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Tensile Yield-Stress Behavior of Poly(vinyl Chloride)
and Polyearbonate in the Glass Transition Region

J. C. BAUWENS, C. BAUWENS-CROWET, and G. HOMES, Instituf des
Matériawr, "niversité Libre de Brurelles, Bruaelles, Belgique

Synopsis

The vield-stress behavior of two glassy polymers is studied through the glass transition
region over a wide range of strain rates.  For temperatures below the glass transition
tempersture, the yield stress behavior could be deseribed as o non-Newtonian flow in
sgreement with Eyring's theory, if one excepts a narrow range relating 10 the slowest
strain rates.  For temperaturces above T, the yield-stress behavior i still nonlinear but
fit= the relations based on the coneept of free volume.

INTRODUCTION

In a previous paper,' the tensile yield stress behavior of polyearbonate
and polv(vinyl ehloride) (PVC) over a fairly wide range of temperatures
and rates of strain below the glass temperature 7', was reported. It was
shown that at the vield stress, glassy polymers exhibit viscous flow which
i in agreement with the generalized theory of Eyring.®

We have now studied in detail the tensile yield-stress behavior of these
same two polymers through the glass transition region.

EXPERIMENTAL

Experimental conditions and procedure were the same as deseribed pre-
viously;' they are briefly recalled here.

The tensile stress-strain curves were obtained with an Instron tensile
machine. The temperature was regulated by using an Instron environ-
mental ehamber and measured with a thermometer placed near the speci-
men in the chamber, The tests were made after the specimen had re-
mained in the chamber for half an hour at the required temperature. The
yield stress was taken as the peak or maximum stress on the stress-strain
eurve. At the yield point, strain rates were caleulated from the erosshead
speed. The values obtained agree well with extensometer determinations.

Tests specimens of Makrolon polyearbonate (Bayer) were cut from
commercially available sheets 0.2 em thick; the length of the specimens
was 4 em and their width 0.8 em.  Tests specimens of Solvie 227 PVC
(Solvay et Cie) were 0.18 em thick, 4 em long, and 0.8 em wide.
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RESULTS

The results of the measurements on the polyearbonate and PVC speci-
mens are shown in Figures 1 and 2, where the ratio of the yield stress oy,
to the absolute temperature 7' is plotted versus log ¢ (¢ denotes strain rate)
for each of several constant temperatures both above and below 7,. Each
point on the graph corresponds to the mean value of three tests. At each
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Fig. 1. Measured ratio of yield stress o, to temperature as a function of logarithm of
strain rate (¢ in sec™!). The dashed lines indicate the frontiers between three ranges
(highly schematic). The curves in range I are caleulated from eq. (2). The curves in
range 11 are the set of parallel curves which best fits the experimental data.  The curves
in range 111 are a best fit of the experimental data,

temperature, we have found the existence of a eritical strain rate below
which the yield point disappears from the tensile curve; it was therefore
not possible to measure the yield stress over the entire range of available
rates. We give in Figure 3 examples of tensile curves of three types: (a)
with a well defined yield point; (b) with a vanishing yield point; (c)
without definite elastic limit.

We ean measure at each temperature a eritical value of o, corresponding
to the critical strain rate at which the yield point vanishes. For tests per-
formed at temperatures above T',, the critical yield stress is very small.
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Fig. 2. Measured ratio of yield stress g, to temperature as a function of logarithm of
strain rate (¢ in see™!).  The dashed lines indicate the boundaries between three ranges
(highly schematie).  The curves belonging to range I1 are the set of parallel curves which
hest fit the experimental data,  The curves belonging to range 111 are a best fit of the ex-
perimental data,

We can roughly separate the graphs of Figures 1 and 2 into three differ-
ent ranges indicated as I, 11, and IIT on the figures, Each of these ranges
is discussed below.,

DISCUSSION

The yield point of a tensile curve has the appearance of a momentary
condition of viscous flow because there, the rate of change of stress is zero
although the strain is increasing at a constant rate. At this point the
strain does not exceed 297 and appears to be uniform. Some authors,
including Lazurkin,® Robertson,* Roetling,*~7 and ourselves,'® have made
the assumption that pure viscous flow just begins at this point; this
amounts to neglect of the processes whose contribution is insignificant
compared to the viscous one.
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Fig. 3. IHustrative examples of stress-elongation curves obtained near the glass tem-
perature at different strain rates:  (a) with o well defined vield point; (b)) with o vanishing
vield point; (e) without definite elastic limit.

Curves Belonging to Range I

The authors mentioned above have shown that the vield stress behavior
of glassy polymers below 7', may be fairly well deseribed by the Eyring
equation of non-Newtonian flow.* In the Eyring theory, deformation is a
rate process which corresponds in high polymers to the jump of segments of
macromolecules,  When no stress is acting, the jump frequency J may be
written:

J = Joexp | —Q/RT) (1)

where Jy is a rate constant containing an entropy factor, @ is the activa-
tion energy, and R is the universal gas constant.

If a stress is applied, Eyring derives from eq. (1) an expression for the
shear rate. In tensile tests, we must write Eyring’s equation for normal
stresses and take into account the relations between normal and shear
stresses and between normal and shear rates as established by Bauwens.”

In the special case where

sithz = '/, exp |z}

and when a single process is involved in the deformation, the following ex-
pression for the yield stress is derived:

(4V/3k /veve) [In (V3/2vel0)é + (Q/RT)) (2)
Alln 2 Cé + (Q/RT)]

Ty T
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where 1y is the shear volume, v, is the elementary shear strain, k is Boltz-
mann’s constant, and A and (' are given by

4“ = 4 V’B‘k/l'o7u
C = \/.3,/‘1‘70-,0

The segments of parallel straight lines within range I in Figures 1 and 2,
have been caleulated from eq, (2), with values of the constants A, C, and @
tuken from our previous work.! These values are recalled in Table I and
were so chosen as to give the best fit of eq. (2) to the data over a range of
temperatures from (T, — 120°C) to (T, — 20°C).

TABLE 1
Constants of Equation (2)
A X108 Q
kg mm* °K (', sec keal ‘'mole
Polyearbonnte 416 10-# 75.5
pPVC 7 10~ 70.5

From the reasonably good agreement between calculated and experi-
mental values, it appears that range I corresponds to the glassy state where
the Eyring theory can be applied. This theory is valid over an interval of
temperatures covering at least 120°C for both materials.

In range I, let log a;(7') be the horizontal distance between two segments
of parallel straight lines corresponding to temperatures 7y and Ts, with T
< Te It then follows from eq. (2) that log a:(7'), which we may call the
shift factor relating to range I, is given by

log ai(T) = (Q/2.303 R)[(1/Ty) — (1/T4)] (3)

Curves Belonging to Range II, T > T,

For the strain rates we have considered, the data corresponding to tem-
peratures above T, no longer fit the curves derived from eq. (2). However,
if one considers the data of Figures 1 and 2 for range 11, it is possible to
represent this data by a set of parallel eurves for temperatures 7' 2 T,.
Except at very small stresses, these parallel curves may be considered as
straight lines.

As these curves are parallel, they fit the time-temperature-superposition
principle; let log ani(7T) be the shift factor. In Figure 4 we have plotted
log ayy(T) versus AT for both materials (AT was chosen equal to T — 75.7°C
for PVC and 7' — 141°C for polyearbonate; according to these values of
AT the points on the graph follow the same curve for both materials).

In order to give an interpretation of the curves a,/T = f(In¢é) for T 2 T,
and of the graph of Figure 4, we will apply the treatment of Fox'™ to give
a justification of the semiempirical WLF relation.
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According to Eyring'! and Bueche,'® the activation energy @ in relations
(1), (2), and (3) may be considered the sum of two terms: the one repre-
sents the energy required to make a void, the other, very much smaller,
represents the energy n segment needs to free itself from its neighbors and
move into the void. Tor temperatures above 7', the free volume is no
longer frozen in; it can therefore diffuse and form voids according to the
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Fig.4. A plotof log ar(7) va. AT for both materials. Experimental data are compared
to theoretical equations.

theories based on the free volume concept. Then, for the elementary jump
process, no more energy is required to create voids. The activation energy
is, in this case, reduced to Qq, the activation energy a segment requires to
break loose from its neighbors. The jump frequency, however, will
strongly depend on the probability Z(7) that the segment is vibrating in
the proper direction at just the right time to enter a void constituted by the
meeting of holes. The jump frequency is then related to the number of
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holes present in the material and must be highly temperature-sensitive;
eq. (1), valid in the glassy range, becomes for temperatures above 7':

J = wZ(T) exp | —Qu/RT) )

where » is the vibration frequency of a segment.
From eq. (4) we may derive an expression for ¢,/7 by analogy with the
methods used previously in the glassy range, the desired expression is:

oy/T = (4\/3—k/mu‘m1) [In (\/5/2%1”0)@ + (Qu/RT) — In Z(T)] (5)

= Aulln 2Cné + (Qu/RT) — In Z(T)]

where Ay; and Cyy differ from the previous A and C because the size of the
segment relating to the deformation process above T, may differ from the
size of the segment relating to the deformation process in the glassy range.

From eq. (5) we obtain the following expression for log an(T), if we reduce
the curves to temperature T':

log an(T) = (Qu/2.303R)[(1/T,) — (1/T)] + log Z(T) — log Z(T,) (6)

The problem is now to evaluate Z(T') and different theories may be applied.
If it is assumed that:

Z(T) = exp { —V/s} @

where V is the volume of a void a segment needs to jump and ¢ the average
free volume per segment, Cohen and Turnbull™ find for log Z(7") an expres-
sion which may be identified with the WLF relation. If we make the same
assumption, eq. (6) becomes:

log an(T) = [Qu(T — T,)/2.303RTT,]
+ {1744 (T = T)/ 516 + (T — T))} (8)

In previous work Bauwens!* has made a different assumption to explain
the segmental mobility above T,. The following mechanism of deforma-
tion was proposed. Above T, the jump of a segment of a macromolecule
requires a void formed by the meeting of n, holes at least. According to
the theory of Gibbs and di Marzio,” the increase of the fractional free
volume « formed by holes may be evaluated, so that the value of log Z(T)
caleulated near T, is:

log Z(T) = nolog a = mplog (T' — Th) + K 9)
where K is a constant and 7' the temperature at which « vanishes, In this
case, eq. (6) reduced to temperature T'; becomes:
log an(T) = [Qu(T — T,)/2.303RTT,] + nolog [(T' — To)/(Ty — To)]

(10)

On the graph of Figure 4 we have drawn the curve computed from eq.
(8) neglecting the first term, which varies only insignificantly with 7. The
values of T, are given in Table II; they are obtained from the curve
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TABLE 11
Constants of Equations (5), (8), and (10)

7, *°C
Deter-
From mined dila- T A X 104
. tometri- from eq. kg /mm? K
8) cally (1), °C (mensured )
Pyve T 75 4.6 9.4
Polyear- 141 143 129.9 8.7

bonate

which agrees best with the data. The values of T, determined dilatomet-
rically'® " are given for comparison.

We have also drawn on the same graph the curve computed from eq.
(10), neglecting the first term. We have taken ny = 10, which is a quite
reasonable value according to different methods of computation.” The
values of Ty estimated by assuming that eq. (10) was applicable, are given
in Table I1.

-
+ T2

~ related to
equation (2)

~related to equation (5)

log é

Fig, 5. Possible yvield behavior above the glass temperature. At sufficiently high strain
rutes, Evring's mechanism of deformation becomes the most probable.

In the range of temperatures explored, the two curves obtained from
eqs. (8) and (10) are very close together and both fit the data fairly well.
Equation (8), as well as eq. (10), seems to be valid here, although the
stresses are relatively high and the behavior is nonlinear.

As the presumed value of Qy is very small (a few kilocalories, according
to Fox') it was not possible to measure it or the constant iy which de-
pends on Q. Only the slope Ay of o,/T = f(log €) at T 2 T, can be
evaluated: the results are given in Table II. It will be noted that An
is greater than A, the slope in range I. Therefore at a given temperature
T 2 T, a critieal strain rate may exist nbove which the Eyring process is
the most probable (this ease is represented schematically in Fig. 5). Our
results do not reveal the existence of this eritical rate; perhaps, because
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we have not reached sufficiently high strain rates. However the results of
Roetling® on poly(ethylmethacrylate), have shown that the Eyring viscos-
ity theory may still be valid above the glass temperature.

Curves in Range III

Unfortunately we are not able yet to give an interpretation of the seg-
ments of curves within runge ITI. These curves exhibit a well defined
asymptote which depends on the temperature and relates to the fading of
the yield point (the tensile stress—strain curves corresponding to the data of
region 111 are of the b type: see Fig. 3). Because of the existence of this
level, it was not possible to apply the time-temperature superposition
principle. It may be that the slope o,/T = [(log ¢) is equal to Ay, but
this is not certain because range I11 is narrow and results are more scattered
than in the other ranges.

CONCLUSIONS

(1) Tensile curves obtained in the glass transition region may exhibit
a well defined yield point, even at temperatures above T',.

(2) In the range of strain rates we have explored, the curves ¢,/T =
f(logé) at T 2 T, fit the time-temperature superposition principle. Though
the behavior is nonlinear, the shift factor agrees with the relations based on
the concept of free volume (the WLF equation, for example).

(3) The yield stresses obtained at temperatures just below 7', fit the
Eyring theory fairly well, if one excepts a nurrow range (range 111) relating
to the slowest strain rates.

(4)  The molecular process involved in the deformation at the yield
point in range I (Eyring's theory) differs from the molecular process in-
volved in the deformation at the yield point in range 1T (theories based on
the concept of free volume), because the slope of ¢,/7 = f(log ¢) differs
from one range to the other.

(5) It may happen that the yield stresses still fit the Eyring theory
even above the glass transition temperature 7', provided the strain rates
are sufficiently high.
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