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Tensile Yield-Stress Behavior of Poly(vinyl Chloride) 
and Polycarbonate in the Glass Transition Région 
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Malériaux, Université Libre de Bruxelles, Bruxelles, Belcjicjue 

Synopsis 
T h e yield­stress behavior of t w o glassy polymers is stiidied through the glass transition 

région over a wide range of strain rates. For températures below the glass transition 
température, the yield stress behavior could be deseribed as a non­Newtonian flow in 
agreement with Kyring's theory, if one excepts a narrow range relating to the s lowest 
sti'ain rates. Foi­ températures above T„, the yield­stress behavicH' is still nonlinear but 
fits the relations based on the concept of free volume. 

INTRODUCTION 

In a previous paper,' the ten.sile yield .stres.s behavior of polycarbonate 
and poly(vinyl chloride) (PVC) over a fairly wide range of températures 
and rates of strain below the glass température Tg was reported. It was 
sho\\ii that at the yield stress, glassj' polymers exhibit viscous flow which 
is in agreement with the generalized theory of Eyring.­

We have now studied in détail the tensile yield­stress behavior of the.se 
samc two polj^mers through the glass transition région. 

EXPERIMENTAL 

Expérimental conditions and procédure were the same ;is described pre­
viou.sly;' they are briefiy recalled here. 

The tensile stress­strain curves were obtained with an Instron tensile 
niiichine. The température was regulated by using an Instron environ­
mental chamber and measured with a thermometer placed near the spéci­
men in the chtimber. The tests were made after the spécimen had re­
mained in the chamber for half an hour at the required température. The 
yield stress was taken as the peak or maximum stress on the stress­strain 
curve. At the yield point, strain rates were calculated from the crosshead 
specd. The values obtained agrée well with extensometer déterminations. 

Tests spécimens of jNIakrolon polycarbonate (Bayer) were eut from 
commercially available sheets 0.2 cm thick; the length of the spécimens 
was 4 cm and their width 0.8 cm. Tests spécimens of Solvic 227 PVC 
(Solvay et Cie) were 0.18 cm thick, 4 cm long, and 0.8 cm wide. 

1745 0 

S i 

http://the.se


1746 B A U W E N S , B A U W E N S - C R O W E T , A N D H O M E S 

RESULTS 

The results of the measurements on the polycarbonate and PVC spéci­
mens are shown in Figures 1 and 2, where the ratio of the yield stress <Ty, 
to the absolute température T is plotted versus log i (é dénotes strain rate) 
for each of several constant températures both above and below Tç. Each 
point on the graph corresponds to the mean value of three tests. At each 
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Fig. 1. Measured ratio of yield stress a„ to température as a f imction of logarithm of 
strain rate (è in sec"') . T h e dashed lines indicate the frontiers between three ranges 
(highly schematic) . T h e ciirves in range I are calculated from eq. (2). The curves in 
range II are the set of parallel curves which best fits the expérimental data. T h e curves 
in range I I I are a best fit of the expérimental data. 

température, we have found the existence of a critical strain rate below 
which the yield point disappears from the tensile curve; it was therefore 
not possible to measure the yield stress over the entire range of available 
rates. We give in Figure 3 examples of tensile curves of three types: (a) 
with a well defined yield point; (b) with a vanishing yield point; (c) 
without definite elastic limit. 

We can measure at each température a critical value of ay corresponding 
to the critical strain rate at which the yield point vanishes. For tests per-
formed at températures above T„ the critical yield stress is very small. 
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Fig . 2. Measvired ratio of j'ield stress <ry to température as a funct ion of logar i thm of 
strain rate (é in sec" ' ) . T h e d a s h e d Unes indicate the boundaries be tween three ranges 
(highl}' schemat ic ) . T h e ciirves be longing to range II are the set of parallel curves w h i c h 
best fit the expérimental data. T h e curves be longing to range I I I are a b e s t fit of t h e ex­
périmental data . 

We can roughly separate the graph.s of Figures 1 and 2 iiito three différ­
ent ranges indicated as I, II, and III on the figures. Each of thèse ranges 
is discussed below. 

DISCUSSION 

The yield point of a tensile curve has the appearance of a momentary 
condition of viscous flow because there, the rate of change of stress is zéro 
although the strain is increasing at a constant rate. At this point the 
strain does not exceed 2% and appears to be uniform. Some authors, 
including Lazurkiii,' Robertson,^ Roetling,^"' and ourselves, ' have made 
the assumption that pure viscous fiow just begins at this point; this 
amounts to neglect of the processes whose contribution is insignificant 
compared to the viscous one. 
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Fig. 3. lUustrative examples of stress-eloiigation curves obtained near the glass t em­

pérature at différent straiii rates: (a) with a well defiiied yield point; (h) wilh a vanishing 
yield point; (c) without definite elastio l imit. 

Curves Belonging to Range I 

The authors mentioned above have shown that the yield stress behavior 
of glassy polymers below Tç may bc fairly well described by the Eyring 
équation of nou-Newtonian flow.- lu the Eyring theory, déformation is a 
rate process which corresponds in high polymers to the jump of segments of 
macromolecules. When no stress is acting, the jump frequency .1 may be 
written : 

.1 = .hiixp{-Q/RT} (1) 

where Jo is a rate constant containing an entropy factor, Q is the activa-
tion energy, and R is the universal gas constant. 

If a stress is applied, Eyring dérives from eq. (1) an expression for the 
shear rate. In tensile tests, we must write Eyring's équation for normal 
stresses and take into account the relations between normal and shear 
stres.ses and between normal and shear rates as established by Bauwens.' 

In the spécial case where 
sinh X ~ V2 exp {x} 

and when a single process is involved in the déformation, the following ex­
pression for the yield stress is derived : 

aJT = (4V.U/î;„7O) [lu (V:V27o./o)é + (Q/RT)] (2) 

= A[\n2C. + (Q/RT)] 
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where Vo is the shear volume, 70 is the elementary shear strain, fc is Boltz-
mann's constant, and A and C arc given by 

A = Wu/vojo 

C = Vs/iyoJo 

The segments of parallel straight lines within range I in Figures 1 and 2, 
have been calculated from eq. (2), with values of the constants A, C, and Q 
taken from our previous work.' Thèse values are recalied in Table I and 
vvere so chosen as to give the best fit of eq. (2) to the data over a range of 
températures from (T, - 120°C) to (T, - 20°C). 

T A B L E I 
Constants of Equat ion (2) 

A X 10«, Q, 
kg /mm^ "K C, sec kca l /mole 

Polycarbonate 4 . 1 6 1 0 - " 7Ô.5 
P V C 7 10-S8 7 0 . 5 

From the reasonably good agreement between calculated and expéri­
mental values, it appears that range I corresponds to the glassy state where 
the Eyring theory can be applied. This theory is valid over an interval of 
températures covering at least 120°C for both materials. 

In range I, let log ai{T) be the horizontal distance between two segments 
of parallel straight lines corresponding to températures 2\ and 7̂ 2, with Ti 
< Tï. It then follows from eq. (2) that log ai{T), which we may call the 
shift factor relating to range I, is given by 

log a,(T) = (Q/2.:m3 R)[{l/T{) - {\/T,)] (.3) 

Curves Belonging to Range II, T ^ Ta 

l'or the strain rates we have considered, the data corresponding to tem­
pératures above Tç no longer fit the curves derived from eq. (2). However, 
if one considers the data of Figures 1 and 2 for range II, it is possible to 
represent this data by a .set of parallel curves for températures T ^ T,. 
Except at very small stresses, thèse parallel curves may be considered as 
straight lines. 

As thèse curves are parallel, they fit the time-temperature-superposition 
principle; let log a i i (r ) be the shift factor. In Figure 4 we have plotted 
log aniT) versus AT for both materials (AT was chosen ecjual to T — 75.7°C 
for PVC and T — 141 °C for polycarbonate; according to thèse values of 
AT the points on the graph follow the same curve for both materials). 

In order to give an interprétation of the curves c^/T = /( lu é) for T ^ Tg 
and of the graph of Figure 4, we will apply the treatment of Fox'"* to give 
a justification of the semiempirical WLF relation. 
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Accordiiig to Eyririg^' and Bueche,'^ the activation energy Q in relations 
(1), (2), and (3) may be considercd tlie sum of two terms: the one repré­
senta the cnergy reqnired to malve a void, the other, very much smaller, 
représenta the encrgy a segment nccds to frec itsclf from its iieighbors and 
move into the void. For températures above Tç, the free volume is no 
longer frozen in; it can therefore diffuse and form voids according to the 

Log Q j j d ) 

AT d e g r e e s 
- 1 1 1 1 I 
-5 0 5 10 15 

Fig. 4. A plot of log a n ( r ) vs . AT" for both materials. Expérimental da ta are coinpared 
to theoretical équations. 

théories based on the free volume concept. Then, for the elementary jump 
process, no more energy is required to create voids. The activation energy 
is, in this case, reduced to Qu, the activation energy a segment requires to 
break loose from its neighbors. The jump frequency, however, will 
strongly dépend on the probability Z{T) that the segment is vibrating in 
the proper direction at just the right time to enter a void constituted by the 
meeting of holes. The jump frequency is then related to the number of 
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holes présent in the material and must be highiy temperature-sensitive; 
eq. (1), vahd in the glassy range, becomes for températures above T,: 

J = voZ(T) exp{-Qu/RT} (4) 

where vo is the vibration frequeney of a segment. 
From eq. (4) we may dérive an expression for cr^/T by analogy with the 

methods used previously in the glassy range, the desired expression is: 

cJT = ( 4 \ / 3 fc/<^''oiiToii)[lii (>/3/2TOII^O)€ + (Qu/RT) - In Z(T)] (5) 

= Aii[ln2Cné + (Qn/RT) - In Z{T)] 

where Au and Cu differ from the previous A and C because the size of the 
segment relating to the déformation process above may differ from the 
size of the segment relating to the déformation process in the glassy range. 

From eq. (5) we obtain the following expression for log au(T), if we reduce 
the curves to température T,: 

log a„(T) = (Q„/2.303fl) [{l/T,) - (l/T)] + log Z(T) - log (6) 

The problem is now to evaluate Z(3') and différent théories may be applied. 
If it is assumed that: 

Z{T) = exp{-V/4>} (7) 

where V is the volume of a void a segment needs to jump and <l> the average 
free volume per segment, Cohen and Turnbull" find for log Z{T) an expres­
sion which may be identified w ith the WLF relation. If we make the same 
assumption, eq. (6) becomes: 

log an{T) = [Qn{T - T,)/2M3RTT,] 
+ {17.44 (T - r , ) / [51.6 + ( r - T,)]} (8) 

In previous work Bauwens" has made a différent assumption to explain 
the segmentai mobility above Tç. The following mechanism of déforma­
tion was proposed. Above Tg, the jump of a segment of a macromolecule 
requires a void formed by the meeting of Wo holes at least. According to 
the theory of Gibbs and di Marzio,'* the increase of the fractional free 
volume a formed by holes may be evaluated, so that the value of log Z(T) 
calculated near is: 

log Z(T) = nologa = no log (T - To) + K (9) 

where K is a constant and To the température at which a vanishes. In this 
case, eq. (6) reduced to température T„ becomes: 

l o g a „ ( r ) = [Qu{T - T,)/2.303RTT,] + log [{T - To)/(T, - To)] 
(10) 

On the graph of Figure 4 we have drawn the curve computed from eq. 
(8) neglecting the first term, which varies only insignificantly with T. The 
values of are given in Table II; they are obtained from the curve 
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T A B L E II 
Coustaiitï! of Equations (5), (8), and (10) 

T„ °C 

Deter-
From inined dila- To - l u X l()^ 

eq. tometri- from eq. kg/min2 °K 
(8) cally (10), ° C (measured) 

P V C 7 5 . 7 75 6 4 . 6 9 . 4 
Polycar- 141 143 1 2 9 . 9 8 . 7 

bonate 

which agrées best with the data. The values of Tç determined dilatomet-
rically'* " are giveu for compari.soii. 

We have also drawii on the same graph the curve computed from eq. 
(10), neglecting the first term. We have taken no = 10, which is a quite 
reasonable value according to différent methods of c o m p u t a t i o n . T h e 
values of To estimated by assuming that eq. (10) was applicable, are given 
in Table II. 

log ê 

Fig. 5. Possible yield behavior above the glass température. A t sufficiently high strain 
rates, Eyring's mechanism of déformation becomes the most probable. 

In the range of températures explored, the two curves obtained front 
eqs. (8) and (10) are very close together and both fit the data fairly well. 
Equation (8), as well as eq. (10), seems to be valid here, although the 
stresses are relatively high and the behavior is nonlinear. 

As the presumed value of Qu is very small (a few kilocalories, according 
to Fox'"') it was not po.ssible to measure it or the constant Cu which dé­
pends on Qii. Only the slope An of a^/T = / ( log e) at T ^ T, can be 
evaluated: the results are given in Table II. It will be noted that A n 
is greater than A, the slope in range I. Therefore at a given température 
T ^ Tg, a critical strain rate ma>- exist above which the Eyring process is 
the most probable (this case is represented schematically in Fig. 5). Our 
results do not reveal the existence of this ciitical rate; perhaps, because 
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we have not reached sufficiently high strain rates. However the results of 
Roetliiig'' oa poly(ethylmethacrylate), have showii that the Eyriiig viscos-
ity theory may still be vahd above the glass température. 

Curves in Range III 

Unfortuiiately we are not able yet to give an interprétation of the seg­
ments of curves within range III. Thèse curves exhibit a well defined 
asymptote which dépends on the température and relates to the fading of 
the yield point (the tensile stress-strain curves corresponding to the data of 
région III are of the b type: see Fig. 3). Because of the existence of this 
level, it was not possible to apply the time-temperature superposition 
principle. It may be that the slope cry/T = /(log e) is equal to Au, but 
this is not certain because range III is narrow and results are more scattered 
than in the other ranges. 

CONCLUSIONS 

(1) Tensile curves obtained in the glass transition région may exhibit 
a well defined yield point, even at températures above Tç. 

(2) In the range of strain rates we have explored, the curves a^/T = 
/( log é) at r ^ fit the time-temperature superposition principle. Though 
the behavior is nonlinear, the shift factor agrées with the relations based on 
the concept of free volume (the WLF équation, for example). 

(3) The yield stresses obtained at températures just below Tg fit the 
Eyring theory fairly well, if one excepts a narrow range (range III) relating 
to the slowest strain rates. 

(4) The molecular process involved in the déformation at the yield 
point in range I (Eyring's theory) differs from the molecular process in­
volved in the déformation at the yield point in range II (théories based on 
the concept of free volume), because the slope of a^/T = /(log é) differs 
from one range to the other. 

(5) It may happen that the .yield stresses still fit the Eyring theory 
even above the glass transition température Tç, provided the strain rates 
are sufficiently high. 
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