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ABSTRACT. In this paper, the mechanical behavior of steel-fiber-reinforced concrete was investigated to 

analyze the influence of steel fibers on tension stiffening. Using tension tests, the tension stiffening 
coefficient was evaluated through the load versus strain responses obtained from strain gages fixed to 
reinforcement steels. Moreover, an empirical model is proposed to estimate the tension stiffening 
coefficient of steel-fiber-reinforced concrete from reinforcement strains. From the test results, it was 
verified that the addition of steel fibers to concrete reduced the reinforcement steel strains and the crack 
width and increased the stiffness of cracked concrete, mainly in concretes reinforced with high volumes of 
fibers. 

Keywords: tension tests, empirical model, crack width. 

Análise do regime pós-fissuração do concreto armado reforçado com fibras de aço 

RESUMO. Neste trabalho foi investigada a influência das fibras de aço no regime pós-fissuração do 
concreto armado submetido à tração. Para isso, foram ensaiados tirantes de concreto armado, dos quais foi 
obtido o parâmetro de endurecimento do concreto no regime pós-fissuração por meio de extensômetros 
colados nas barras de aço. Dos ensaios é proposto um modelo empírico para estimativa do parâmetro de 
endurecimento do concreto reforçado com fibras de aço. Os resultados mostram que a adição de fibras de 
aço ao concreto reduziu a deformação da armadura e a abertura das fissuras nos tirantes após a fissuração do 
concreto, com consequente aumento da rigidez do tirante quando comparada ao concreto sem adição de 
fibras. Esse efeito foi tanto mais acentuado quanto maior era o volume de fibras adicionado ao concreto. 

Palavras-chave: tirante de concreto, modelo empírico, abertura de fissura. 

Introduction 

Tension stiffening reflects the ability of concrete 

to carry tension between cracks, which increases the 

rigidity of a reinforced concrete member before the 

reinforcement yields. This effect is primarily due to 

the mobilization of bonds at the steel–concrete 

interface. The tension stiffening is affected by the 

reinforcement ratio, the distribution and diameter of 

reinforcement bars, the concrete shrinkage, and the 

brittleness of the matrix. There are several empirical 

relationships to evaluate tension stiffening (Fields & 

Bischoff, 2004). For all relationships, the decrease of 

stiffness in a cracked member can be taken into 

account using a modified relationship for the load–

strain response of the reinforcement steel  

(Figure 1a), using an average stress–strain response 

for concrete in the post-cracking range (Figure 1b), 

or both (Belarbi & Hsu, 1994). There are also some 

analytical models based on the bond-slip between 

concrete and reinforcement steel (Floegl & Mang, 

1982; Gupta & Maestrini, 1990; Wu, Yoshikawa, & 

Tanabe, 1991; Choi & Cheung, 1996). 
Figure 1a shows a typical load–strain response of 

a tension specimen and of a bare steel bar. In this 
figure, the contribution of concrete to the tension 
response is given by the difference between the 
strains in the tension specimen and the bare steel 
bar. The tension specimen response is initially 
linearly elastic with uniform stresses in the concrete 
and steel along the length of the member until the 
tensile strength of the concrete is reached. In  
Figure 1b, after the first crack (C1), the average 
tensile stress in the concrete decreases with 
increasing strain, which reduces the tension 
stiffening as the load  increases  (Fields  &  Bischoff,  

2004). New cracks (C2, C3, and C4) arise as the load 

increases, further reducing the distance between 

them until this distance is more than twice the 

anchorage length. At the end of the cracking stage, 
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the cracking becomes stable and no new cracks will 

form. During the stabilized cracking stage, the crack 

widths increase while the tensile stress and the 

tension stiffening decrease. However, the tension 

stiffening decreases more slowly due to the loss of 

bonding, which is due to internal micro-cracking 

near the interface between the steel and concrete 

(Fields & Bischoff, 2004). When the reinforcement 

steel yields, the transfer of tensile stresses at the 

steel-concrete interface is damaged, which makes it 

difficult to transfer loads after the yielding load of 

the reinforcement steel is reached. 
 

 
 

 

Figure 1. a) Typical load–strain response from a tension test and; 

b) reduction of the average tensile stress in concrete by tension 
stiffening. 

Concrete shrinkage negatively influences the 
tension stiffening once it causes an initial shortening 
of the member, which induces compressive stress in 
the reinforcement steel. To maintain equilibrium, 
the reinforcement steel induces tensile stress in the 
concrete, which reduces the cracking load (Lorrain, 

Maurel, & Seffo, 1998; Bischoff, 2001). In addition, 
high-strength concretes present larger shrinkage, 
and larger reductions of tension stiffening are 
expected when shrinkage is ignored. 

In fiber-reinforced concrete, fibers improve the 
mechanical properties of the matrix due to the 
bridge effect through the cracks after cracking of the 
matrix. Furthermore, fibers improve the tenacity 
and ductility of the matrix by controlling the 
cracking process and increasing the tensile and bond 
strengths between the steel and concrete. The 
improvement of the bond strength and the ability to 
transfer tensile stress through the cracks should 
increase the tension stiffening of fiber-reinforced 
concrete (Abrishami & Mitchell, 1997; Yang, 
Walraven, & Den Uijl, 2009; Deluce & Vecchio, 
2013; Lee, Cho, & Vecchio, 2013). Fibers also 
control splitting cracks and cracking caused by 
shrinkage. Fibers with a high modulus of elasticity 
are more efficient in limiting the shrinkage of the 
matrix because of the greater difference between the 
modulus of elasticity of the fiber and that of the 
matrix (Zhang & Li, 2001). 

This paper aims to show the influence of steel 
fibers on the tension stiffening effect and proposes 
an empiric model for predicting the tension 
stiffening coefficient from the fiber content. In 
addition, this paper shows that the partial 
substitution of cement for less reactive materials, 
such as fly ash, is a possible strategy to reduce the 
consumption of cement because no changes in the 
tension stiffening of concrete due to mineral 
additions were observed.  

Material and methods 

Twenty-six tension tests of plain and steel-fiber-

reinforced concrete (SFRC), with and without 

mineral additions (silica fume and fly ash), were 

performed. One tension specimen was produced for 

plain concretes with and without mineral additions, 

but two were produced for the fiber-reinforced 

concrete. The variables analyzed were the fiber 

aspect ratio and fiber content. The specimens were 

stored in a humid chamber in which the 

temperature was kept at approximately 23ºC and the 

humidity was approximately 95%. Thus, there was 

no need to determine concrete shrinkage because 

the specimens were removed from the humid 

chamber only 12 hours before the tests. 

Materials 

In the production of the concretes, the following 
materials were used: blast furnace slag Portland 
cement, natural sand, coarse aggregate with a 
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length, test setup, and measuring and evaluation 
techniques were used in both cases. The strain of 
the bare bar was measured by three electrical strain 
gages fixed to the same position of the tension 
specimens.  

Testing procedure 

The tension tests were carried out under 
displacement control in an electrical-mechanical 
universal testing machine with a capacity of 300 kN 
(see Figure 3). The rate of the displacements used 
during all tests was 0.3 mm min-1. The 
reinforcement steel strains were measured by three 
strain gages spaced 102 mm apart. The first strain 
gage was placed at 92 mm from the superior end of a 
concrete prism of 800 mm. The steel strains were 
measured at each 5 kN load increment. 

 

 
 

 

Figure 3. Test setup. 

Results and discussion 

Concrete properties 

The mechanical properties of concretes without 

mineral additions are given in Table 3 and concretes 

with mineral additions are given in Table 4. 

These tables show that the mechanical properties 

of the SFRC were positively affected by the presence 

of fibers. The compressive strength (fcm) had a 

maximum increase of 28%. The flexure (fctm,f) and 

splitting (fctm) tensile strengths were also affected by 

fibers, and these properties increased as the fiber 

content increased. The same is true for the 

toughness factor. By comparing the results in Tables 

3 and 4, it can also be observed that the mechanical 

properties of the SFRC were reduced by the 30% 

replacement of the cement by fly ash.  

Table 3. Mechanical properties of concretes without mineral 
additions. 

Vf (%) 
Plain 

concrete 

Steel fiber-reinforced concrete 

Dramix RC 65/60 BN Dramix RC 80/60 BN 

0.75% 
(0.49)A

1.00% 
(0.65)A

1.50% 
(0.98)A 

0.75% 
(0.60)A 

1.00% 
(0.80)A 

1.25% 
(1.00)a

fcm, MPa 44.37 56.90 45.48 52.17 52.31 51.80 56.37
fctm, MPa 4.20 6.15 6.12 8.28 6.46 6.85 7.75 
fctm,f, MPa – 8.14 8.80 9.22 9.10 9.50 7.01 
Toughness 
factor, MPa

– 7.13 7.91 8.25 7.35 7.95 5.56 

 

Table 4. Mechanical properties of concretes with mineral 
additions. 

Vf (%) 
Plain 

concrete 

Steel fiber-reinforced concrete 

Dramix RC 65/60 BN Dramix RC 80/60 BN 

0.75% 
(0.49)A

1.00% 
(0.65)A

1.50% 
(0.98)A 

0.75% 
(0.60)A 

1.00% 
(0.80)A 

1.25% 
(1.00)A

fcm, MPa 41.40 44.37 42.63 49.90 43.20 42.05 45.00 
fctm, MPa 4.25 4.73 6.48 7.09 6.15 5.96 5.85 
fctm,f, MPa – 6.85 6.87 9.84 8.20 9.34 8.93 
Toughness 
factor, MPa

– 5.81 6.33 8.90 7.34 8.20 7.26 

 

Crack width 

The crack patterns in tension specimens were 
observed during tension tests. The plain concrete 
specimens showed a small number of transverse 
cracks. With the addition of steel fibers, multiple 
cracks were observed, which demonstrated that the 
best control of the cracking process was provided by 
the fibers.  

Figure 4 shows how the average main crack 
width (wm) varied as the load increased. The values 
presented in these figures refer to the mean of 
measurements carried out at several points of the 
crack (mainly in corners), which means that the 
crack width was not uniform along its path. The 
same figure shows the maximum limit of cracking 
recommended by the American Concrete Institute 
(ACI, 2005) for concretes without fibers, which in 
this case was 0.329 mm. A significant reduction in 
the crack width due to the addition of fibers was 
observed, and this reduction increased as the 
amount of fiber increased. In some cases, this 
reduction reached 75% compared to the crack width 
in the tension specimen made of plain concrete. 
Comparing the crack width to the  maximum  limit  

prescribed by the ACI 224R, it was noted that in 

tension specimens made of SFRC this limit was 
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