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The ultimate tensile behaviour of fibre-reinforced cementitious composites is closely related 

to its failure mechanisms which in turn are dependent on reinforcement parameters such as 

fibre characteristics and the fibre/matrix interface properties. Based on the direct tensile tests 

of mortar specimens reinforced with various synthetic fibres, this paper attempts to explain 

such relationships and to indicate directions towards more effective fibre reinforcement. 

1. I n t r o d u c t i o n  

Concrete, a ubiquitous construction material, has low 

tensile strength and low fracture toughness which 

limit its use in many critical applications. Research has 

indicated that the tensile behaviour of concrete can be 

effectively upgraded by fibre reinforcement at rela- 

tively low fibre volume fractions, typically 0.5% to 

3%. Because of such improvements, fibre-reinforced 

cementitious composites (FRC) are suitable for many 

applications. 

The tensile behaviour of FRC is a fundamental 

material property which can be characterized by 

means of a stress-crack opening width (~-8) curve [1]. 

In an experimental study of fibre reinforcement of 

mortar with various synthetic fibres [2], it was ob- 

served that the measured or-6 curve was strongly 

influenced by the fibre reinforcement, particularly by 

the fibre types used, and that, as the differences in ~-6 

curves imply, some reinforcements were not as effec- 

tive as others. 

Here, the tensile failure mechanisms in mortar spe- 

cimens reinforced with various synthetic fibres are 

studied, based on observations under an optical 

microscope as well as under a scanning electron 

microscope (SEM). These mechanisms are related to 

both the tensile behaviour (or-6 curves) of the com- 

posites and the reinforcement parameters (fibre type, 

size and volume fraction). The purpose of this study 

was to point out directions towards optimization of 

FRC properties with respect to the reinforcement 

parameters. 

2. Direct  t ens i l e  t e s t ing  of  FRC 
Mortar matrix, composed of Type III cement, mortar 

sand and water (weight ratio = 1:1:0.5) was reinfor- 

ced with various synthetic fibres, including Kevlar 49 

(aramid, DuPont Company), Technora (aramid, Teijin 

Ltd), Spectra 900 (high strength polyethylene, Allied 

Corporation), and Herculon PP (undrawn polypro- 

pylene, Hercules Inc.). Notched specimens, such as 

shown in Fig. 1, were tested in direct tension using the 

test fixture illustrated in Fig. 2. A stress-crack opening 

width (~-6) curve was recorded for each test, with the 

specimen load measured by the machine load cell, and 

the specimen crack width monitored by a pair of linear 

variable differential transformers (LVDTs) attached to 

the specimen. Details on materials, mixing, curing, 

and testing of FRC specimens can be found elsewhere 

[-2, 3, 4]. Average stress-crack opening width (cy-~) 

curves are shown in Fig. 3 for the synthetic FRC 

tested, along with the information on fibre length (Lf), 

diameter (dr) and volume fraction (V0. Tensile 

strengths and fracture energies given by the areas 

under the or-6 curves are summarized in Table I. 
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Figure 1 Dimensions (mm) of direct tensile test specimens. 
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Figure 2 Schematic illustration of the loading fixture for the direct 

tensile test. Dimensions in mm. 

The fracture surfaces of tensile specimens were 

studied under an optical microscope and under an 

SEM. For  each FRC mix tested in direct tension, a 

typical sample was chosen for the optical study. For  

some FRC mixes, a tensile sample was also selected for 

the SEM study, performed on a Cambridge Instru- 

ments Stereoscan microscope. To reduce the time 

necessary for the vacuum in the SEM chamber to 

reach the operating level, a 10 mm thick slice of the 

tensile specimen containing the fracture surface was 

cut off with a diamond saw and dried in an oven at 

45 ~ for at least 72 h. No conductive coatings were 

applied to the SEM specimens. 

3. FRC with Spectra 900 fibres 
Spectra 900  fibres, wi th  a f inish des igned  to enhan ce  

their d i spers ion  in a q u e o u s  media ,  were observed  to 

dis tr ibute  u n i f o r m l y  with  few fibre bundles  formed in 

mix  S1 ( conta in ing  1% 12.7 m m  fibres). This  can be 

seen in the opt ica l  p h o t o g r a p h  of  Fig. 4. ~ n  mix  $2 

wi th  Vr = 2%,  however ,  the fibre d i s tr ibut ion  was  not  
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Figure 3 Stress-crack separation curves for FRC. 

TABLE I Tensile strength and fracture energy of FRC 

Fibre Mix Vf Lf Tensile strength 

no. (%) (mm) 

Fracture energy 

(MPa) CV (%) (kJm -2) CV (%) 

Kevlar 49 K1 2 6.35 3.96 11.9 1.31 13.4 

Technora T1 1 6.35 3.31 5.0 1.42 17.7 
T2 2 6.35 3.11 6.3 1.28 13.4 

T3 3 6.35 3.65 12.2 1.87 18.2 

T4 1 12.7 3.49 10.9 2.13 30.9 

T5 2 12.7 4.17 4.1 4.36 11.0 

Spectra 900 S1 1 12.7 2.39 8.2 5.98 10.3 
$2 2 12.7 2.70 1.9 5.62 16.1 

SH 0.6 6.35 4.21 5.4 0.39 10.1 

Herculon PP P1 2 5 2.21 9.5 1.44 8.8 
P2 2 10 2.14 13.3 4.58 12.4 

Technora ~ 1 12.7 
and ) H 1 3.40 2.7 3.80 9.0 

Spectra 900 1 12.7 
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Figure 4 Photographs of fracture surface of mix S1 tested in direct tension. Spacing of grids in photographs is I mm/grid. 

Figure 5 Photographs of fracture surface of mix $2 tested in direct 

tension. (a, b) Optical micrograph, (c) scanning electron micrograph. 

Spacing of grids in optical photographs is 1 ram/grid. 

uniform, as indicated by the photographs in Fig. 5. 

Bundles consisting of parallel fibres (Fig. 5b) and 

clumps of fibres (Fig. 5c) can be seen. 

For FRC with randomly distributed fibres, the 

number of fibres, N, across a cross-sectional area, Ac, 

is given by [5J 

VfAc 2VfA c 

N -  2Af - ud 2 (1) 

where Af is the fibre cross-sectional area and df is 

the fibre diameter. For FRC mixes S1 and $2 (dr 

= 0.038 mm), the theoretical numbers of fibres per 

unit area (N/Ac) are 4.4 and 8.8 fibres mm -2, respect- 

ively. Clearly, as the fibre volume fraction increases, 

interference between fibres increases and as a result, 

uniformity of fibre distribution deteriorates. The 

formation of fibre bundles reduces the effectiveness of 

fibre reinforcement. The ci-~ curves of mixes S1 and 

$2 obtained in direct tensile tests did not show a 

significant difference despite the two-fold increase in 

fibre volume fraction (Fig. 3). The presence of fibre 

bundles and clumps in mix $2 ( I f  = 2%) is certainly 

one of the reasons for this. Thus it appears from these 

observations that the maximum fibre volume fraction 

which can be included in this matrix without causing 

severe fibre bundling and clumping is around or 

slightly more than 1% for these Spectra fibre re- 

inforcements. 

In mixes S1 and $2, all the fibres initially bridging 

the crack surface were pulled out, and no ruptured 

fibres could be identified under the SEM (see Fig. 5c). 

The critical length of fibre pull-out, L~, defined as the 

maximum fibre embedded length for the fibre to be 

pulled out without rupture, is given as follows for the 

Spectra 900 fibres 

dfo'~ 0.038 x 2600 
Lc - 4z 4•  - 24.2mm (2) 

where c~' = 2600 MPa is the fibre breaking strength 
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and ~ = 1.02 MPa is the measured fibre/matrix bond 

strength [6]. Because this Lc far exceeds the fibre 

length used in mixes S1 and $2 (Lf = 12.7 mm), the 

observation of no fibre rupture is as expected. The 

short length of Lf relative to Lc indicates that the fibre 

strength has not been effectively used in the FRC. 

Further improvement in composite properties could 

be achieved with even lower fibre volume fraction if 

the fibre/matrix bond strength, ~, were increased. The 

bond strength can be increased by, for example, modi- 

fication of the surface characteristics, plasma treat- 

ment, mechanical crimping or crushing. 

Matrix spalling due to fibre pull-out at angles was 

observed in the direct tensile test of mixes S 1 and $2. 

Large numbers of mortar  segments were separated 

from the specimen during testing and some such 

remaining pieces can be seen in the scanning electron 

micrograph of Fig. 6. The dimension of the spalled 

pieces shown in the photograph is typically 1 to 2 mm, 

which is close to the size of the sand component of the 

matrix. This phenomenon of matrix spalling has been 

observed in tests of single-fibre pull-out at different 

angles [6]. In that study it was found that the tension 

in the fibre was suddenly released when the matrix 

wedge spalled off. Correspondingly, in the direct ten- 

sile tests, the stress shortly after matrix cracking also 

exhibited a sudden drop and a subsequent rise as 

shown in Fig. 3. 

The fracture surface of mix SH, a high strength 

concrete reinforced with 0.6% 6.35mm Spectra 

900 fibres, is shown in Fig. 7. In contrast to mixes S1 

and $2, no noticeable matrix spalling was observed in 

the test of mix SH. Increased matrix strength certainly 

was one of the major reasons, and shorter fibre length 

and lower fibre volume fraction used in this mix might 

also have played a role. 

In structural applications, both the total fracture 

energy and the energy absorption when the crack 

width is within the limit of serviceability requirement 

are important. Obviously, the load drops after matrix 

cracking for FRC mixes S1 and $2 are not desirable. 

As demonstrated by tests of fibre pull-out at an angle 

from a high-strength matrix and by the preliminary 

study of fibre-reinforced high-strength concrete (mix 

SH), matrix spalling can be significantly reduced. In- 

Figure 7 Photographs of fracture surface of mix SH tested in direct 
tension. Spacing of grids in photograph is 1 mm/grid. 

Figure 8 Photograph of fracture surface profile of a mortar speci- 
men failed in direct tension. Spacing of grids in photograph is 
1 ram/grid. 

Figure 9 Photograph of fracture surface profile of mix SH tested in 
direct tension. Spacing of grids in photograph is 1 mm/grid. 

Figure 6 Scanning electron micrograph of fracture surface of mix $2 
tested in direct tension. 
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creasing the matrix strength using high-strength con- 

crete technology is clearly one of the key directions 

towards high-performance cost-effective FRC. 

The fracture surface of the plain mortar specimen 

tested in direct tension is, as expected, quite flat, as 

shown in Fig. 8. Similar fracture surface profiles can 

also be seen in specimens of mix SH, shown in Fig. 9, 

which failed by crack propagation across a planar 

surface, cutting through the coarse aggregates, and 

followed by fibre pull-out. Because of the high 

strength of the matrix, short fibre length and low fibre 



Figure 10 Photograph of fracture surface profile of specimens tested in direct tension. (a) Mix S1, (b) mix $2. Spacing of grids in photograph is 
1 ram/grid. 

volume fraction used in this mix, the crack propaga- 

tion was essentially not influenced by the presence of 

fibres. 

The fracture surface profiles of tensile specimens of 

mixes S 1 and $2 were affected by the reinforcing fibres, 

as illustrated in Fig. 10. The crack surfaces, covered 

with fibres, were relatively rough. Sometimes, multiple 

crackings of the matrix were observed. 

4. FRC wi th  aramid fibres 
Bundles of fibres were the dominant form of fibre 

distribution in all the aramid FRC tested (mixes K1, 

T1 to T5), as shown by some typical scanning electron 

micrographs in Fig. 11. The vast majority of the 

reinforcing fibres appeared in bundles or clumps in the 

matrix although some isolated fibres can also be seen 

(Fig. 12). 

The main failure mechanisms in aramid FRC were 

crack deflection around fibre bundles, bundle splitting 

and bundle shearing. Fibre bundles infiltrated by the 

cement slurry may act as rigid rods in the matrix. 

When the matrix crack encounters a bundle lying in a 

direction close to that of the applied load, the crack is 

likely to deflect around the bundle, leaving a "cone" of 

fibre bundle surrounded by cement on the crack sur- 

face, like those shown in Fig. 13. A plausible reason 

why a cone is pulled out rather than the fibre bundle 

itself is that the fibre/matrix bond strength for aramid 

fibres is very high ('c = 4.5 MPa from experiment [6], 

about four times that for Spectra 900 fibres), and 

before the shear stress at the interface has reached the 

level of the bond strength, the matrix has failed in 

tension in the directions of maximum tensile stress, as 

schematically illustrated in Fig. 14. Because of this 

cone-shaped separation geometry, direct pull-out of 

fibre bundles does not provide significant post- 

cracking resistance. 

When the crack confronts fibre bundles lying nearly 

perpendicular to the loading direction, the crack may 

turn and propagate through the bundle in the bundle 

longitudinal direction. As the crack opens further, the 

bundles are split (Fig. 11) or peeled offfrom the matrix 

(Fig. 15). In some cases, bundle splitting may also be 

associated with fibre splitting (fibrillation), as shown 

in Fig. 16. 

Figure 11 Scanning electron micrographs of fracture surfaces of 
aramid FRC tested in direct tension. (a) mix T1, Technora 6.35 mm 
1%; (b) mix T2, Technora 6.35 mm 2%; (c) mix TS, Technora 
12.7 rnm 2%. 
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Figure 12 Scanning electron micrographs of fracture surfaces of mix 
T1 tested in direct tension showing isolated fibres. 

Figure 15 Scanning electron micrograph of mix T2 showing fibres 
being peeled off the matrix. 

Figure 13 Photograph of cones on the fracture surface formed by 
fibre bundles (mix T5). 

Shear stress near interface 

Embedded end ~ ' , ,  ~r 

V 
Figure 14 Illustration of stress states in the matrix near the fibre/ 
matrix interface. 

Because the crack growth along a fibre bundle may 

not coincide with the bundle axis, it is possible for 

some fibre bundles lying nearly perpendicular to the 

loading direction to have one end fixed to one crack 

surface and the other end to the opposite surface, 

particularly in aramid FRC with long-length fibres. 

Shearing of these fibre bundles as the crack opens 

provides relatively high resistance. 
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Figure 16 Scanning electron micrograph of mix T5 showing fibre 
splitting. 

Because of the high strength of the fibre/matrix 

bond, individual fibre pull-out is basically absent in 

aramid FRC. Fibre tensile rupture, being observed in 

relatively few isolated fibres, does not play a major 

role in influencing the tensile behaviour. 

The fracture surface profiles of tensile specimens of 

these FRC are shown in Fig. 17. It can beseen that 

these fracture surfaces are very irregular, particularly 

for mixes T4 and T5 with long fibres. 

These observations of failure mechanisms are con- 

sistent with the direct test results for aramid FRC. 

Because the crack always tries to propagate through 

fibre bundles which possess a slight inclination to the 

crack plane rather than taking a planar path at a 

random location, it follows that the number of fibre 

bundles encountered by the crack will not be propor- 

tional to the number of fibres across a given plane. 

Consequently, the ~-8 curves for aramid FRC (Fig. 3) 

may show very weak dependence on the fibre volume 

fraction. 

Because the cracks in aramid specimens could not 

directly propagate through the notch plane but in- 

stead were forced to deflect out of plane, the strengths 

of aramid FRC in the direct tensile test were con- 

sistently higher than those for FRC with Spectra 900 

and Herculon PP fibres. 

For FRC mixes with short aramid fibres (mixes K1, 



Figure 17 Photographs of fracture surface profiles of aramid FRC specimens tested in direct tension. (a) Mix T1, (b) mix T2, (c) mix T3, (d) mix 

T4, (e) mix T5, (f) mix K1. Spacing of grids in photograph is 1 ram/grid. 

T1 to T3, all with Lf = 6.35 mm), the post-cracking 

resistance was due primarily to bundle splitting, there- 

fore the stresses in these curves dropped sharply after 

cracking. For mixes with longer fibres (mixes T4 and 

T5, both with Lf = 12.7 ram), bundle shearing also 

became important, and the load drops occurred when 

the crack openings were wider. Because of the lack of 

fibre pull-out in aramid FRC, the crack width at 

which the load dropped off was much smaller than 

half the fibre length. As a result, the fracture energies 

of these aramid FRC, except for mix T5, were rela- 

tively low in comparison with Spectra FRC showing 

fibre pull-out behaviour. 

The major reason for aramid fibres in FRC to be in 

bundle form rather than being separated is that the 

surface finishes available do not promote good fibre 

dispersion in aqueous solutions. In order to use 

aramid fibres effectively in FRC, a suitable finish 

should be provided to ensure even fibre dispersion in 

cement slurry and to reduce the fibre/matrix bond 

strength to a desirable level. 

5. Technora/Spectra hybrid FRC 
The fracture surface of mix H 1, a hybrid FRC contain- 

ing 1% 12.7 mm Technora and 1% 12.7 mm Spectra 

900 fibres, tested in tension is shown in Fig.. 18. It 

was observed in the specimens that the majority of 

Technora fibres were in fibre bundles and that the 

Spectra 900 fibres were partially in separated form and 

partially in bundles. The fracture surface profile of mix 

H1, shown in Fig. 19, is very similar to those of aramid 

FRC. On the fracture surface, Spectra 900 fibres 

pulled out from the matrix can also be seen. 

The failure mechanisms for this hybrid FRC are the 

combination of those of aramid FRC and those of 

Spectra FRC. The ~-6 curve of mix H1 (Fig. 3) is very 

close to the average, rather than the sum, of those of 
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Figure 18 Photographs of fracture surface of mix H1 tested in direct 
tension. Spacing of grids in photographs is 1 mm/grid. 

Figure 19 Photographs of fracture surface profiles of mix H 1 tested 
in direct tension. Spacing of grids in photograph is 1 mm/grid. 

mix T4 (Technora 1% 12.7 mm) and mix S1 (Spectra 

900 1% 12.7mm), indicating that the interference 

between fibres has lowered the efficiency of the fibre 

reinforcement. But nevertheless, a relatively high frac- 

ture energy and a relatively high post-cracking stress 

have been obtained, which confirms the advantages of 

hybriding. 

6. FRC wi th  Herculon PP fibres 
Herculon PP fibres, also coated with a dispersion- 

promoting finish, appeared to distribute well in the 

matrix, as indicated by Fig. 20 for mix P1 containing 

2% 5 mm fibres, and in Fig. 21 for mix P2 containing 

2% 10mm fibres. In these specimens, no apparent 

fibre bundles were found. 

The fracture surface profiles of mixes P1 and P2 

tested in direct tension are shown in Fig. 22. Apart 

from the fuzzy appearance due to fibres pulled out on 

the surface, the fracture surfaces of FRC with Her- 

culon PP fibres (mixes P1 and P2) are very flat like 

that of plain mortar  (Fig. 8), indicating that these low- 

modulus polyolefin fibres do not provide significant 

resistance to planar crack growth in the matrix. 

The Herculon PP fibres are undrawn filaments 

which exhibit an elastic-plastic behaviour in tension 

with a rupture strain of 366.6% [3]. During the direct 

tensile test, drawing of the Herculon PP fibres 

bridging the crack took place as the specimen crack 

opened. This process for mix P2 containing 2% 

10 mm fibres is shown in Fig. 23. The majority of the 

fibres in mix P2 were pulled out, appearing in corruga- 

ted shapes (Fig. 24). Holes in the matrix left by the 

withdrawn fibres can be seen in the micrograph shown 

in Fig. 25. Ruptured fibres on the fractured surface, 

like that shown in Fig. 26, can also be seen, but they 

are very uncommon. The final specimen separation at 

which the stress dropped to zero was about 25 mm for 

mix P2 (Lf = 10 mm). For  mix P1 containing 2% 

5 mm fibres, all the fibres bridging the crack in the 

tensile specimen were pulled out due to their short 

length, and the final crack separation for mix P1 was 

about 6 mm. No matrix spalling was observed in the 

test of mixes P1 and P2. 

The Herculon PP fibres were designed for use in 

non-woven materials and not specifically for use in 

FRC. They were included in this study to evaluate the 

hypothesis that undrawn fibres might contribute to 

concrete reinforcement. However, because of their low 

yielding stress, the fibres could not provide significant 

resistance to crack opening, and the FRC post- 

cracking behaviour as indicated by the c~-g curves for 

mixes P1 and P2 (Fig. 3) is unsatisfactory. Although 

Figure 20 Photographs of fracture surface of mix Pl tested in direct tension. Spacing of grids in photographs is 1 mm/grid. 
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Figure 21 Photographs of fracture surface of mix P2 tested in direct tension. (a) Optical micrograph, (b) scanning electron micrograph. 
Spacing of grids in optical photograph is 1 mm/grid. 

Figure 22 Photographs of specimen fracture surface profiles of mixes (a) P1 and (b) P2 tested in direct tension. Spacing of grids in photograph 
is 1 mm/grid. 

the total energy absorption of mix P2 was impressive, 

the low post-cracking stresses of the Herculon PP 

FRC are undesirable, particularly in consideration of 

the serviceability requirement for concrete structures. 

In view of their low cost and good dispersion 

property, these polypropylene fibres can still be very 

attractive for concrete reinforcement if the fibre 

strength and modulus are increased by modifying the 

drawing process of fibre production. 

7. Discussion 
The failure mechanisms of FRC with Spectra 900, 

aramid, and Herculon PP fibres have been discussed. 

For  the fibre lengths and volume fractions used in this 

set of tests, t he  importance of these mechanisms in 

controlling the composite tensile behaviour can be 

summarized. 

1. Fibre pull-out: important in Spectra and Her- 

culon PP FRC; insignificant in aramid FRC. 

2. Fibre rupture: present in aramid and Herculon 

PP (Lf = 10 mm) FRC, but not playing any significant 

role. 

3. Matrix spalling: common in Spectra FRC with 

normal mortar  matrix. 

4. Matrix multiple cracking: observed in Spectra 

FRC with normal mortar  matrix, but only locally near 

the main fracture plane. 

5. Bundle splitting: important in aramid FRC. 

6. Bundle shearing: also important in aramid with 

long fibres (Lf = 12.7 ram). 

7. Fibre plastic deformation: important in 

Herculon FRC. 

Based on these optical and SEM examinations, it is 

found that the uniformity of fibre distribution in the 

matrix was strongly dependent on fibre type and fibre 

volume fraction. The dependence on fibre type is 

presumably due to the differences in fibre finishes 

applied by the manufacturers to different types of 

fibres. The aramid fibres were found to distri- 

bute in the matrix poorly by forming large bundles or 

clumps, while Spectra 900 and Herculon fibres ap- 

peared to distribute uniformly in most cases. To 

achieve efficient reinforcement with aramid fibres, 

means must be provided to separate the fibres, by, for 

example, modifying the fibre surface finish or using 

mechanical devices. Based on a preliminary experi- 

ment, it appears that mechanical separation alone 

cannot provide satisfactory results, as the fibres tend 

to re-clump when dispersed in water after mechanical 

separation. Surface finish modification seems to be a 

necessity for even distribution of aramid fibres in 

cementitious matrix. 
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Figure 23 Failure sequence in direct tensile test of mix P2. 

Figure 24 Appearance of fibres pulled out from the matrix in 

specimen of mix P2 tested in direct tension. 
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Figure 25 Scanning electron micrograph showing holes in matrix 

due to fibre pull-out in specimen of mix P2 tested in direct tension. 



It has also been shown that sufficient matrix 

strength is required for the fibres to carry loads effec- 

tively. Application of high-strength concrete techno- 

logy to FRC needs to be further explored. Another 

aspect worth further investigating is the use of hybrid 

fibre reinforcement. 

Figure26 Scanning electron micrograph showing fibre ruptured 

end in mix P2. 

It should be borne in mind that fibre reinforcement 

can significantly improve the ductility (toughness), but 

not the (compressive) strength of concrete. However, 

most designs of load-bearing concrete structures de- 

pend primarily on the strength of concrete. The main 

advantage of using FRC instead of plain concrete 

in structures is then the increased structural safety/ 

reliability against unexpected loads such as seismic 

ones, and the increased life expectancy. In order for 

FRC to be competitive with other materials, and for 

new types of FRC to be competitive with existing 

FRC, it is important that all the reinforcing fibres in 

FRC be effectively used. 

In addition to uniform fibre dispersion, it has been 

suggested that for FRC with random fibre distribu- 

tions, the following relation should be satisfied for 

efficient use of reinforcing fibres 

Lf ~ L c = - - -  (3) 
4~ 

The fibre strength, ~ ,  for a given fibre type is gen- 

erally limited by the fibre production process (unless a 

lower fibre strength is required). It, along with other 

considerations, can be used as a guideline for fibre- 

type selection. Similarly, the choice of fibre diameter, 

df, could also be limited, particularly for some high 

performance fibres which are currently only available 

in a few fixed diameters. The length of fibres, Lf, on the 

other hand, can be obtained easily over a wide range 

of values. However, to ensure good workability of 

fresh FRC, it is desirable for Lf to be less than about 

30mm. As demonstrated, the fibre/matrix bond 

strength, ~, can be changed by, for example, surface 

finish modification and/or mechanical crimping. Pro- 

per selections of Lf and �9 are the important steps 

towards effective use of reinforcing fibres. 

8. Conclusions 
Direct tensile tests were conducted on mortar speci- 

mens reinforced with various synthetic fibres includ- 

ing polyethylene, polypropylene, and aramid fibres. 

The tensile behaviour of FRC was measured and the 

failure mechanisms were identified. It was indicated 

that the unique tensile behaviour of each FRC can be 

directly related to the failure mechanisms involved in 

the test, and the failure mechanisms were closely 

related to the reinforcement parameters including 

fibre characteristics and the fibre/matrix interface 

properties. 

In FRC containing well-dispersed fibres (polyethy- 

lene and polypropylene), fibre pull-out and stretching 

were the dominant mechanisms which led to relatively 

high energy absorption. In aramid FRC, on the other 

hand, most fibres were in bundle form. The fibre 

bundles caused the matrix crack to deflect out of plane 

and therefore the aramid FRC specimens showed 

improved tensile strength. However, the energy 

absorption of aramid FRC was relatively low due to 

the lack of fibre pull-out. For effective fibre reinforce- 

ment, it is suggested that the fibres should be uni- 

formly distributed in the matrix and the fibre/matrix 

properties should be controlled such that most of the 

fibres bridging a matrix crack are pulled out. 
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