Tensile Cracks in Cresping Salids

February 1979

2

H. Riedel’ and J. R. Rice

Abstract, The aim of the paper is to answer the gquestion: which loading
paTaneter determines the stress and strain fields near a crack tip, and
thereby the growth of the crack, under creep conditions? As candidates for
Televant loading parameters, the stress intensity factor KI + the path-
independent integral C* , and the net section stress et have hesn
proposed in the literature. The answer, which is attempted in this paper,
is based on the time-dependent stress analysis of a stationary crack in
Mode I temsion. The material behavior is modelled as elastic-nonlinear
viscous where the nonlinear term describes power law creep. At the time
' t=0) load is applied to the cracked specimen, and in the first instant
the stress distribution iz elastic. Subsequently, c¢reep deformation
relaxes the initial stress concentration at the crack tip, and cresp
strains develep rapidly near the crack tip. These processes may be
analytically described by self-similar solutions fer short times t .

An important Tesult of the analysis is that small seale yielding may
be defined. In creep problems, this means that elastic strains dominate
almost everywhere except in a small 'creep zone' which grows around the
crack tip. 1f crack growth snsues while the creep zone is still small
compared with the crack length and the specimen size, the stress intensity

factor governs crack growth behavior.
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If, however, the calculated cresp :one becomes larger than the specimen
size, the stresses become finally time-independent and the elastic strain
rates can be neglected. In this limiting case, the stress field is the
same as in the fully-plastic limit of power law hardening plasticity which
has been treated in the literature. The loading parameter which determines
the near tip fields uniquely is then the p;th-indepandent integral C* .

It should be emphasized that L and C* characterize opposite
limiting cases. Which case applies in a given situation can be decided by

comparing the creep zone size with the specimen size and the crack length.

Criteria for small scale yielding are worked out in several alterpative

forms. Besides several methods of estimating the creep zone size, a con-
venient expressien for a characteristic time is derived also, which characterizes
the transition from small scale yielding to extensive creep of the whole

specimen.

Key words: fracture mechanics, stress analysis, elevated temperature

mechanical properties, creep.




Introduction

Under elevated temperature creep conditions in ductile sclids,
macroscopic cracks grow by local failure of the highly strained material
near the crack tip due to the initiation and joining of microcavities,
sometimes aided by local corrosion. These processes are often confined
to & small fracture process zone near the crack tip. The aim of the
present paper is to analyze the stress and strain fields which encompass
the process zone and set boundary conditions omn its behavior. In the
analysis, the fracture precess zone 1s assumed to be negligibly small.
This kind of analysis is necessary to gain insight inte the problem of -

which macroscopic loading perameter governs crack growth under creep

A

conditions. As candidates for relevant loading parameters, the stress

intensity facter K., [1], the net section stress o [2], the path

!
independent integral C* [3,4], 2nd the crack tip opening displacement

net

rate & [5] have been proposed. For 2 more comprehensive survey of the
recent literature, see refersnces [6-8]. The question of the 'right’
loading parameter is far from being academic: if, from laboratory crack
growth tests, growth rates in large structures are to be predicted,

it may be too conservativﬁ to use the stress intensity factor

as the correlating parameter. This is ¢learly demonstrated in the work
of Koterazawa and Mori [9], where the crack growth rate drops by two
orders of magnitude if the specimen size is chosen as 20mm instead of
8xn, although the nominal stress intensity factor is kept constant.

On the other hand, the use of the net section stress as the correlating
parameter between laboratory tests and larpge structures can lead to

dangerous predictions in cases where the stress intensity factor should

have been used.
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Based on a Dugdale Model, Riedel (8] and Ewing [10] have worked
out conditions under which the stress intensity factor is the relevant
parameter for cresp crack growth. More recently, Riedel [7] has confirmed
these results by the analysis of & stationary shear crack (Mode I11I) in
an isotropic material that is capable of a?astic and creep deformation
everywhere. The key feature of the analysis is that 'small scale yielding'
conditions may be defined. In creep problems, small scale yislding means
that elastic strains dominate almost everywhere in the specimen except
in a small 'creep zone,' which grows around the crack tip. The creep
zone boundary has been defined for stationary cracks as the locus wherse
¢reep strain and elastic strain are equal. If crack growth ensues while
the creep zone is still sufficiently small compared with the specimen
size, the stress inte#sity fector governs crack growth.

In the present paper, the stress analysis of a stationary crack
under creep conditions is worked cut for temsile loading (Mode 1). Both
small scale yielding as well as the case where the whole specimen creeps
extensively ('fully yielded case') are considered. For small scale
yielding, the stress intensity factor KI governs crack growth initia-
tion, whereas the path-independent integral C* [3,4] is the relevant
loading parameter for the case of extensive creep. Finally, it is

pointed out that, farﬂgrnwing cracks, K, and C* remzin the lezding

1
parameters, which determine the crack growth rate. But the relation
between the crack growth rate and the lcading parameter may become
complicated, for instance dependent on the previous history of leading

and crack growth. The stress analysis of growing cracks will be further

discussed in twe forthcoming papers [11,12].



Constitutive equations, initial and houndary conditions

We consider the two-dimensional problems of plane stress or plane
strain tension, known also as Made I. A crack is enbedded
in a material that may be classified as a Maxwell-type elastic-nonlinear-
viscous material, where the non-linear behavior represents power law creep.
Creep deformation is assumed to be incompressible. The deviatoric strain
rate tensor, é' is related to the deviatoric stress and stress rate

1 .
tengors, o and g by:
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Here, G is the elastic shear modulus. The creep exponent n  and the
tenperature-dependent factor B are the parameters of the power law creep
relation £ = Bo" ., measured in uniaxial tension creep tests. The

equivalent tensile stress ¢, is given by: T
a =[%u_:cr_] . (2)

If elastic compressibility 1s admitted, rthe traces of stress and strain

tensors are related via the bulk modulus xk

o
tre=z- trg. (3}

t+ In the tensor notation used throughout this.paper, underlined quantities
are tensors. A dot between two tensors indicates summation over one index;
a double dot indicates summation over two indices. [ is the two-dimensional
unit tensor; i.e., I:I = 2, ¥ is the two-dimenstonal gradient operator, and
v2 is the two-dimensicnal Laplace-cperator. A prime denotes the deviatoric
part of a three-dimensional tensor. Traces are the sum of the three diag-
onal tensor components.
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The material law stated in egs. (1} to {3} is supplemented by the

equilibrivm copd:tion
Teg = 0 (4)
and by the compatibility relation which, for plane problems, has the form
E*{E*gl} = %vittr e - VPey, . {5)

In the directiom of the crack front {xs-a:is} , we have an additipnal
equation, either €45 = 0 (plane strain), or o,, = 0 (plane stress).

The initial condition is that a load is applied suddenly to the
cracked specimen at the time t=0 . According to the material law stated
in eq. {1}; the instantanecus reépnnse of the material is elastie,
Thervefors, at time t=0 , the elastic stress distribution [13] prevails
in the cracked bedy.

Boundary ccnditions are prescribed on the traction-free crack faces,
n-g = 0 (n = normal vector or crack face}, and at infinity. ¥For small
scale yielding (short time Tesponse) it suffices to regard the crack as
being of semi-infinite extent, with the boundary condition ar infinity
being the requitement of asymptotic approach to the elastic singular field
characterized by the strass intensity factor [13]. _

The preblem stated in the preceding egs. (1-5} will now alternately
be formulated in terms of the Airy stress function, 4 . It is related

to the stress tensor by

g = -7 + Iv2y (6)
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thus automatically fulfilling the equilibrium condition (4). Inserting

the stress tensor according to eq. (6) into the material law (eqs, 1-3}

and inserting the resulting strain rate tenzor intoe the compatibility
condition (&q. 5), one arrives at ah equation for the Airy stress

function ¢ .

33
be expressed in terms of § ; the plans strain condition «

For plane strain, the deviatoric stress component o cannot

s3=0

forms an additional equation. Thus, for plane strain we have two

coupled aquations for ¢ and g3 °

1- v &t 1 =1
2 22 w3 (924eg, ) B9 [(1(724-0,,) - 29%4)a, "1} = @

1-2v _pr . 1 2t I
[35 "‘*‘E“"ss]*ﬂ"ss"e =0

Here, E 1is Young's modulus, v is Poiszon's ratio, and a dot means

time derivative. The equival=snt stress . is given in terms of - &

and o

33 as

a2 (299:998) - (720)° » 30

r 2
33

2

For incompressible material ({uv=1/2) , eq. (7) is simplified since -

'
Gpg = & .

iﬁal

(7b)

(2)

For plane stress the governing equation for the Airy stress function

has the form

2

£ 9% - BE{T-[(19% - 399¢)a, 1]} = 0

(9)




‘and the equivalent stress is

7, = A BERT-@0Nt (10)
7

Ke use either a polar coordinate system (r,8) with g=0 directly
ahead of the crack and the origin at the erack tip, or cartesian cu&fdi-
nates (x,y) with the x-direction parallel to &=0 .

The equatiens for ¢ , {(eqs. 7 and 9), together with the expressions
for 9, Aare non-linear partial differential equations of fifth order with
three independent variables: T , 8 , t . Because of the complexity of
the equations, no closed-form solutions can be expected, in general. On
the other hand, numerical methods have particular stability problems with
the rapid stress redistribution near crack tips in strongly non-linear
elasto-viscous materials. We show here however, that an approximate, but
rather complete, picture of the stress and strain fields can be achieved by
analytical methods. In the following sections, first the asymprotic behavior

near the crack tip is studied, which is common to the small scale yislding

and the fully yielded case, and to intermediate cases. Then the fully
yvieldad case follows which is relatively simple, and finally the small

scale yielding case, which is more complicated, is treated by means of

self-similar solutions.

The asymptotic field near the crack tip

Near the crack tip (r+d) , the elastic strain rates can be
neglected in the material law, eq. (1), compared with the creep rates.
The reason is that the creep exponent usually is greater than 1 (n = 4 to
6 is typical), which makes the creep rates (ﬂun) much larger than the

elastic strain rates [w&] , if the stress near the crack tip is unbounded,
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As a consequence, the linear terms in the partial differential equations
(7 and 9) can be neglected for r=0 . This leads to exactly the same
asymptotic probiem which is known from thae analysis of rata-inssnsitive
"power law'' strain-hardening materials. Hutchinson [14] and Rice and
Rosengren [I5] (referred to as HRR hereafter) have given the form of the
stress and strain singularities:

<1/ (n+1)

a(r,8,t) = A(t)a(e)r (1)

i . - -
The creep strain and strain rate has an r n/ (n+1)

eingularity. The
angular functions E;a) are given graphically in refs. [14-17]. Here,

we undarstand E(B} normalized as in [17], such that the function,

;é[al » which belongs to the equivalent Stress, is normalized to unity at
its paximum value. The amplitude, A , of the HAR-srress field is a func-
tion of the time and of the applied lazd. It cannot be specified by
analyzing the asymptotic prablem alone. In the deformation theory of
powar-law hardening plasticity, the amplitude of the HRR-field could be
specified by means of the J-integral [14,15]. Analaogously, the amplitude
of the HRR-field will be specified in terms of the C*-integral for the
limiting case of extensive creep of the whole specimen (see next sectiom).
This case corresponds to steady-state creep, thus elastic strain rates
vanish and the material rasponds as if it were purely viscous. For

small scale yielding, however, the elastic as well as the cresp strain

rates are important. Neither J nor C* are then path-independent,

and approximate methods must be applied to determine the amplitude Aft) .
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Extensive creep of the whole specimen

The material law stated in eq. (1} has the property that the
stresses become time-independent [§+ﬂj after long times (t==) if
the load is kept constant and geometry changes can be neglected. This
latter condition, in particular, implies that the crack must be
effectively stationary. Sa, for é:n , the constitutive equations
{1}=(5) take the form of non-linear elastic materials, if the strain rate
is replaced by strain. The same non-linear elastic material law alsa
describes the fully plastic limit for power law hardening materials.
This case has been studied extensively in the literature [18-22] and
the results can immediately be used here by writing strain rate instead
of strain, and the path-independsnt integral C* [3,4] instead of the
J-integral [13]. Th; C*-integral can be measured at the loading pins
of cracked specimens {3]. Its relation to the applied load has also been
calculated numerically, reading ¢* instead of J in refs. [18-22].
on the other hand, C* is related to the amplitude of the near tip

slngular field [14,15] by

« |1 +]1
Aft+=) = [E‘I:} /{n+1) (12)
n

In plane strain, numerical values of the factor In range from 3.8
(for na=) to 6.3 (for n=1)[17]. Plane stress values of In are
Z2.87 (for n=13) and 3.86 {for na3}[16]}.
According to eq. (12), C€* is the Ioading parameter which determines
the near-tip singular field, amxl thereby the initiation of crack growth,

if the whole specimen creeps extemsively.
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Small scaje yielding

In a previous paper [7] it has been shown that small scale yielding
can be defined under creep conditions. The small scale yielding solution
is valid as long as the creep zone is sufficiently small compared witk the
dimensicns of the specimen. It may also be called a short-time sclution,
since it describes the development of stresses and strains shortly after
the lead is applied at t=0 .,

The scluticn of the small scale yielding problem is now shown ta be
pussible in terms of self-similar functions. It follows the same lines
&5 in the Mode ITI case [7), and also the nature of the time-dependence
of stresses and strains is the same.

Observe that the stress field ¢ at any peint r,6 at {short}
time t after Joad application is a fumction of the following set of
variables and material parameters:

r,ﬁ,t,": IE,B,V‘,H-

1
Further, from the form of the differential equations (7,9) for 4 ,

and hence for the stress field, it is ¢lear that E , B, and t can
enter only as the product EBt , and we note that [EEtfﬂf{n'll has the
same physical dimensicns as does stress. Accordingly, from standard
considerations of dimensional consistency, the stress field o for

small scale yielding, or short times, has the form
o = Bty W VppEned? -Uond 6,0,y

where F is a dimensionless function of its (dimemsionless] arguments.
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In fact, for plane stress the functien F is independent of v , since
v appears in neither the differsantial equation (9) nor the boundary
conditions. The detailed formulation of a solution in the above "self-
similer" form is discussed next, introducing notations paralleljng those
of [7].

Self-similar solutions, ¥For plane strain, the self-similar stress

33
initial and boundary conditions have the form

function and stress component ¢ that satisfy eq. (7) as well as the

4
{1-v]K
8(r,8,1) = 7 (211.}2 [ = I}w{n,a]'r”[“'” (132)

=1/{n-1}

L} E 1
ﬂ33(1.3=t] = T:;'Is3iﬂ,E]T {13b)
The dimensionless time T and radial coordinate R are given by
n
ol [E
T =25 [l-u] Bt (14)
R = L) 7 . {15]
1 |-vIKy 72/ (n-1)
2n E

r
The dimensionless shape functions ¢ and ESE obey the following

differential equations (where the operator ¥ is now understood to act

in the dimensionless {[R,8) coordinate system):

292 (3 + Ro52) (F2eer ) ¢ 91{3-[(225*@*1(?%-:;3])

12
Grrwe:zo) - Jw20? « 321D/ L g (162)
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. . {1-2u1v2¢+3:;3
-G+ Rl —E

[n-l]!z
1 |3 el T WL L) 3 2 2 9‘ '
233 2(--"_-i] T _‘(? q] _l‘ 533

I
]

(16b)

For plane stress the same form for ¢ as defined by eqs. (13a, 14
and 13) may be assumed, but with 1-v 71eplaced everywhere by 1 . In this
case, eq. (9) reduces to

(n-1)/2
3 (17)

Geve:7ve) - 3207

The boundary condition at infinity is the elastic field. In dimenslionless
form: '

4 RSHE

Ry = 3 R %cos? g, (18a)

2

For plane strain, we also have the boundary condition

ol

5;3{n+-] - - % (-2218" Y %cos s (18b)

Once the shape functions ¢ and E;E are known by solving the differ-
ential equations (16) and (17), subject to traction-fres crack surface
boundary conditions, stresses aﬁd strains can be calculated. The stress

tensor has the form

g = 2 TV D0y, (19)
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where the in-plane components of the dimensionless shape function follow

from & :

I=-97%+ 192 . (20)

[

The factor 1-v must be replaced by unity for plane stress. Further,
from &q. (111 it is known that I pust become infinite in the forw
R_1f£1+“} as R+~ 0 . The elastic strain, Eft . follows from eq. (19)
by Hooke's law. The creep strain, EFr , €an also be expressed in terms

of I , using eq. (1}):

ST L T-lf{n-ljﬁfrck,ﬂ) Gn

with
. {221

Here, Ef- E:{n.ﬂ} is the deviatoric part of [ and the integral on p
is done with 0 fixed. The total strain, g , is given by the sum
e = E?L . E?r .

A& precise praphical presentation of the stress and strain flelds
would require the numerical solution of the non-linear partial differen-
tial equations (16) and (17}, which will be attempted in future work, in

analogy to the solutions obtained in Mode III [7].
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Approximate description of the small scale yielding stress and

strain fields, Pfresently, no nunerical sclutions of equations {16) and

{17) are availabie, but a qualitative description of the stress and strain
fiealds iz possible. First we note that the time dependence of the stresses
and strains (eqs. 19-22) is the same as in Mode III {7]: the initial
elastic stress concentration at the crack tip is relaxed by creep defor-
mation and the stresses are distributed more homogeneously across the
specimen, while creep strains develop prefereably in a creep zone which
grows around the crack tip.

Using eqs. (11) and (19), we know the r und t dependence of the
near-tip HRR-field, which can now be specified except for a numerical
amplitude factor e (This factor will be calculated approxinmately
in the next sub-section, where we show a_ = 1). Thus the near tip stress

1
and strain fields, for small scale yielding, are

2 1/(n+1)
nK
1 -~ -1/ {n+l)
g = o f— of{B)(rt} (23}
= Muane1)EB -
2 n/ {n+1}
3 n ‘ﬁ""‘nxl R OICK :u]n-:l —(—"H(mn (24)
£ = = B{n+l)a g [(8)[a_(8 - .
- 1 ™ a(n+1)“ER - € LGS

So we know the asympiotic fields at infinity (linear elastic field) and
near the crack tip {HRR-field, eqs. (23) and (24)). One can now assemble
approximate solutions by simply extrapelating the asymptotic fields ta the
Iocus r][e,t] which is defined by the equality of the equivalent stresses

of the remote slastic and the near tip HRR-field. This definition leads
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Lo

I n+1)"E Bt
ry(8,1) = 52 |5 'L“n?i‘"' Fy(8) (23)

with the angular function
; (n+1}/(n-1)
cnsz g— [:(l-?.v..t)2 * 3 sin2 E;l {

- Z
[UE[E]

This form applies for plane strain; for plane stress, the expression

Fl[ﬂ) = (26)

1-2v nmust be replaced by unity, and EE[E] and a, have their plane
stress values,

The creep zone boundary has been defined by equating the eguivalent
creep strain Ezr to the equivalent elastic strain 521 7] . If we use
this definition and calculate the strains from the assembled stress field

described above, the result for the creep zone boundary Icr{ﬁ't] has

the same functional form as T, except for the sngular function Fcr{ﬁ} :

2 2/ (n-1)
K Zn
T 0.0 = o [—31] e T Fopl®) . (27)

(n+1

znunn+1 cr
According to eq. (27) the creep zone expands in proportion to t 2/ (n-1) .
The angular functions FILE] and Fcr{ﬁ} are shown in Fig. 1. Within
the accuracy of the present m;thud, the creep zone boundary rums into
the crack tip. More accurate methods, however, wight Iead to a creep zone

boundary which hits the crack faces behind the crack tip.

Approximate calculation of the factor o, The proper way 1o

calculate the dimensionless factor oy which appears in the results of
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the preceding subsection, would be to salve the partial differential
equations [16) and (17) numerically; the amplitude of the near tip
singular field is then part of the result., In the present paper,
however, we estimate the value of &, by means of the path-integral J
[13}. The quantity W = Ig:dg » which appears in the J-integral, is
understood as an integral over the deformation history at egach material
point. With this definition ¢f W , the J-integral is, in general, path-
dependent for creep problems. We assume, however, that J is approxi-
nately path-independent. The reasen why we regard this as a reasonahle approxi-
mation is the following: creep straining takes place mainly in the
creep tone. In this region, the HRR-field is a pood approximation which
bacomes asymptotically exact as r + {0 . Further, we find that it is
pessible to eliminate both coordinates (r,9) from eqs. (23) and (24},
thus showing that stresses and strains in the HRR-region behave as if
there were a unique relationship e(») , independent of (r,8) at any
instant of time:

% ' n-1
[ E*B(n+l}tg a, . {28)

The existence of a unique stress-.strain relation, however, implies
path-independence of J .
For the HRR-field, the value of the J-integral has been calculated

[17,18] as

3, = [n+l]EtIn[k£t]]ml . (29}
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In the elastic field, J has the well known value [13]:

KZLI—uZJIE for plane strain
J = . (20}
K°/E for plain stress

Assuming approximate path-independence of- J [i.e. .Iu 2 J ) we
obtain the amplitude of the singularity

7 1/{n+1)
KI[I-uZJIE
Alt) = EEITTET;E' (i1

and, with the definition of s according to eqs. {11} and [23},

. 1 1/(n+1}
“n ne n;]. ‘ﬂ'(%-v ] ) {32]
n J
This form is for plane strajin. HNumerical values aré tg = .012 and

%4 = .975 for v = 0.3 . For plane stress the factor [l-vZ] must be

delated, and the plane stress value for the integral In [16] must be

insertad. Numerical valuss are mn = 1.015% independent of n , within
1/2 parcent accuracy.

It is interesting to note that with this approximate value of L
eq. (32), the near tip fields of o and é_ for small scale yielding
have the same form as for the extensive yieldiné case (eqs. (L1) and (12)),
provided that C* , which governs the amplitude of the latter case, is
replaced in all formulae by G/(l+n)t . Here G = [l-wi) E%fE for
plane strain and KfiE for plane stress. -

Assessment of the aceuracy. Unfortunately, the error of the

approximatiens in the previous two sub-sextions can hardly be estimated
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analytically. Therefore, we apply the approximate asethod to Mode II1
and compare the results with the numerical results which are there
available [7]. It turns out that the approximate method under-estimates
the amplitude of the HRR-field for n £ 5 by 5, 15, 30 percent for
n = 4,3,2, respectively. For n z 5 , the approximate method over-
estimates the result by a maximum of 10% {for n==). The practical range
of creep exponents is n = 4 to & and sometimes higher; in this range
the approximation is very close to the exact Mode III result. On the
other hand, as n+l the concept of a growing creep zone becomes ill-
defined and this may result in the inaccuracy of the approximation at
low n . Figure 2 shows a comparison betweenm the numerically calculated
stress and the approximately calcuated stress which is composed of the
HRR-fleld near the crack tip and the elastic field far from the crack tip.
With the strains calculated from this stress Tield, one obtains a creep
zene size which coincides within 20 percent accuracy with the value
calculated mumerically [7].

In conclusion, the approximate methods woerk well for Hudﬁ_III, and
we proceed assuming their approximate validity for Mode I, toe,

Criteria for small scale yilelding vs. extensive creep of whole specimen

Frem the preceding analysis it is clear that the stress intensity
factor KI and the integral C* characterize the near tip field--and
thereby crack growth behavior--in oppesite limiting cases: a descriptiom
by K gpplies if the crack grows while the specimen behaves predominantly
elastic except in a creep zone which is smwall compared with the specimen
size (brittle failure); the C*-integral applies if crack growth is
accompanied by extensive creep of the whole specimen (ductile behavior).

As an example, we calculate the crack growth initiatiom time asz a

function of the leading parametey, We assume that the crack starts te
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grow aonce a critical equivalent strzin, €, » is artained at a small
structural distance, T, . from the crack tip. ' For plane stress T,
is defined directly ahead of the crack (8=0). ., and for plane strain
it is measursd in the direction where ;e(E] is a maximum. The near
tip strains are given by eq. (24) for sm#;l gcale yielding., Inverting
eq. (24) one obtains the crack growth initiation time, t ., as a

i
funceion of the stress intensity factor:

2 n
ZuE T
L - Ecml n = n+1n+1 2 < . (333
E"B(ne1} |2na_ Ky

1f extensive creep of the whole specimen precedes crack growth initiaxion,

the strains are given by inserting eqs. (11) and {12} into eq. {1}. Then

the initiation time depends on C*

1/ a1y [T e (Y (ne1)
t,=eB nc . (34)

1 Cc*

Now some practical guidelines will be discussed as to how one can
decide whether or not small scale yielding conditions prevail in a given
test situation:

(1) A direct approach would be to astimate the creep zane size

experimentally, e.g., by observation of a polished specimen sur-

face near the crack tip.

(2] The second possibility would be to calculate the creep zone

gize from eq. (27} and compare it with the specimen size. Since

the material parameters E and n play an important role in

2q. (27}, this formula is strictly limited to power law creep.
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(3) A formula for the creep zone size, which will be approxi-
mately valid for more general creep lawz than pure power-law
creep, is obtained if the time in eq. (27) is replaced by any one
of the strain components, Eij . Using eq. (24) with eq. (27)
leads to

2(n+1}/¢{n-1)
57 <, 01 O]

(X, /E) J

T (8,1) = B (8 ) Fop(8)  (350)

with the numerical factor Bn

| 2 (ns13/(n-1}

- nt . {35t}
B = 1 =T -

n 33/2, ""nn 1 35 Wa)*’e“ 1[-%]

In eqs. {35}, the strain component €4 is supposed to be measured
at a position (r.BG} by means of a high temperature strain gauge.
The position [r.Eol must be within the creep zone; Ba is an

arbitrary angle and the result of eq. (35a) is independent of Bu .

For plane stress, it will be convenient to measure g directly

a8
ahead of the crack tip [Bﬂ=ﬂ] . For plane strain, larger tensile
strains can be measured above the crack tip {B°!1f21 with the axis
of the strain gauge oriented at an angle @=3x/4 . Then numerical
= (0.238 for plane strain,

valyes for En are g, = 0.212 and El

3 3
and B, = .074 and B . = .067 for plane stress. Thus, eqs. (35}
provide a rough estimate for the creep zone size even if the creep
exponent n is uncertain, since the result in this form i3 not
strongly dependent of n , if n is large.

(4) The creep zone size can 3ls0 be expressed in terms of erack

opening displacement (C3D) , 8 , which iz sometimes convenient to
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measure. The resulting relation depends on the definitien of
COD: one definition of COD is to measure the distance batween the
twa crack faces at the point where the craep zone boundary hits
the crack faces behind the crack tip.

With the approximations

of the present theary, this point cannot be determined (see Fig. 1),

but the relation between Tor and ﬁczh ( = COD at the creep zone
boundary) mist have the form
' Esczb *
Tor ® By T Fcr(B] ‘ {36)

The factor B; can only be estimated by analogy with the Mode JII
case [7]. The result is B;Fcr{gﬂ = 0.3 . The advantage of eq. (36)
is that it allows an estimate of the creep zone size independently
of the creep parameters B and n . 50 it may be suspected that
eq. {36} is approximately wvalid for more general creep laws than
pure power-law creep. A practical drawback of eq. {36} is that
COD at the creep zone boundary will he hard to measure precisely.
COD can also be defined at the point where the line @ = 135°
originating from the apex of the crack profile, intersects the
crack profile [23]. This COD value will be denoted by St . With

this definition of COD, we obtain

Ter = 8|7 | | Fer® (573)
I I
with
2{n+11/{n-1}
1/2
"o dl|nel o (27)
En 161 7 . (37b)

~ n+l
|lug (1) o,
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The angular part, ﬁﬂ(ﬁ] , of the displacement function is

sy 2 3Ll o [ s )l
upl® = 7 5 12t} 35 [[“rr "98)% :]
.25 g™l (37¢)
THh @ )

Typical numerical values are for plane strain: ﬂs » 0.63 ,

L1}

By

[ 1]
ES
{51 Finally, the characteristic time for the transition from

L1}

[ L] L "
= 0.40 , Els = .32 , and for plane stress: 6, = 0.127,

3
11
= .116 , B]S = 0.108 .

small scale yielding to extensive creep of the whole specimen

can be estimated analytically. Figure 3 shows the time-dependence

of the amplitude A{t]} , of the mear tip singular stress field. The
short-time 1imit i3 given by the small scale yielding result {59. {311
and the long-time is given by eq. (12). The characteristic time,

tl s for the transition defined in Pig. 3, is

mfu-viye

I C (38

for plane strain; for plane stress, replace 1-vZ by 1 . Small
scale ylelding prevails if the time is sufficiently small compared

with the characteristic time t Ineq. (38), C* is considered

L
as a quantity which is known from a numerical analysis of a non-linear
viscous (or, by analogy, small strain non-linear elastic) problem

[18-22]. For a center-cracked strip, for instance, Goldman and

Hutchinson [18] give

"*; [1 ,n] . (39)

L —_——
C aﬂ'ﬂE"

oy 2
3
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The crack lengrh is ia , the strip width is 2b ; 3 is given
graphically in ref. [18] as a function of a&/b and of the cresp
exponent n ; og_ and E:r are the remotely applied stress and
creep strain rate., The material parameter B does not appear in
egqs. (38) and {391, but the creep exponent n has a significant

influence both on J [18] and on eq. (38). With eq. (39) the

transition time is given by

o n-1 3
tox— ”?iil gia/b, 1) (40)
Ee_ J(a/b,n)

According to eq. (Z7}, the creep zone size at the time tl is

approximately 1/10 of the half crack Iength, a .

Discussion

Apart from the approximations which are invelved in the analysis
of the small scale yielding case, ﬁurther limitations of the present theory
must be kept in mind.

Firstly, the thegry has been worked out for a material law which,
besides elastic deformation, allows for pure power-law creep only. How-
ever, the general conclusion, that a creep zone near the crack tip can be
defined, will not be altered if more general cresp laws are valid, as long
as the creep rate increases stronger than linearly as a function of the
stress. From the form of the equations (35)-(38), it is expected that
the size of the creep zone can be estimated even if the creep law is
different from a pure power-law relation. Imn this connection, we remark
in passing that the solution which we have presented for small scale
yielding is also valid for creep laws which include, approximately,

transient effects through a time-hardening expression of the farm
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¢ = EIIE + BLt]un , Provided that the product Bt in our solution is
everywhere replaced by rﬂ{‘r]d‘: .

Secondly, the theury?is based on the assumption that the fracture process
zone is always negligibly small compared with the creep zone and the specimen
dimensions. In very ductile materials and small specimens, however, the fracturas
process zone may spread over the whole cross section of the cracked specimen.
This situation can no longer Teasonably be described by power law creep.

The siress and strain distribotion in the net section is likely to be

nore homogeneous in soch a situation than predicted by the present

theory. Under these conditions, the net section stress could be the

loading parameter to determine the life-time of cracked as well as uncracked
specimens.

Thirdly, the theory does not cover the range between small scali
yielding and extensive creep of the whole specimen. One might exﬁe:t
that an interpolaticon between the twe limiting cases is particularly
doubtful for a large plate with a small center-g<rack under tansiﬂnl' In

this case, the creep zone size at the transition time t. is about 1/10

1
of the half crack lepgth. This first appears to be far away from extensive
creep of the whole plate. However, if one estimates the straim rates at
the transiticon time by simply adding the remotely applied creep rate

n

él:l‘ = hn

, to the creep rate obtained for small scale yielding, it turns
cut that the e¢lastic strain rates are considerably smaller than the creep
rates everywhere except near the creep zone boundary where they are of
equal order of magritude. The condition for the extensive creep limit

to be valid is that the creep rates are much larger than théﬂelastic Tates
everywhere. This starts being fulfilled at the tramnsition time. Hence,

there is no big gap between the validity of the small scale yielding and
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the extensive creep case, Of course, if a higher degree of accuracy is
Tequired, the limiting cases are separated by a period of time whers
neither of them is accurate enough.

Finally, the analysis has been confined to staticnary cracks. For

I
C* are not fundamentally alterad, but the situation becomes more complicated.

growing cracks, the cenclusions concerning the applicability of K. and

The sinpular field immediately at the tip of a growing crack can nc longer
be the HRR-field when elastic effects are present [lll. As a consequence,
the influence of the loading parameters on the near tip strains becomes
hore complicated than for instance the cne given in eq. (24). In addition,
the stress and strain fields become dependent on the prior history of the
loading parameter and of the crack growth. This will be discussed in

greater detail in a forthcoming paper [12Z].

Conclusions

An important result of the stress analysis is that a creep zone
near the crack tip can ressonably be defined and calculated. The size
in relation to specimen size and crack length determines which loading
parameter governs crack growth imitiation and growth rates. In large
cracked specimens or structures [crack length and specimen size are
large compared with the creep zone), the stress intensity factor is the
lpading parameter which correlates crack growth rates between specimens
of different shape; In specimens that are small compared with the creep
zone, but large compared with the fracture process zone, the path-independent
integral C* is the relevant loading parameter. If the ligament width of
the spacimen becomes comparablie with the size of the fracture process
zone--which has been neglected in the present analysis--the net section

strass possibly determines the life-time of a specimen, Excessive crack
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tip blunting will have a similar effect. -

Criteria for small scale yielding have been developed. They are
either based on the comparison of specimen size and creep zone size
ar on the compariscon of thé test duration with a characteristic time
which can be calculated analytically.
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Figure Captions

Figure 1.

Figure 2.

Figure 3.

Polar diagrams of the angular functions FI{B} {dashed lines)
and Fcr{ﬂ} {solid lines), for plane strain (upper half) and
plane stress (lowey half). Creep exponent n=3,4,13. Poisson's
ratio w= 0.3 .

Stress compenent EE3 vs. distance from crack tip, R, for
Mode III, normalized as in eqs. {13)-{15) but with 2G instead
of Ef(1-v) . Comparison of approximate analytical result
{dashed line) with mumerical result (sclid line). Analytical
curve is given by [,y = R°Y? for R> 1.58 and ey =
0.863 R°Y° for R < 1.59 . Arrows indicate creep zone
boundary: nun = numerical result; an = approximate analytical
result. Creep sxponent n=4 .,

Time-dependence of the amplitude of the HRR-near tip stress
field, A(t) . The short-time limit (small scale yielding)

is described by eq. {31}. After lomg times (extensive creep
of the whole specimen} the value given in eq. (12) is approached.

The characteristic time, t1 , 15 definped by equating long- and
short-time solutions, Creep exponent n=4 .
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