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Seismic isolators are constructed from multiple layers of elastomer (usually natural rubber) reinforced

with steel plates; they are, therefore, very stiff in the vertical direction, but soft in the horizontal direction.

The buckling of these bearings under compression load is a well-understood phenomenon and has been

widely studied. It is therefore unexpected that the buckling analysis for compression predicts that the

isolator can buckle in tension at a load close to that for buckling in compression. The linear elastic model

that leads to both compression and tension buckling is an extremely simple one, so it might be argued

that the tensile buckling may be an artifact of the model itself rather than a property of the isolator. To

test the simple theoretical model we have conducted a numerical simulation study using a finite element

model of a multilayer elastomeric bearing. We find that the prediction of tensile buckling by the simple

linear elastic theory is indeed accurate and not an artifact of the model.

1. Introduction

Seismic isolation using multilayer elastomeric isolators has been used in the United States and around the

world for more than 20 years. The isolators are constructed from many layers of elastomer reinforced

with steel shims, and are very stiff in the vertical direction, but soft in the horizontal direction. This

enables them to carry the weight of a building, but cause the building to have a fundamental natural

frequency that is both lower than that of the same building, if conventionally founded, and the dominant

frequencies of strong ground motion.

They appear to be very stable, though the low shear stiffness causes a buckling phenomenon. However,

it is straightforward to design them to have a large safety factor against buckling. The buckling of

these bearings under compression load is a well-understood phenomenon, and has been widely studied.

Buckling theory is based on a linearly elastic analysis. Although the elastomer is not really linearly

elastic, the deformation is predominantly one of shear, and typical elastomers used in bearings are very

close to linear over a large range of shear strain. While approximate, the linear theory is relatively

accurate and adequate for most design purposes.

However, buckling analysis for compression has been used to make an unexpected prediction that the

isolator can buckle in tension at a load close to that for buckling in compression. Of course, there are

many examples of strange systems that buckle in tension, but these are entirely pathological in that the

tension forces are always transferred to compression elements that produce the instability. This is not the

case here. The buckling process is in fact tensile. The linear elastic model that leads to both compression

and tension buckling is an extremely simple one, so it might be argued that tensile buckling may be an

artifact of the model itself and not of the isolator.

Keywords: steel-reinforced elastomeric seismic isolators, tension and compression buckling, linear theory, nonlinear finite

element analysis.
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For this reason we had undertaken a numerical simulation study using a finite element model of a

multilayer elastomeric bearing to check whether the prediction of tensile buckling by the simple linear

elastic theory is, in fact, accurate. We found this to be the case. The essential point is that the mechanics

of the isolator in tension are the mirror image of that for the isolator in compression. In particular, when

the isolator is in compression below the buckling load but laterally displaced, the layers in the center

experience rotations that give the vertical load a component along the layer causing a shear deformation.

In tension, the layers in the center experience rotations in the opposite direction giving a shear defor-

mation due to the tensile force that permits the top of the isolator to move upwards by a much larger

displacement than that which could be sustained in pure tension with no lateral displacement.

While the bearings are normally in compression, base-isolated tall buildings in near-fault locations

can lead to situations where peripheral bearings in the isolation system can be required to take some

amount of tension. This tension is caused by global overturning of the building produced by the lateral

inertial force at the center of the mass of the isolated building. The maximum inertial force and the

resulting maximum overturning movement occur at the same time as the maximum lateral displacement

of the isolators; at first sight this would seem to be a critical situation. The value of the buckling analysis

is that it demonstrates that the condition of the isolator in tension and shear is not as dire as had been

feared. In tension, the layers in the center experience a rotation which allows a shear deformation caused

by the tensile force and permits the top of the isolator to move upwards by a much larger displacement

than that which could be sustained in pure tension with no lateral displacement. Thus the simultaneous

occurrence of tension and shear in the isolator prevents the development of damage due to cavitation.

2. Overview

Earliest theoretical approaches to study the stability of rubber bearings by Haringx [1948; 1949a; 1949b]

were based on linearity of the rubber material and small displacements. Theoretical predictions of the

decrease in horizontal stiffness with increasing axial load based on Haringx’s theory were made by

Gent [1964] and Derham and Thomas [1981]. Simo and Kelly [1984] used finite element modeling to

study the variation of lateral load-displacement behavior under increasing axial load.

An extensive experimental study of low shape factor elastomeric isolators used for base isolation was

given by Aiken et al. [1989]. Buckling tests were conducted on doweled bearings; they consisted of

applying monotonically increasing axial load to a bearing with the top of the bearing free to displace in

the horizontal direction. The tests showed that the analytical formula gives a higher value of the critical

load than the experimentally measured one.

Roeder et al. [1987] and Stanton et al. [1990] studied the stability of laminated elastomeric bearings ex-

perimentally and theoretically with due consideration given to axial shortening. Buckle and Kelly [1986]

studied the stability of elastomeric bearings using a model bridge deck tested using a shaking table.

Since the bearings were doweled, bearing overturning or rollover was clearly evident in these tests.

Koh and Kelly [1986; 1988; 1989] developed a viscoelastic stability model and a mechanical model

based on bearing test results. A comprehensive study of the basic theory and its application to design

issues, including the stability problem, was presented by Kelly [1997].

Experimental determination of critical buckling behavior of steel-reinforced bearings at high shear

strain was conducted by Buckle and Liu [1994]. Studies by Nagarajaiah and Ferrell [1999] introduced
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a nonlinear analytical model based on the Koh–Kelly model and included large displacements, large

rotations, and nonlinearity of the rubber. The model was verified through experimental results. Further

experimental work on the stability of elastomeric bearings was presented by Buckle et al. [2002]. It was

shown that the critical buckling load decreases with increasing horizontal displacement or shear strain.

Finite element analysis results conducted on a plane model of the bearings with a coarse mesh were

compared with the experimental results.

Some results on finite element analysis of the multilayered elastomeric bearings can be found in several

papers and reports; see, for example, [Takayama et al. 1992].

3. Formulation of elementary stability theory of multilayer elastomeric isolators

The elementary theory for the buckling of isolation bearings treats the bearing as a continuous homo-

geneous beam in which plane sections normal to the undeformed axis remain plane but not necessarily

normal to the deformed axis. The deformation is defined by three functions u(x), v(x), ψ(x), which

are the axial and lateral displacements of the centroidal axis and the rotation of a section normal to

the undeformed axis, respectively. The overall shear deformation γ (x) of the section is the difference

between the rotations of the centroidal axis and the section, namely, γ (x)= v′(x)−ψ(x).
The internal forces on the deformed plane section are the axial load N (x) normal to the section, the

shear force V (x) parallel to the section and the bending moment M(x), as shown in Figure 1. These

internal forces are related to the deformation quantities through

N (x)= Ec Asu′(x), V (x)= G As(v
′ −ψ), M(x)= E Isψ

′(x).

As is the cross sectional area A increased by h/tr , where h is the total height of the bearing (rubber plus

steel), tr is the total thickness of rubber. and Ec is the compression modulus of the bearing. The value of

Ec for a single rubber layer is controlled by the shape factor S =(loaded area)/(force-free area), which

is a dimensionless aspect ratio of a single layer of the elastomer. For example,

S =











S = b/t, infinite strip of width 2b with a single layer thickness t,

S = R/2t, circular pad of diameter R and thickness t,

S = a/4t, square of side a and thickness t .

In a circular isolator Ec = 6GS2, while in the long strip isolator that will be used for the numerical

simulation Ec = 4GS2. The increase in the area is needed to account for the fact that the steel does not

deform in the composite beam. Is is the effective moment of inertia of the cross section. This is modified

the same way as A. There is an additional modification to account for the fact that in the isolator the

pressure distribution that generates the internal bending moment is a cubic parabola in contrast to regular

beam theory where the bending stress distribution is linear. The effective bending stiffness, accounting

for these two effects is [Kelly 1997]

E Is =

{

1
3

Ec I h
tr
, circular bearing,

1
5

Ec I h
tr
, strip bearing.
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Under the kinematic assumptions of this beam theory, the downward deflection of the top of the

composite column representing the isolator and the resulting external work done by the applied load P

are, respectively,

v(x)= 1
2

∫ h

0

(

2v′ψ −ψ2
)

dx, Wext = − Pv(x)= −
P

2

∫ h

0

(

2v′ψ −ψ2
)

dx .

The internal stored energy of the column is given by

Wint = 1
2

∫ h

0

N (x)u′dx + 1
2

∫

M(x)ψ ′(x)dx + 1
2

∫

V (x)
(

v′(x)−ψ(x)
)

dx .

Application of the method of virtual work to the total work Wint + Wext with respect to the virtual

displacements δu(x), δv(x), δψ(x) leads to the following set of equilibrium equations

N ′ = 0, V ′ − Pψ = 0, M ′ + V + P(v′ −ψ)= 0. (1)

The boundary conditions for Equations (1) are shown in Figure 1; the external loads applied to the column

at x = 0 are the axial load P (or T ), a transverse load Ho and a moment Mo.

From Equation (1)1 we have N = const = − P . Integrating the second equation using the consistent

boundary condition gives

V − Pψ = − Ho, (2)

and inserting V = Pψ − Ho into the third equation gives M ′ + Pv′ = Ho, which can be integrated to

M + Pv = Mo + Pvo + Hox, (3)

where vo = v(0). These two integrated versions of equilibrium equations (2) and (3) are the starting point

for the stability analysis of the isolator. When the constitutive equations are included, these become

E Isψ
′ + Pv = Pvo + Mo + Hox, G As(v

′ −ψ)− Pψ = − Ho.

Figure 1. Geometry and loads in theoretical study of buckling.
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The second equation above can be used in two ways to give a pair of uncoupled equations for v and ψ .

First we can write ψ in terms of v in the form ψ = (G Asv
′ + Ho)/(G As + P), and substitute ψ ′ into the

first equation to get

E Is

G As

G As + P
v′′ + Pv = Pvo + Mo + Hox . (4)

We can also express v in terms of ψ as v′ = (P +G As)ψ/(G As)−(Ho)/(G As), which, when substituted

into the first, leads to

E Is

G As

G As + P
ψ ′′ + Pψ = Ho. (5)

Thus, Equations (4) and (5) for two kinematic variables have similar form, but different right hand sides.

The most general form of solution, taking into account the connections between v and ψ , is

v = A cosαx + B sinαx + vo +
Mo

P
+

Ho

P
x, ψ = αβB cosαx −αβA sinαx +

Ho

P
,

where A and B are constants of integration and α, β are given by

α2 =
P(P + G As)

E Is G As

, β =
G As

P + G As

.

These equations are now used to predict the buckling behavior of a bearing in an isolation system. As

shown in Figure 2, the isolator is constrained against displacement and rotation at the bottom, against

rotation at the top, but is free to move laterally at the top, which give boundary conditions v(0) = 0,

ψ(0)= 0, ψ(0)= 0, Ho = 0 leading to αh = π . The deformed configuration becomes

v(x)= 1
2
δh

(

1 − cos
πx

h

)

, ψ(x)= 1
2
αβδh sin

πx

h
.

Figure 2. Boundary conditions for isolation bearing under a vertical load P . The bear-

ing buckles with no lateral force constraint, but is prevented from rotating at each end.
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The above result α2 = π2/h2 means that

P(P + G As)

G As

=
π2 E Is

h2
= PE ,

where PE is the Euler load for the column without shear deformation. Denoting G As by PS , the above

equation for the buckling load can be recast as a quadratic P2 + P PS − PS PE = 0, which gives two

critical loads: a compression load PC and a tension load PT

PC =
−PS +

√

P2
S + 4PS PE

2
, PT =

−PS −
√

P2
S + 4PS PE

2
. (6)

For all reasonable values of the shape factor S, the PS is so much less than PE that it can be neglected,

and the two critical loads can be approximated by

PC,T = ±
√

PS PE . (7)

The significance of the tensile critical load becomes clear when we replace the generic load P in the

formulae for α and β by −T , with the assumption T ≥ G As , giving

α2 =
T (T − G As)

E Is G As

, β = −
G As

T − G As

,

showing that the buckled shape in tension v(x) is the same as that in compression, but the rotation ψ(x)

is reversed, and the central layers of the bearing are rotated in the direction that facilitates the upward

movement of the top through a rotated shear deformation. Because of the natural symmetry of shear,

there is an intrinsic symmetry here between compression and tension.

4. Modification for change in length of column prior to buckling

One interesting aspect of the comparison between the buckling loads predicted by the theory and those

obtained by the numerical simulation is the fact that while the theory has the buckling load in tension

always slightly higher than that in compression for the same shape factor (the difference is G As), in the

numerical results the buckling load in compression is always higher than that in tension. The reason for

this is that theory neglects the change in length due to the axial load, whereas in the simulation when

buckling is initiated, the bearing has shortened or lengthened. For smaller values of the shape factor, the

changes in length can be significant.

Using the approximation G As ≪ P and the values of G As , E Is for a long strip bearing, the critical

pressures pcrit = P/A are given in the theoretical analysis by pcrit/G = ±2πbS/(
√

15tr ), where tr is the

total thickness of rubber in the bearing. To compare the theory with the simulation we replace tr by

tr = to
r

(

1 ∓
pcrit

4GS2

)

,

where the minus sign is for compression and the plus for tension. The buckling loads are then given by

p
crit

G
= ±

2πbS
√

15to
r

(

1 ∓
p

crit

4GS2

) .
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Figure 3. Theoretical buckling loads with and without global bearing deformation:

Equation (6) versus (8); solid line corresponds to load approximation from (7).

Solving the last expression for pcrit/G and taking into account that P = p A leads to

P∗
C,T

G A
= ±2S2

{

1 −

√

1 ∓
2πb

St0
r

√
15

}

. (8)

Compression and tension critical loads computed by means of Equation (8) are presented in Figure 3.

It is easy to see that the value in compression is always larger than that in tension. The difference

between |Pcrit/G A| in compression and tension is approximately 2(2π2b2)/(15to 2
r ). For the case of the

numerical models studied we have b = to
r . The difference is about 8/3 and, thus, becomes less important

with increasing S.

5. Numerical modeling of buckling in tension

In order to verify the tension buckling predicted by the simple analytical theory we use the general

purpose finite element ABAQUS application [ABAQUS 2001] to model a steel-reinforced bearing and

to study the buckling behavior in both tension and compression [Kelly and Takhirov 2004].

5.1. Modeling details. Five finite element models of a bearing are created. These numerical models

have the same width and total rubber thickness, and steel shims have the same thickness also. The

only difference between them is the shape factor of the bearing. The total thickness of rubber layers

is the same in each model, but the thickness of a single rubber layer varies from model to model. The

correspondence between the model name and the shim thickness is given in Table 1.

The finite element analysis on the elastomeric bearings is restricted to plane strain. The Oy-axis of

the coordinate system is a vertical axis that extends across the steel shims and rubber layers, while the
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Model
Steel shim Total rubber

Width
Rubber layer

Shape factor
thickness thickness thickness

Model 1 2.60 80.01 160.02 5.72 14

Model 2 2.60 80.01 160.02 8.00 10

Model 3 2.60 80.01 160.02 11.43 7

Model 4 2.60 80.01 160.02 16.00 5

Model 5 2.60 80.01 160.02 26.67 3

Table 1. Numerical models with various shape factors. All lengths in mm.

horizontal axis Ox corresponds to the lateral direction of the bearing as shown in Figure 4. Generally

steel-reinforced rubber bearings have a hole in the middle of the steel plates and a rubber cover on the

traction-free sides of the bearing. In order to create a model close to the theoretical one given earlier, the

hole in the middle and the rubber cover are not included in the consideration.

In the analysis the end plates of the bearing are assumed to be undeformable. Therefore, in the

numerical model, the top rubber layer of the bearing is connected to an absolutely rigid surface with the

reference point in the middle at which the vertical load is applied. The bottom surface of the bearing

is fixed. Two vertical sides of the bearing model are traction-free. The top surface is restrained against

rotation around the Oz-axis (out of the plane), but is free to move horizontally.

Linearly elastic material properties are assumed for the steel plates with Young’s modulus and Pois-

son’s ratio equal to 200, 000 MPa and 0.3, respectively. Rubber materials have very little compressibility

compared to their shear flexibility; these materials are usually modeled by a hyperelastic material model.

ABAQUS [ABAQUS 2001] has a special family of hybrid elements to model the fully incompressible

behavior seen in a rubber material. The following assumptions are made in modeling a rubber material:

(1) elastic, (2) isotropic, (3) (almost) incompressible, and (4) includes nonlinear geometric effects.

Figure 4. Geometry and coordinate axes of numerical simulation models.
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Rubber model C10 C01 C20 C11 C02 D1

Polynomial 193.4 −0.1 −0.8 0.2 0 0

neo-Hookean 345.0 0 0 0 0 9.7 × 10−7

Table 2. Material parameters for two rubber models. Ci j in kPa, D1 in kPa−1.

Hyperelastic materials are described in terms of a strain energy potential U , which defines the strain

energy stored in the material per unit of reference volume in the initial configuration as a function of the

strain at that point in the material. The rubber is selected as a polynomial hyperelastic material of the

second order. In this case, the strain energy potential has the form

U =
2

∑

i+ j=1

Ci j (I1 − 3)i (I2 − 3) j +
(J el − 1)2

D1

,

where Ci j and D1 are the material parameters, I1 and I2 are the first and the second invariants of the

deviatoric strain, and J el is the elastic volume ratio.

Two rubber models are included in the consideration: a fully incompressible (polynomial) model, and

an almost incompressible (neo-Hookean) model. The material parameters of the rubber can be expressed

in terms of initial shear modulus G, and initial bulk modulus K via G = 2(C10 + C01), K = 2/D1. The

values of the material parameters for both rubber models are presented in Table 2. Since D1 is not equal

to zero for the neo-Hookean model, this model allows some compressibility in the rubber material.

A supplemental study on the properties of the rubber models is conducted on a rubber cylinder and a

rubber layer. The cylinder is used for the rubber material study in tension and compression. The layer,

representing one single layer of the rubber locked between two rigid horizontal surfaces, is used to study

behavior of the rubber material in shear with no vertical load. While both rubber materials are linearly

elastic up to about 250% strain in shear, they exhibit a significant nonlinearity in tension or compression

as shown in Figure 5.

5.2. Critical buckling load in compression and tension. The model is studied by a classical buckling

analysis scheme available in ABAQUS. First the buckling mode of each bearing model is determined.

Very small imperfections of about 1% of the steel layer thickness are introduced in the model; they

are based on the buckling mode obtained in the buckling mode analysis. The postbuckling behavior is

followed up to about 30% shear deformation.

The buckling analysis of the numerical bearing models reveals the following results. All models

have significant horizontal drift caused by a large vertical load. The curves of the compression vertical

load versus horizontal drift for all numerical models are shown in Figure 6. The critical buckling load

increases with the increase in the shape factor. All plots show similar behavior with the majority of the

change happening up to a 3% deformation after which they flatten out when the bearing is buckling.

Figure 7 presents the corresponding curves of buckling in tension. The critical load is again dependent

on the shape factor increasing with it. The buckling in tension is more sudden, so the point at which

buckling begins moves very close to the vertical axis, and the shear when the buckling starts in tension
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Figure 5. Properties of rubber material in (top) shear and (bottom) compression/tension

deformation (polynomial rubber material).

can be as low as 0.2%; see Model 5 with the smallest shape factor. Increase in the shape factor moves

this point closer to the 3% critical strain obtained for the compression buckling.

Theoretical critical force versus the shape factor for the corresponding numerical model was discussed

earlier; see Figure 3. Theoretical buckling compression load is always less than the absolute value of the

tension load for the simple theoretical solution presented in Equation (6), which is not consistent with

the numerical analysis results shown in Figure 8. The critical load determined by Equation (8) takes into

account shortening or elongation of the bearing in the vertical direction. Therefore, it correlates better

with numerical results. As the latter show, the compression buckling load is always greater than the

absolute value of the tension buckling load shown in Figure 8 by dashed and dot-dashed lines. Figure 8
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Figure 6. Buckling diagram for all models (compression).

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

18

20

Horizontal deformation, %

T
en

si
o

n
 l

o
ad

 n
o

rm
al

iz
ed

 b
y

 G
A

S = 14

S = 10

S = 7

S = 5

S = 3

Figure 7. Buckling diagram for all models (tension).

also shows no significant differences between critical buckling load for incompressible (polynomial) and

compressible (neo-Hookean) rubber materials. As a typical result, Figures 9–12 show deformed shapes

of two numerical models in compression and tension.

The numerical results on buckling behavior of the bearing have satisfactory correlation with the the-

oretical solutions presented earlier. The theoretical study and the finite element analysis lead to the

following conclusions. The critical buckling load increases with the shape factor; this behavior is almost
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Figure 9. Buckled shape and Mises stresses for Model 2 (compression).

linear as predicted by the theory. The numerical compression buckling load is almost always higher than

the theoretically estimated one for all bearings. The compression buckling load is always higher than the

absolute value of the corresponding tension load due to nonlinear geometry effects noted for the simple

rubber cylinder model. The numerical models have different postbuckling behaviors in compression and

tension. In compression, the vertical load remains almost the same after the buckling occurs, and the

bearing deflects horizontally. In contrast, the vertical load in tension slowly decreases with horizontal

deflection.
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Figure 12. Buckled shape and Mises stresses for Model 5 (tension).
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6. Conclusions

We have shown that numerical analysis confirms that the buckling of a bearing in tension is not an artifact

of the way the theory has been set up. Of course, it must be acknowledged that a bearing will experience

cavitation before the buckling load can be achieved. However, the theory shows that under high seismic

loading, the isolators that experience tension will avoid the possibility of cavitation since the tension

loading due to the overturning of the structure is accompanied by large lateral shear. Moreover, due to

the interaction between shear and the vertical stiffness, the tension stresses are much less than they would

be if the tension force were applied in the absence of shear.

It has been the purpose of this paper to demonstrate that the condition of the isolator in tension and

shear is not as dire as has been feared. The analysis has shown that the mechanics of the isolator in

tension are the mirror image of those for the isolator in compression. In particular, when the isolator

is in compression below the buckling load but laterally displaced, the layers in the center experience a

rotation which gives the vertical load a component along the layer and turns the compression displacement

into a shear deformation. In tension the rubber layers in the center of the bearing experience a rotation

in the opposite direction which allows a shear deformation caused by the tensile force and permits the

top of the isolator to move upwards by a much larger displacement than that which could be sustained

in pure tension with no lateral displacement. The elastomer can sustain only small strains in the state of

triaxial stress generated by pure tension on a multilayer isolator with a large shape factor, but can sustain

shear strains on the order of 500–600%. Thus the simultaneous occurrence of tension and shear allows

the isolator to avoid the damaging effects of cavitation.
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