular field, and thereby the initiation of crack growth, 

if the whole specimen creeps extensively. 
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Small scale yielding 

In a previous paper [7] it has been shown that small scale yielding 

can be defined under creep conditions. The small scale yielding solution 

is valid as long as the creep zone is sufficiently small compared with the 

dimensions of the specimen. It may also be called a short-time solution, 

since it describes the development of stresses and strains shortly after 

the load is applied at t=0 . 

The solution of the small scale yielding problem is now shown to be 

possible in terms of self-similar functions. It follows the same lines 

as in the Mode III case [7], and also the nature of the time-dependence 

of stresses and strains is the same. 

Observe that the stress field £ at any point r,8 at (.short) 

time t after load application is a function of the following set of 

variables and material parameters: 

r,6,t , Kj , E , B , v , n . 

Further, from the form of the differential equations (7,9) for $ , 

and hence for the stress field, it is clear that E , B , and t can 

enter only as the product EBt , and we note that (EBt) '*■"•' has the 

same physical dimensions as does stress. Accordingly, from standard 

considerations of dimensional consistency, the stress field £ for 

small scale yielding, or short times, has the form 

£ = (EBtf^^-^FtfEBtf/^-^r/K
2 , 6 , n , v] 

where F is a dimensionless function of its (dimensionless) arguments. 
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In fact, for plane stress the function F_ is independent of v , since 

v appears in neither the differential equation (9) nor the boundary 

conditions. The detailed formulation of a solution in the above "self­

similar" form is discussed next, introducing notations paralleling those 

of [7]. 

Self­similar solutions. For plane strain, the self­similar stress 
i 

function and stress component o that satisfy eq. (7) as well as the 

initial and boundary conditions have the form 

4>(r,e,t) 
'(I­NOKJ" 

(2ir) 
$(R,9)T 3/(n­l) C13a) 

0
33

( r
'
9
'^

 = l^r
E
33^^

T
'
1 / ( n

"
1 ) (13b) 

The dimensionless time T and radial coordinate R are given by 

T = n­1 
r r. "\n 

1­v Bt (14) 

R = 

2ir 
fCl­vDKjl 

p2/Cn­l) 
(15) 

The dimensionless shape functions * and E_, obey the following 

differential equations Cwhere the operator V̂  is now understood to act 

in the dimensionless (R,8) coordinate system): 

­2V
2
(j + R ̂ ) (V 2

$ +E' ) + V*(V[(2VV*­I(V 2
$­E' )) 

'33 '■33
J 

(|(vy*:!v«­!(^
2
*!!:;

?
J
Cn
­
I)/2

]} = o, 
4 33

; (16a) 
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(l­2v)V
2
^3E33 

A2
 + R 3RJ 3Q­v) 

+ Z 
33 f(vv$;VV$) ­ |(V

2
*)

2 + | i l l 
(n.l)/2 

= 0 CI 6b) 

For plane stress the same form for <|> as defined by eqs. (13a, 14 

and 15) may be assumed, but with 1­v replaced everywhere by 1 . In this 

case, eq. (9) reduces to 

­2W \ + Rg|­ V2
$ + V« jv­ (3VV* ­ IV2*) 

.3 1 o 2^
n
­!)/

2
l 

(|CVV$:7V$) ­ yCV2$) ) J f = 0 (17) 

The boundary condition at infinity is the elastic field. In dimensionless 

form: 

HR­~) = J R3/2cos3 | (18a) 

For plane strain, we also have the boundary condition 

Z 3 3(R~) = 2 ,. _ .n­l/2 6 
y U­2v)R cos ­j (18b) 

Once the shape functions $ and E_, are known by solving the differ­

ential equations (16) and (17), subject to traction­free crack surface 

boundary conditions, stresses and strains can be calculated. The stress 

tensor has the form 

? = _E_ T­l/(n­l) ? ( R ) 9 ) f 
(19) 
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where the in-plane components of the dimensionless shape function follow 
from * : 

E = _77$ + I v2* . (20) 

The factor 1-v must be replaced by unity for plane stress. Further, 
from eq. CH) it is known that I must become infinite in the form 

R-l/Cl+n) as R ^ 0 T h e elastic strain, e 6 , follows from eq. C19) 
by Hooke's law. The creep strain, £ , can also be expressed in terms 
of £ , using eq. CI): 

£cr n T-l/0i-l) c r ( R f 6) (21) 

with 

£cr(R,ei = — 
2V^ 

£ (f £ :£) — • C22i 
R ^" 

Here, £ = £ (p»9) is the deviatoric part of E_ and the integral on p 
is done with 6 fixed. The total strain, £ , is given by the sum 

el cr 
£ = £ + £ 

A precise graphical presentation of the stress and strain fields 

would require the numerical solution of the non-linear partial differen­

tial equations U6) and (17), which will be attempted in future work, in 

analogy to the solutions obtained in Mode III [7], 
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Approximate description of the small scale yielding stress and 

strain fields. Presently, no numerical solutions of equations (16) and 

C17) are available, but a qualitative description of the stress and strain 

fields is possible. First we note that the time dependence of the stresses 

and strains (eqs. 19­22) is the same as in Mode III [7]: the initial 

elastic stress concentration at the crack tip is relaxed by creep defor­

mation and the stresses are distributed more homogeneously across the 

specimen, while creep strains develop prefereably in a creep zone which 

grows around the crack tip. 

Using eqs. (11) and (.19), we know the r and t dependence of the 

near­tip HRR­field, which can now be specified except for a numerical 

amplitude factor a . (This factor will be calculated approximately 

in the next sub­section, where we show a s i ) . Thus the near tip stress 

and strain fields, for small scale yielding, are 

a = a 
nK! 

ir(n+l) EB 

l/(n+l) 

a(9)(rt) l/(n+l) (23) 

3 _, ,, n 
TT B(n+l)a 
2 *■ ■* n 

nK 
I 

■n (n+1) EB 

n/(n+l) 

a (e)[oe(8)] 
n­1 tl/(n+l) 

n/(n+l) (24) 

So we know the asymptotic fields at infinity (linear elastic field) and 

near the crack tip (HRR­field, eqs. (23) and (24)). One can now assemble 

approximate solutions by simply extrapolating the asymptotic fields to the 

locus r.(6,t) which is defined by the equality of the equivalent stresses 

of the remote elastic and the near tip HRR­field. This definition leads 
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to 

r
K ^ 

V
9
^
 = 27 

2 _ 
(n-t-l)

2
E
n
Bt 

2na n+1 
n 

2/(n-l) 
FjO) (25) 

with the angular function 

2 9 H i o ->2 
cos ■=■ [_(l-2v) + 

(n+l)/(n-l) 

Fx(8) = 
, . 2 8| 
3 sin -=-

[ae(6)] 
(26) 

This form applies for plane strain; for plane stress, the expression 

l-2v must be replaced by unity, and a (8) and a have their plane 

stress values. 

The creep zone -boundary has been defined by equating the equivalent 

creep strain E to the equivalent elastic strain e [7] . If we use 

this definition and calculate the strains from the assembled stress field 

described above, the result for the creep zone boundary r (8,t) has 

the same functional form as r1 except for the angular function F (8) : 

r (8,t) 
cr J_ 

2ir 

2/(n-l) 
(n-*-l)

2
E
n
Bt 

2na n+1 
F (8) 
cr ' 

C27) 

According to eq. (27) the creep zone expands in proportion to t . 

The angular functions F.C.6) and F (8) are shown in Fig. 1. Within 

the accuracy of the present method, the creep zone boundary runs into 

the crack tip. More accurate methods, however, might lead to a creep zone 

boundary which hits the crack faces behind the crack tip. 

Approximate calculation of the factor a . The proper way to 

calculate the dimensionless factor a , which appears in the results of 
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the preceding subsection, would be to solve the partial differential 

equations (16) and (17) numerically; the amplitude of the near tip 

singular field is then part of the result. In the present paper, 

however, we estimate the value of a by means of the path­integral J 

[13]. The quantity W = a:dc , which appears in the J­integral, is 

understood as an integral over the deformation history at each material 

point. With this definition of W , the J­integral is, in general, path­

dependent for creep problems. We assume, however, that J is approxi­

mately path­independent. The reason why we regard this as a reasonable approxi­

mation is the following: creep straining takes place mainly in the 

creep zone. In this region, the HRR­field is a good approximation which 

becomes asymptotically exact as r ■+■ 0 . Further, we find that it is 

possible to eliminate both coordinates (r,8) from eqs. (23) and (24), 

thus showing that stresses and strains in the HRR­region behave as if 

there were a unique relationship e(a) , independent of (r,8) at any 

instant of time: 

3 ' n­1 
£ = ­| BCn+l)ta ag . (28) 

The existence of a unique stress­strain relation, however, implies 

path­independence of J . 

For the HRR­field, the value of the J­integral has been calculated 

[17,18] as 

Jo = (n+l)BtIn[A(.t)]n+1 . (29) 
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In the elastic field, J has the well known value [13] 

IC(l-v2)/E 

K2/E 

for plane strain 

for plain stress 
C30) 

Assuming approximate path-independence of< J (i.e. 

obtain the amplitude of the singularity 

l / (n+l) 
K;(l-v2)/E 

A(t) 

J K J ) we o <*>J 

Cn+1)BI t C3D 

and, with the def ini t ion of a according to eqs. (11) and (23), 

n 
n+1 TT(1-V2) 
n I 

n 

l / (n+l) 
C32) 

This form is for plane strain. Numerical values are ct_ = .912 and 

a1 _ = .975 for v = 0.3 . For plane stress the factor (1-v2) must be 

deleted, and the plane stress value for the integral I [16] must be 

inserted. Numerical values are a = 1.015 independent of n , within 

1/2 percent accuracy. 

It is interesting to note that with this approximate value of a , 

eq. C32), the near tip fields of £ and £ for small scale yielding 

have the same form as for the extensive yielding case Ceqs. (11) and (12)), 

provided that C* , which governs the amplitude of the latter case, is 
2 

replaced in all formulae by G/(l+n)t . Here G = (1-v2) K../E for 
2 plane strain and K./E for plane stress. 

Assessment of the accuracy. Unfortunately, the error of the 

approximations in the previous two sub-sextions can hardly be estimated 
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analytically. Therefore, we apply the approximate method to Mode III 

and compare the results with the numerical results which are there 

available [1]. It turns out that the approximate method under-estimates 

the amplitude of the HRR-field for n $ 5 by 5, 15, 30 percent for 

n = 4,3,2, respectively. For n $ 5 , the approximate method over­

estimates the result by a maximum of 10% (for n=°°). The practical range 

of creep exponents is n = 4 to 6 and sometimes higher; in this range 

the approximation is very close to the exact Mode III result. On the 

other hand, as n-*l the concept of a growing creep zone becomes ill-

defined and this may result in the inaccuracy of the approximation at 

low n . Figure 2 shows a comparison between the numerically calculated 

stress and the approximately calcuated stress which is composed of the 

HRR-field near the crack tip and the elastic field far from the crack tip. 

With the strains calculated from this stress field, one obtains a creep 

zone size which coincides within 20 percent accuracy with the value 

calculated numerically [7]. 

In conclusion, the approximate methods work well for Mode III, and 

we proceed assuming their approximate validity for Mode I, too. 

Criteria for small scale yielding vs. extensive creep of whole specimen 

From the preceding analysis it is clear that the stress intensity 

factor KT and the integral C* characterize the near tip field—and 

thereby crack growth behavior--in opposite limiting cases: a description 

by K applies if the crack grows while the specimen behaves predominantly 

elastic except in a creep zone which is small compared with the specimen 

size (brittle failure); the C*-integral applies if crack growth is 

accompanied by extensive creep of the whole specimen (ductile behavior). 

As an example, we calculate the crack growth initiation time as a 

function of the loading parameter. We assume that the crack starts to 
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grow once a critical equivalent strain, e , is attained at a small 

structural distance, r , from the crack tip. For plane stress r 
c c 

is defined directly ahead of the crack (3-0). , and for plane strain 

it is measured in the direction where a (8) is a maximum. The near 

tip strains are given by eq. C24) for small scale yielding. Inverting 

eq. (.24) one obtains the crack growth initiation time, t. , as a 

function of the stress intensity factor: 

t. = e 1 c 
n+1 

EnB(.n+l) 
n+1 2uE r 

-in 

->„ n +l V2 2na KT n I 
(33) 

If extensive creep of the whole specimen precedes crack growth initiation, 

the strains are given by inserting eqs. (.11) and (.12) into eq. (.1) • Then 

the initiation time depends on C* 

•l/(n+l) 
t. = e B l c 

I r n c 
n/(n+l). 

(34) 

Now some practical guidelines will be discussed as to how one can 

decide whether or not small scale yielding conditions prevail in a given 

test situation: 

CI) A direct approach would be to estimate the creep zone size 

experimentally, e.g., by observation of a polished specimen sur­

face near the crack tip. 

(2) The second possibility would be to calculate the creep zone 

size from eq. (27) and compare it with the specimen size. Since 

the material parameters B and n play an important role in 

eq. (27), this formula is strictly limited to power law creep. 
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(3) A formula for the creep zone size, which will be approxi­

mately valid for more general creep laws than pure power-law 

creep, is obtained if the time in eq. (27) is replaced by any one 

of the strain components, e.. . Using eq. (24) with eq. C27) 

leads to 

r c r ^ = W 
/67e..(r,8 ,t)rn/(n+1>' 

XJ ° • (Kj/E) 

2(n+l)/(n-l) 

Fcrce) (35a) 

with the numerical factor 8 

6n = 

-12(n+ii/(n-i) 
n+1 

, 3 / 2 n+1 ~ ' ,Q -.„ n - l , 0 . 
3 n a n ° i j C 8 o ) o e ^ 

(35b) 

In eqs. (35), the strain component e.. is supposed to be measured 

at a position (.r,8 ) by means of a high temperature strain gauge. 

The position Cr,8 ) must be within the creep zone; 8 is an 

arbitrary angle and the result of eq. (35a) is independent of 8 

For plane stress, it will be convenient to measure e directly 
88 

ahead of the crack tip C8 =0) . For plane strain, larger tensile 
strains can be measured above the crack tip (8 =ir/2) with the axis 

o 
of the strain gauge oriented at an angle 8=3ir/4 . Then numerical 

values for B are B- = 0.212 and B,_ = 0.238 for plane strain, n 3 13 
and B, = .074 and g = .067 for plane stress. Thus, eqs. (35) 

provide a rough estimate for the creep zone size even if the creep 

exponent n is uncertain, since the result in this form is not 

strongly dependent of n , if n is large. 

(4) The creep zone size can also be expressed in terms of crack 

opening displacement CCOD) , 6 , which is sometimes convenient to 
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measure. The resulting relation depends on the definition of 

COD: one definition of COD is to measure the distance between the 

two crack faces at the point where the creep zone boundary hits 

the crack faces behind the crack tip. With the approximations 

of the present theory, this point cannot be determined (see Fig. 1), 

but the relation between r and 6 , ( = COD at the creep zone 
cr czb r 

boundary) must have the form 

r = B cr n 
E6 -i 2 
czb F (8) crv (36) 

The factor B can only be estimated by analogy with the Mode III 

case [7], The result is B F (y) as 0.3 . The advantage of eq. C36) 

is that it allows an estimate of the creep zone size independently 

of the creep parameters B and n . So it may be suspected that 

eq. (36) is approximately valid for more general creep laws than 

pure power-law creep. A practical drawback of eq. (36) is that 

COD at the creep zone boundary will be hard to measure precisely. 

COD can also be defined at the point where the line 8 = 135° 

originating from the apex of the crack profile, intersects the 

crack profile [23]. This COD value will be denoted by 8 . With 

this definition of COD, we obtain 

c r 

I t 

n 
6 t 
8 

[El 
N 

2 
S_ -oT 

2 / C n - l ) f E 6 t l 2 

K, 
F (8) c r v C37a) 

with 

6n = 16 
n+1 (2ir) 1/2 

-I 2 ( n + l ) / ( n - l ) 

| u f i 0 r ) | a n+1 
(37b) 
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The angular part, u.(8) , of the displacement function is 
D 

~ ,.. 3 n+1 \ 1, ,,. 3 
U e C 6 ) = 2 — 2 C n + 1 ) 38 arr " °ee n-1 

- 2a .a r8 e 
n-1 C37c) 

Typical numerical values are for plane strain: B_ = 0.63 , 
ii it it ^ 

B_ = 0.40 , B,3 = 0.32 , and for plane stress: & = 0.127, 

&5 = 0.116 , e'̂ 3 = 0.108 . 

(5) Finally, the characteristic time for the transition from 

small scale yielding to extensive creep of the whole specimen 

can be estimated analytically. Figure 3 shows the time-dependence 

of the amplitude ACt) , of the near tip singular stress field. The 

short-time limit is given by the small scale yielding result Ceq. C31)) 

and the long-time is given by eq. Q.2). The characteristic time, 

t. , for the transition defined in Fig. 3, is 

K2(l-v2)/E 
tl Cn+1) C* (38) 

for plane strain; for plane stress, replace 1-v2 by 1 . Small 

scale yielding prevails if the time is sufficiently small compared 

with the characteristic time t. . In eq. (38), C* is considered 

as a quantity which is known from a numerical analysis of a non-linear 

viscous C°r, by analogy, small strain non-linear elastic) problem 

[18-22]. For a center-cracked strip, for instance, Goldman and 

Hutchinson [18] give 

•CT 
C* = ao ne" 

f 
/3 

n+1 . 
J a 

b '" C39) 
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Th e crack length is 2a , the strip width is 2b ; J is given 

graphically in ref. [18] as a function of a/b and of the creep 
• cr exponent n ; a and e are the remotely applied stress and 

creep strain rate. The material parameter B does not appear in 

eqs. C38) and (39), but the creep exponent n has a significant 

influence both on J [18] and on eq. (.38). With eq. (.39) the 

transition time is given by 

t _ g» (v^/2)"-1 JCa/b.l) f4(n 
tl -cr 1+n ;. .. . • L4UJ 

Ee J(a/b,n) 

According to eq. C27), the creep zone size at the time t is 

approximately 1/10 of the half crack length, a . 

Discussion 

Apart from the approximations which are involved in the analysis 

of the small scale yielding case, further limitations of the present theory 

must be kept in mind. 

Firstly, the theory has been worked out for a material law which, 

besides elastic deformation, allows for pure power-law creep only. How­

ever, the general conclusion, that a creep zone near the crack tip can be 

defined, will not be altered if more general creep laws are valid, as long 

as the creep rate increases stronger than linearly as a function of the 

stress. From the form of the equations C35)-(.38), it is expected that 

the size of the creep zone can be estimated even if the creep law is 

different from a pure power-law relation. In this connection, we remark 

in passing that the solution which we have presented for small scale 

yielding is also valid for creep laws which include, approximately, 

transient effects through a time-hardening expression of the form 
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e = a/E + BCt)a , provided that the product Bt in our solution is 
ft 

everywhere rep laced by BCx)dx . 
^ o 

Secondly, the theory is based on the assumption that the fracture process 

zone is always negligibly small compared with the creep zone and the specimen 

dimensions. In very ductile materials and small specimens, however, the fracture 

process zone may spread over the whole cross section of the cracked specimen. 

This situation can no longer reasonably be described by power law creep. 

The stress and strain distribution in the net section is likely to be 

more homogeneous in such a situation than predicted by the present 

theory. Under these conditions, the net section stress could be the 

loading parameter to determine the life-time of cracked as well as uncracked 

specimens. 

Thirdly, the theory does not cover the range between small scale 

yielding and extensive creep of the whole specimen. One might expect 

that an interpolation between the two limiting cases is particularly 

doubtful for a large plate with a small center-crack under tension. In 

this case, the creep zone size at the transition time t. is about 1/10 

of the half crack length. This first appears to be far away from extensive 

creep of the whole plate. However, if one estimates the strain rates at 

the transition time by simply adding the remotely applied creep rate 

e = Bo , to the creep rate obtained for small scale yielding, it turns 

out that the elastic strain rates are considerably smaller than the creep 

rates everywhere except near the creep zone boundary where they are of 

equal order of magnitude. The condition for the extensive creep limit 

to be valid is that the creep rates are much larger than the elastic rates 

everywhere. This starts being fulfilled at the transition time. Hence, 

there is no big gap between the validity of the small scale yielding and 
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the extensive creep case. Of course, if a higher degree of accuracy is 

required, the limiting cases are separated by a period of time where 

neither of them is accurate enough. 

Finally, the analysis has been confined to stationary cracks. For 

growing cracks, the conclusions concerning the applicability of K and 

C* are not fundamentally altered, but the situation becomes more complicated. 

The singular field immediately at the tip of a growing crack can no longer 

be the HRR-field when elastic effects are present [11] . As a consequence, 

the influence of the loading parameters on the near tip strains becomes 

more complicated than for instance the one given in eq. (24). In addition, 

the stress and strain fields become dependent on the prior history of the 

loading parameter and of the crack growth. This will be discussed in 

greater detail in a forthcoming paper [12]. 

Conclusions 

An important result of the stress analysis is that a creep zone 

near the crack tip can reasonably be defined and calculated. The size 

in relation to specimen size and crack length determines which loading 

parameter governs crack growth initiation and growth rates. In large 

cracked specimens or structures (crack length and specimen size are 

large compared with the creep zone), the stress intensity factor is the 

loading parameter which correlates crack growth rates between specimens 

of different shape. In specimens that are small compared with the creep 

zone, but large compared with the fracture process zone, the path-independent 

integral C* is the relevant loading parameter. If the ligament width of 

the specimen becomes comparable with the size of the fracture process 

zone--which has been neglected in the present analysis--the net section 

stress possibly determines the life-time of a specimen. Excessive crack 
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tip blunting will have a similar effect. 

Criteria for small scale yielding have been developed. They are 

either based on the comparison of specimen size and creep zone size 

or on the comparison of the test duration with a characteristic time 

which can be calculated analytically. 
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Figure Captions 

Figure 1. Polar diagrams of the angular functions F (8) (dashed lines) 
and F (9) (solid lines), for plane strain (upper half) and 
plane stress (lower half). Creep exponent n=3,4,13. Poisson's 
ratio v= 0.3 . 

Figure 2. Stress component E _ vs. distance from crack tip, R, for 
Mode III, normalized as in eqs. (13)-(15) but with 2G instead 
of E/(l-v) . Comparison of approximate analytical result 
(dashed line) with numerical result (solid line). Analytical 

-1/2 curve is given by I , = R for R > 1.59 and E _ = 
0.863 R for R < 1.59 . Arrows indicate creep zone 
boundary: num = numerical result; an = approximate analytical 
result. Creep exponent n=4 . 

Figure 3. Time-dependence of the amplitude of the HRR-near tip stress 
field, A(t) . The short-time limit (small scale yielding) 
is described by eq. (31). After long times (extensive creep 
of the whole specimen) the value given in eq. (12) is approached. 
The characteristic time, t.. , is defined by equating long- and 
short-time solutions. Creep exponent n=4 . 
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