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1 Introduction

String theory on AdS3 backgrounds has a number of special characteristics which makes

this a good laboratory to gain a better understanding of the gauge-string correspondence

and, more generally, of properties of string theory on nontrivial backgrounds. In particular,

the dual CFTs are 2-dimensional, and hence strongly constrained by symmetry consider-

ations. Using these tools one can, for instance, show that at special points in the moduli

space, there is an enhanced global higher spin symmetry [1–3] (much bigger than the more

familiar Vasiliev higher spin symmetry [4] also seen in higher AdS spacetimes) which has

been dubbed the Higher Spin Square (HSS). Originally, the HSS was inferred from the

single particle spectrum of the dual symmetric product orbifold CFT [2, 3]. Among other

things, this enabled one to make precise the sense in which the symmetric product orbifold

describes a tensionless point in the moduli space of string theory on AdS3 [1].
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Another special feature of string theory on AdS3 is the presence of a complete world-

sheet description when the three form flux is pure NS-NS [5–7]. Recently, it was observed,

both in the bosonic string theory [8] as well as in the superstring theory [9] with NS-NS

flux, that there is a special minimal radius where the spectrum again exhibits a tensionless

behaviour in that there is a tower of massless higher spin states. These massless states arise

from the (w = 1) spectrally flowed continuous representation of the sl(2,R)k WZW model

which describes the AdS3 background [8, 9]. The minimal radius is given by k = 3 for

the bosonic case, which translates into k = 1 for the superstring case. At these values the

massless states sit at the bottom of a continuum of states which describe the excitations

of a single long string in AdS3. (Note that for k = 1 the discrete spectrum (coming

from the unflowed sector) disappears and merges with the continuum, i.e., the lowest

excitations come from the sector with w = 1.) This continuum is a feature of the pure

NS-NS background and is expected to be lifted if one turns on an infinitesimal RR three

form flux.

In this paper, we analyse the full spectrum, not just the massless states, of this su-

perstring theory at the minimal radius (k = 1). We concentrate mainly on the special

subsector consisting of the lowest states in the spectrally flowed continuous representations

(with w ≥ 1). Rather remarkably, we are able to show that this set of states matches, on

the nose, with that of the single-particle spectrum of a symmetric product orbifold theory,

where the spectral flow parameter w ∈ N can be identified with the length of the twisted

cycle in the symmetric product orbifold theory.

We consider both AdS3 × S3 × S3 × S1 as well as AdS3 × S3 × T4. It turns out that

in the former case the relevant symmetric orbifold is that of two free bosons and eight free

fermions, i.e., the symmetric orbifold of the so-called (S0)2 theory. This is closely related to

the symmetric orbifold of S0 that was proposed as the CFT dual of this background in [10].

The analysis for the case of T4 is somewhat subtle since the world-sheet theory contains

a non-unitary su(2) algebra at level κ = −1. We make a proposal for how to make sense

of this theory by describing this su(2)−1 factor in terms of four symplectic bosons [11].

With this prescription we then show that the resulting symmetric orbifold is that of four

free bosons and four free fermions, i.e., that of T4. (Since we have not kept track of the

momentum states, we cannot distinguish between R4 or T4.)

The pure NS-NS background describes a different point in moduli space from the dual

symmetric orbifold point, and the detailed agreement of the spectra is therefore quite

striking. It indicates, in our opinion, a certain universality about the tensionless limit of

AdS3 backgrounds. While both theories seem to be ‘tensionless’, they exhibit not only

exactly the same enhanced symmetry (the Higher Spin Square), but also at least some

part of the same spectrum.1 This seems to suggest that the presence of the HSS is quite

constraining for the full spectrum (which is organised in terms of representations of this

symmetry) and not just the massless sector.

1The background with NS-NS flux has, however, additional states: in particular we have not just the

ground states of the continuum, but also the full continuum. In addition, there are isolated states from the

discrete representations, see section 2.2.
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The paper is organised as follows. In section 2, after reviewing some basic facts about

the representations which enter in the world-sheet description, we focus on the case of

k = 1, and specifically, on the states that arise from the spectrally flowed continuous

representations. We enumerate all physical states that arise in this sector for the case

of AdS3 × S3 × S3 × S1, and determine the corresponding generating function which we

then bring into a simple and suggestive form. In section 3 we match this spectrum for the

AdS3×S3×S3×S1 case with the symmetric product orbifold of the (S0)2 theory. Section 4

discusses the case of the AdS3 × S3 × T4 background. Here we propose a construction of

the k = 1 world-sheet theory, using the free field realisation of su(2)−1 in terms of four

symplectic bosons [11], and show that it leads to a sensible interpretation. We find a

similar matching of the world-sheet spectrum with that of the spacetime symmetric product

orbifold of a T4 theory. We conclude in section 5 with the discussion of open questions

and directions for future research. There is one appendix in which we have reviewed some

aspects of the symmetric orbifold construction.

2 The world-sheet spectrum at k = 1

Let us begin by reviewing the structure of the world-sheet theory at k = 1. For the case

where AdS3 × S3 has pure NS-NS background, the theory is described by a WZW model

based on sl(2,R)⊕ su(2). The bosonic version of this theory was discussed in some detail

in the seminal papers [5–7]; in what follows we will use the supersymmetric version, using

the conventions of [9], see also [12–14].

We shall denote the generators of sl(2,R) at level k by Jan and the associated fermions

by ψar , where a ∈ {±, 3}. The fermions transform in the adjoint representation with respect

to the generators Jan , but we can decouple the fermions by introducing the (decoupled)

generators J an , which then define the affine algebra sl(2,R) at level κ = k+ 2. The degrees

of freedom associated to the AdS3 factor contribute therefore

c(sl(2,R)) = 3

(
k + 2

k
+

1

2

)
(2.1)

to the central charge. Similarly, the generators of su(2) at level k′ are denoted by Ka
n and

the associated fermions by χar , where again a ∈ {±, 3}. The decoupled generators Kan then

define an su(2) algebra at level κ′ = k′− 2, and the central charge that is associated to the

S3 factor contributes

c(su(2)) = 3

(
k′ − 2

k′
+

1

2

)
. (2.2)

We shall mainly be interested in two backgrounds. For AdS3 × S3 × T4 the condition that

the total central charge equals c = 15, requires that

c(sl(2,R)) + c(su(2)) = 9 ⇒ k′ = k . (2.3)

For k = 1, this leads to κ′ = −1, and hence the world-sheet theory is somewhat singular.

In particular, the central charge coming from su(2) factor is then negative

c(su(2))|k′=1 = −3 +
3

2
, (2.4)
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where −3 is the contribution of the decoupled bosonic algebra, while 3
2 accounts for the

three free fermions. We will come back to the question of how to make sense of this

world-sheet theory in section 4.

The other background which we shall discuss, AdS3×S3×S3×S1, is actually somewhat

simpler. In this case, criticality leads to the condition [15] that

1

k
=

1

k+
+

1

k−
, (2.5)

where k± are the levels of the (supersymmetric) su(2) models. In particular, k = 1 arises

then for k± = 2, for which the decoupled bosonic su(2) algebras appear at κ± = 0. This

simply means that there are no bosonic degrees of freedom associated to the two S3’s,

and that the only bosonic degrees of freedom that survive are the 3 excitations from

sl(2), together with the excitations from the circle theory. On the other hand, there is

no reduction in the number of fermionic degrees of freedom. Thus before imposing the

physical state condition we have 4 bosonic and 10 fermionic world-sheet excitations, which

get reduced to 2 bosonic and 8 fermionic degrees of freedom after imposing the super

Virasoro conditions. In the following we shall first treat the case of AdS3 × S3 × S3 × S1;

we will come back to AdS3 × S3 × T4 in section 4.

2.1 Discrete and continuous representations

For the case of AdS3×S3×S3×S1 there are no bosonic excitations from the su(2) factors, and

we can concentrate on the sl(2,R) algebra. As explained in [5], the relevant representations

of sl(2,R) that contribute to the world-sheet spectrum are the discrete and continuous

representations, as well as their spectrally flowed images. The discrete representations are

labelled by a real number j, and have Casimir C = −j(j − 1). The no-ghost theorem

implies that j has to satisfy the Maldacena-Ooguri (MO) bound [5] which, for k = 1, takes

the form
1

2
< j <

k + 1

2
= 1 . (2.6)

On the other hand, for the continuous representations j = 1
2 + is, and the Casimir takes

the value C = 1
4 + s2.

Let us first analyse the standard representations without any spectral flow. For the

discrete representations, the mass-shell condition at k = 1 takes the form

− j(j − 1) +N + hrest =
1

2
, (2.7)

where hrest is the conformal dimension coming from the circle theory, and N is the excitation

number of all excitations, i.e., of the 4 bosonic and 10 fermionic excitations before imposing

the super Virasoro constraints. (We are working here in the NS sector; a similar analysis

can also be done in the R sector.)

The GSO projection requires that N is half-integer, and hence in particular N ≥ 1
2 .

It then follows that there can only be physical states if −j(j − 1) ≤ 0. However, the MO

bound (2.6) implies −j(j− 1) > 0, and thus there are no physical states from the unflowed

discrete representations at k = 1.
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For the continuous representations, the analogue of (2.7) is

1

4
+ s2 +N + hrest =

1

2
, (2.8)

and the same argument applies. We therefore conclude that no physical states arise from

the unflowed sector for k = 1.

2.2 Spectrally flowed sectors

For the flowed discrete representations the mass-shell condition becomes (see eq. (5.5)

of [9])

− j(j − 1)− w
(
m+

w

4

)
+N + hrest =

1

2
, (2.9)

where m is the J3
0 eigenvalue and N the excitation number of the state before spectral flow,

and the spectral flow parameter takes the values w ∈ N. (Note that the spectral flow acts

on the full supersymmetric algebra, not just the decoupled bosonic algebra.) The GSO

projection depends on the cardinality of w as

N +
w + 1

2
∈ N , (2.10)

see the discussion in eq. (5.7) of [9].

Given that there are no physical states from the unflowed discrete representations, one

may wonder whether there are any physical states from the flowed discrete representations.

It is not difficult to confirm that generically there are: for example, a solution is given by

w = 1 , N = 1 , m = j =

√
1

4
+ hrest , (2.11)

where hrest is taken to satisfy 0 < hrest <
3
4 (so that j satisfies the MO bound eq. (2.6)).

An example with hrest = 0 is

w = 4 , N =
13

2
, m = j =

√
17− 3

2
∼= 0.56 . (2.12)

While there are such states, they will not be the focus of attention in this paper. In-

stead we shall concentrate on the states that arise from the spectrally flowed continuous

representations.

2.2.1 Spectrally flowed continuous representations

For the spectrally flowed continuous representations the mass-shell condition (in the NS

sector) takes the form

1

4
+ s2 − w

(
m+

w

4

)
+N + hrest =

1

2
. (2.13)

There is a similar relation for the right-movers, but with the same value for w ∈ N. Here

N (and similarly N̄ for the right-movers) is, as before, the excitation number, and m the

– 5 –
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J3
0 eigenvalue before spectral flow. The J3

0 eigenvalue, after spectral flow, is then2

h = m+
k

2
w = m+

w

2
. (2.14)

Solving (2.13) for m, and plugging into (2.14) we obtain

h =
N

w
+
hrest + s2

w
+
w2 − 1

4w
. (2.15)

This quantity is to be identified with the (left-moving) conformal dimension h in the dual

CFT. There is also a similar formula for the right-moving conformal dimension

h̄ = m̄+
w

2
=
N̄

w
+
h̄rest + s2

w
+
w2 − 1

4w
. (2.16)

Note that since the left- and right-moving representation must be the ‘same’ continuous

representation, it follows that m − m̄ ∈ Z. As a consequence, the left- and right-moving

conformal dimensions of the dual CFT differ by an integer.

In the R sector the analysis is essentially identical — recall, in particular, that m refers

to the J3
0 eigenvalue with respect to the original (coupled) generator — the only difference

being that the right-hand-side of (2.13) is 0 rather than 1
2 . Thus we get from the R sector

the identities

h = m+
w

2
=
N

w
+
hrest + s2

w
+
w2 + 1

4w
(2.17)

h̄ = m̄+
w

2
=
N̄

w
+
hrest + s2

w
+
w2 + 1

4w
. (2.18)

2.3 A special subsector

The spectrum becomes particularly simple if we consider the states with hrest = 0 for the

lowest continuous representation, i.e., the representation with s = 0. We should mention

that the restriction to hrest = 0 means, in particular, that the winding and momentum

modes along the circle are set to zero. As a consequence, the dual CFT will also not have

any momentum for the free boson. It would be interesting to generalise our analysis to

include also these modes, but we have not attempted this so far.

The following analysis depends a bit on whether w is even or odd; we shall therefore

discuss the two cases in turn.

2.3.1 Odd spectral flow

For odd spectral flow, we need to impose the GSO projection that N has to be an integer

in the NS sector,3 see eq. (2.10). Recalling that we have 8 free fermions and 2 free bosons,

2We use the symbol h here since this is also the spacetime conformal dimension in the dual CFT.

Hopefully this will not be confused with world-sheet conformal dimensions such as hrest.
3In the R sector, the sign of the GSO projection does not affect the counting function because of the

zero modes.
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it follows from eq. (2.15) that the generating function of the (left-moving) physical states

is then of the form

Z = qhw
∞∏
n=1

1(
1− q

n
w

)2 1

2

[ ∞∏
n=1

(
1 + q

2n−1
2w

)8
+

∞∏
n=1

(
1− q

2n−1
2w

)8
+ 16 q

1
2w

∞∏
n=1

(
1 + q

n
w

)8]

= qhw
∞∏
n=1

1(
1− q

n
w

)2 ∞∏
n=1

(
1 + q

2n−1
2w

)8
, (2.19)

where

hw =
w2 − 1

4w
(w odd) , (2.20)

and the coefficient of qn is the number of physical states with h = n. In going to the second

line of (2.19) we have used the so-called abstruse identity of Jacobi theta functions, see

e.g. [16]. We note that the second line of (2.19) looks like the partition function of eight NS-

sector fermions and two bosons with fractional modes, but without any GSO-projection.

We will be more specific about this below in section 3.2.

It is also useful to keep track of the chemical potentials of the su(2) factors. In partic-

ular, we can replace the bracket in the first line of eq. (2.19) by

1

2

[ ∞∏
n=1

(
1+yq

2n−1
2w

)(
1+y−1q

2n−1
2w

)(
1+zq

2n−1
2w

)(
1+z−1q

2n−1
2w

)(
1+q

2n−1
2w

)4
+
∞∏
n=1

(
1−yq

2n−1
2w

)(
1−y−1q

2n−1
2w

)(
1−zq

2n−1
2w

)(
1−z−1q

2n−1
2w

)(
1−q

2n−1
2w

)4
+q

1
2w 4

(
y

1
2 +y−

1
2

)(
z

1
2 +z−

1
2

)
×

×
∞∏
n=1

(
1+yq

n
w

)(
1+y−1q

n
w

)(
1+zq

n
w

)(
1+z−1q

n
w

)(
1+q

n
w

)4]
(2.21)

=

∞∏
n=1

(
1+y

1
2 z

1
2 q

2n−1
2w

)2(
1+y

1
2 z−

1
2 q

2n−1
2w

)2(
1+y−

1
2 z

1
2 q

2n−1
2w

)2(
1+y−

1
2 z−

1
2 q

2n−1
2w

)2
.

Here we have introduced a chemical potential for each of the two su(2) factors, corre-

sponding to the two S3 factors. (Recall that for each su(2) algebra, the free fermions χa

transform in the adjoint representation, and hence carry charge 0,±1.) This identity can

be derived using Jacobi’s addition formulas for theta functions (see e.g. page 487 of [16]).

Note that (2.21) reduces to the abstruse identity that we used in going to the second line

of (2.19) for y = z = 1.

2.3.2 Even spectral flow

The analysis for even w is similar, the only difference being that now N has to be half-

integer in the NS sector, see eq. (2.10). Thus instead of (2.19), we get

Z = qhw
∞∏
n=1

1(
1−q

n
w

)2 1

2

[ ∞∏
n=1

(
1+q

2n−1
2w

)8
−
∞∏
n=1

(
1−q

2n−1
2w

)8
+16q

1
2w

∞∏
n=1

(
1+q

n
w

)8]

= 16qh
′
w

∞∏
n=1

1(
1−q

n
w

)2 ∞∏
n=1

(
1+q

n
w

)8
, (2.22)
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where

h′w =
w2 − 1

4w
+

1

2w
=
w2 + 1

4w
(w even) . (2.23)

This now looks like the partition function of eight R-sector fermions and two bosons with

fractional modes, but without any GSO-projection; again, we will come back to the more

detailed interpretation below in section 3.3. The relevant generalisation involving chemical

potentials is now

1

2

[ ∞∏
n=1

(
1+yq

2n−1
2w

)(
1+y−1q

2n−1
2w

)(
1+zq

2n−1
2w

)(
1+z−1q

2n−1
2w

)(
1+q

2n−1
2w

)4
−
∞∏
n=1

(
1−yq

2n−1
2w

)(
1−y−1q

2n−1
2w

)(
1−zq

2n−1
2w

)(
1−z−1q

2n−1
2w

)(
1+q

2n−1
2w

)4
+q

1
2w 4

(
y

1
2 +y−

1
2

)(
z

1
2 +z−

1
2

)
×

×
∞∏
n=1

(
1+yq

n
w

)(
1+y−1q

n
w

)(
1+zq

n
w

)(
1+z−1q

n
w

)(
1+q

n
w

)4]
= q

1
2w
(
y

1
2 z

1
2 +y−

1
2 z−

1
2
)2(

y
1
2 z−

1
2 +y−

1
2 z

1
2
)2× (2.24)

×
∞∏
n=1

(
1+y

1
2 z

1
2 q

n
w

)2(
1+y

1
2 z−

1
2 q

n
w

)2(
1+y−

1
2 z

1
2 q

n
w

)2(
1+y−

1
2 z−

1
2 q

n
w

)2
,

as follows by similar arguments to (2.21), see [16].

3 Matching with the symmetric orbifold spectrum

In this section we want to show that these generating functions reproduce precisely the

single-particle spectrum of the symmetric orbifold of 8 free fermions and 2 free bosons, i.e.,

of the (S0)2 theory, in the (spacetime) NS sector. (The R sector states of the dual CFT are

expected to correspond to non-perturbative excitations, such as black holes, and will not

be directly visible from the world-sheet perspective.) We shall first consider the untwisted

sector states, and then study the different twisted sectors.

3.1 The single-particle states from the untwisted sector

We begin with explaining the structure of the single-particle states that arise from the

untwisted sector of the symmetric orbifold of the seed theory H0. (In our case, the seed

theory will be the NS sector of 8 free fermions and 2 free bosons.) The untwisted sector

consists of all SN invariant states of (H0)
N . Not all of these states should be thought of

as ‘single-particle’ states though. Indeed, as is for example explained in [2, section 2], the

full contribution of the untwisted sector is, for large N , naturally in ‘multi-particle’ form,

and the single-particle states are counted precisely by the partition function of H0 itself.

For the case at hand, the single-particle states from the untwisted sector of the sym-

metric orbifold are therefore counted by the partition function

Z0 =
∞∏
n=1

1

(1− qn)2

∞∏
n=1

(
1 + q

2n−1
2

)8
. (3.1)

– 8 –
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This agrees indeed precisely with the partition function (2.19) for w = 1. Thus the sector

with w = 1 corresponds to the untwisted sector of the symmetric orbifold.

3.2 Sectors of odd cycle length

The other single-particle states of the symmetric orbifold arise from single-cycle twisted

sectors. (Twisted sectors associated to permutations with more than one cycle are multi-

particle.) The analysis depends a bit on whether the cycle length L is even or odd; we

shall first deal with the slightly simpler case where L is odd. As explained in appendix A,

the ground state energy of the symmetric orbifold of 8 free fermions and 2 free bosons then

takes the form

h0 =
L2 − 1

4L
. (3.2)

Furthermore, it is clear from the derivation there that the single-particle descendants of this

ground state are counted by the partition function of H0 evaluated at q
1
L .4 The relevant

single-particle contribution is therefore for odd cycle length L

ZL = q
L2−1
4L

∞∏
n=1

1(
1− q

n
L

)2 ∞∏
n=1

(
1 + q

2n−1
2L

)8
. (3.3)

This agrees precisely with the partition function (2.19) for w = L odd.

3.3 Sectors of even cycle length

The analysis for even cycle length is slightly more subtle since the partition function of

the twisted sector then looks like a Ramond sector, see the discussion below eq. (A.7).

Furthermore, the ground state energy for the case of 8 free fermions and 2 free bosons

equals (see eq. (A.11))

h0 =
L2 + 1

4L
(L even) . (3.4)

Thus the single-particle contribution is for even cycle length L

ZL = 16 q
L2+1
4L

∞∏
n=1

1(
1− q

n
L

)2 ∞∏
n=1

(
1 + q

n
L

)8
, (3.5)

where the prefactor of 16 comes from the fact that there are 8 fermionic zero modes, leading

to a 16 dimensional Clifford representation. This then agrees precisely with the partition

function (2.22) for w = L even.

3.4 Orbifold projection and chemical potentials

So far we have only considered one chiral half of these theories, but in the full theory

we also have to impose the orbifold projection. Thus we need to combine the left- and

right-moving states so that they are invariant under the centraliser of the twist. This is

4There are also multi-particle states coming from multiplying these descendants with invariant states

from the copies unaffected by the twist.
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equivalent to demanding that h− h̄ ∈ Z, which is also true in the world-sheet description,

see the discussion below eq. (2.16). Note that this is the correct prescription in the NS-NS

sector of the world-sheet that corresponds to bosonic degrees of freedom of the dual CFT.

Because of the shift in J3
0 in going from the NS-sector to the R-sector, see e.g., eq. (2.17)

in [9], the relevant condition in the NS-R sector (that corresponds to fermions in the dual

CFT) is h− h̄ ∈ Z + 1
2 , and similarly for the other sectors.

We can also keep track of the chemical potential for the two su(2) algebras, see the

discussion around eqs. (2.21) and (2.24). From the perspective of the dual CFT, the

eight free fermions then transform as 2 · (2,2) with respect to these two su(2) algebras,

see eqs. (2.21) and (2.24). Thus the seed theory of the symmetric orbifold has exactly the

structure of (S0)2, where S0 is the theory of one real boson and 4 real fermions, transforming

as (2,2) with respect to the two su(2) algebras of the large N = 4 superconformal algebra,

see, e.g., [17]. The spacetime spectrum of the k = 1 theory is therefore very similar to the

symmetric orbifold of S0 that was proposed to be the CFT dual of this background (for

the case where k+ = k−) in [10].

3.5 Further comments

One may wonder whether our findings suggest that the correct CFT dual of this background

is the symmetric orbifold of (S0)2, rather than that of S0, as proposed in [10]. However, we

suspect that this is not the correct conclusion, for the following reason. The BPS spectrum

of the k = 1 world-sheet theory has far fewer BPS states than, say, the supergravity

spectum of [18], and this is mirrored by the symmetric orbifold of (S0)2. Indeed, as is also

familiar for the case of T4, the BPS spectrum of the WZW world-sheet theory has gaps,

and for k = 1 they are quite frequent and remove in fact all BPS states with j+ = j− =

half-integer, see the discussion in appendix E of [10].

In particular, neither the k = 1 world-sheet theory (nor the symmetric orbifold of

(S0)2), has an exactly marginal operator since the BPS state with j+ = j− = 1
2 is missing.

This should be contrasted with the symmetric orbifold of S0 that does possess such an

operator. Indeed, as explained in [10], see also [17], this marginal operator arises from the

3-cycle twist — there are no BPS states in the symmetric orbifold of S0 for even cycle

length. (The reason why there are no BPS states for even cycle length is exactly the same

as we saw in our analysis above, namely that for even twist the ground state energy, see

eq. (3.4), is too high.) Note that for our symmetric orbifold of 8 free fermions and 2 free

bosons (i.e. for (S0)2), while there is a BPS state in the 3-cycle twisted sector, it does

not correspond to an exactly marginal operator since, from the perspective of a single S0
theory, this is like the twisted sector corresponding to 2 3-cycles. And while this is BPS,

it has simply double the conformal weight und su(2) charges.

On the other hand, the symmetric orbifold of (S0)2 does look as though it could be the

IR fixed point of the brane construction considered in [19].5 The fact that it does not have

an exactly marginal operator in its spectrum seems to indicate that it is an infinite distance

away in moduli space. This is probably also related to the instanton singularity of [20].

5We thank David Tong for a useful discussion about this point.
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4 The case of T4

For the case of AdS3 × S3 × T4 the situation is slightly more subtle. As was reviewed in

section 2, for k = 1 the decoupled bosonic su(2) algebra is at level κ = −1. On the face of

it, this leads to an inconsistent world-sheet theory, and for this reason, the case k = 1 has

often been discarded. In the following we want to argue that there is a fairly natural way

in which one can make sense of this theory by observing that su(2) at level κ = −1 has a

free field construction in terms of four symplectic bosons [11], see also [21, eq. (3.19)], that

effectively behave as fermionic ghosts. Since the symplectic boson construction is not very

well known, we shall briefly review it below.

4.1 The complex fermion construction

The symplectic boson construction is the natural analogue of the more familiar free field

realisation of su(2)1 in terms of two complex fermions, χi and χ̄i, i = 1, 2, satisfying{
χir, χ̄

j
s

}
= δij δr,−s

{
χir, χ

j
s

}
=
{
χ̄ir, χ̄

j
s

}
= 0 . (4.1)

In this case, one defines the su(2) currents as

Ja = taij χ
iχ̄j , (4.2)

where taij are the representation matrices of su(2) in the 2-dimensional j = 1
2 representation.

These generators give rise to su(2) at level k = 1. In addition, there is a decoupled u(1)

current corresponding to

U = χi χ̄i , (4.3)

reflecting the fact that the complex fermions naturally lead to u(2) ∼= su(2) ⊕ u(1). For

the case at hand, the u(1) current U can actually be extended to another su(2)1 algebra

— we can equivalently think of this construction in terms of 4 real fermions generating

so(4) ∼= su(2)⊕ su(2) — by considering the charged generators

K+ = χ1χ2 , K− = χ̄1χ̄2 . (4.4)

This then accounts for the full central charge of c = 2 coming from 2 complex or 4 real

fermions. The representations of su(2)1 ⊕ su(2)1 are also naturally described in this lan-

guage: in the NS sector we have

HNS =
(
Hj=0 ⊗Hj=0

)
⊕
(
Hj= 1

2
⊗Hj= 1

2

)
, (4.5)

while the R sector leads to

HR =
(
Hj= 1

2
⊗Hj=0

)
⊕
(
Hj=0 ⊗Hj= 1

2

)
. (4.6)

Note, in particular, that the j = 1
2 representation of su(2)1 has conformal dimension h = 1

4 ,

which fits with these assignments. (For example, the conformal dimension of the ground

state of the second summand in (4.5) is then h = 1
2 = 1

4 + 1
4 , while that of either term

in (4.6) is h = 1
4 + 0 = 1

4 .)
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4.2 The symplectic boson construction

For the symplectic boson we proceed similarly, except that instead of free fermions we now

have symplectic boson fields ξi and ξ̄j (i, j = 1, 2), satisfying [11][
ξir, ξ̄

j
s

]
= δij δr,−s ,

[
ξir, ξ

j
s

]
=
[
ξ̄ir, ξ̄

j
s

]
= 0 , (4.7)

i.e., instead of the anti-commutators in (4.1) we now have commutation relations. Thus

the underlying fields are bosons, but they have spin s = 1
2 , as one can read off from the

(r, s) dependence of these relations — indeed, it is the same as for the fermions above. The

currents can now be defined as

Ja = −taij ξiξ̄j , (4.8)

and they lead to su(2) at level κ = −1, as one can check explicitly, see also [21, eq. (3.19)].

This fits with the general relation, see eq. (2.14) of [11],

− κ dim(su(2)) = QR dim(R) =
3

4
4 = 3 , (4.9)

where QR is the value of the quadratic Casimir in the representation R. In our case,

R is 4-dimensional, consisting of two copies of the j = 1
2 representation, and hence

QR = j(j + 1) = 3
4 . Furthermore, while there still exists a decoupled u(1) current asso-

ciated to

U = ξiξ̄i , (4.10)

it is now not possible to extend this to a commuting su(2) algebra since the analogues of

K± do not commute with the generators J±. (While, for example, χ1χ1 = 0 by virtue of

the anti-commutation relations, the same is not true for ξ1ξ1.) Thus the relevant algebra is

su(2)−1 ⊕ u(1) , (4.11)

and this has c = −3 + 1 = −2, in agreement with the central charge of the four symplectic

bosons. (Each symplectic boson contributes c = −1
2 .)

There are again two natural sectors: an NS-like sector in which the symplectic bosons

are half-integer moded (and that contains the vacuum representation of su(2)−1), as well as

an R-like sector in which the symplectic bosons are integer moded. It would be interesting

to study the analogues of (4.5) and (4.6) in terms of the su(2)−1 ⊕ u(1) representation

theory, but we have not done so yet since this is not directly needed for our purposes

here. The only fact that will be relevant below is that the ground state of the R-sector

representation has conformal dimension h = −1
4 . Indeed, as explained below eq. (1.30)

of [11], for each symplectic boson the R-sector energy is lower by δh = − 1
16 , and since we

have four symplectic bosons we arrive in total at h = −1
4 .

4.3 The world-sheet theory

After these preparations we can now return to the problem at hand, namely to make sense

of the world-sheet theory of AdS3 × S3 × T4 at k = 1. The basic idea is that we can

represent the problematic su(2)−1 factor in terms of four symplectic bosons. In fact, since
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the symplectic bosons generate in addition one u(1) factor, see eq. (4.11), the resulting

degrees of freedom of our world-sheet theory are then 6 bosons (3 from sl(2,R), as well as

4− 1 from the torus), together with the 4 symplectic bosons from above. The fermions are

unmodified, and we continue to have 10 fermionic degrees of freedom. After the physical

state condition is imposed this then leads to 4 bosonic and 8 fermionic degrees of freedom

(as well as the 4 symplectic bosons).

The bosonic degrees of freedom are unaffected by the world-sheet GSO projection,

and hence go along for the ride in the manipulations of eqs. (2.19) or (2.22). (Indeed,

since this world-sheet theory has the same fermionic degrees of freedom as for the case of

AdS3 × S3 × S3 × S1, these manipulations apply as before.) In particular, the resulting

spacetime spectrum has then the form of a symmetric orbifold of 8 free fermions, 4 free

bosons, as well as the 4 symplectic bosons.

Next we note that the four symplectic bosons behave effectively as fermionic ghosts [11].

Thus the effect of these four symplectic bosons is to remove 4 of the free fermions,6 so that

we end up with 4 free bosons and fermions, i.e. the T4 theory. We should note that this

also fits with the charges under the su(2) algebra corresponding to the S3 factor. It follows

from (2.21) and (2.24) for z = 1 — since there is no second S3 factor, we should set the cor-

responding chemical potential to z = 1 — that in the dual CFT the eight fermions consist

of 4 doublets with respect to that su(2). This ties together with the fact that the four sym-

plectic bosons also sit in 2 doublets with respect to that su(2), see the comment below (4.9).

There is however one important subtlety. It follows from eqs. (2.19) and (2.22) that

the free fermions are in the NS-like sector for w odd, and in the R-like sector for w even. In

order for the symplectic bosons to cancel against 4 of the 8 fermions, they must behave in

the same manner. Thus we are led to propose that the spectrum of our world-sheet theory

consists of 4 symplectic bosons that are half-integer moded for w odd, and integer-moded

for w even.7 We should mention that choosing different representations for w even and w

odd is maybe not too unnatural. In particular, for the analysis of the BPS spectrum for

the T4 world-sheet theory (for generic k), see in particular [14, 22], it is convenient to also

spectrally flow in the su(2) sector. This is (for positive integer k) an involution, i.e., it only

depends on the spectral flow sector mod 2. Thus also from this perspective even and odd

w behave slightly differently.

The above prescription for the moding of the symplectic bosons has also another desir-

able consequence. For w even, the contribution of hrest is then h = −1
4 (see the discussion at

the end of the previous subsection) and as a consequence the ground state energy in (2.23)

is modified to

w even:
w2 − 1

4w
+

1

2w
− 1

4w
=
w

4
, (4.12)

in agreement with (A.10) for L = w. (Without this contribution of hrest = −1
4 , the ground

state energy would have been again (3.4).) Thus, with this prescription for the world-

sheet theory, we reproduce exactly the symmetric orbifold spectrum of four free bosons

and fermions.
6We thank Lorenz Eberhardt for discussions about a related idea.
7More fundamentally, this selection rule should follow from the requirement of the theory to respect

spacetime supersymmetry, and it would be very interesting to understand it from this perspective.
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5 Discussion

In trying to understand the different possible tensionless limits of string theory on AdS3, we

have found an unexpected congruence between two apparently different points in parameter

space: the spectrum of the theory with NS-NS flux, at k = 1, contains a natural subsector

which is identical to that of the symmetric product orbifold.8 This observation raises

several questions in turn, the first being — why? A plausible answer, mentioned in the

introduction, is that the spectrum is largely dictated by the HSS enhanced symmetry. As

was discussed in [3] (see also [23, 24]), the structure of the untwisted sector of the symmetric

orbifold is very much like that of the Vasiliev higher spin theory in having a higher spin

tower coupled to a single massive minimal representation. In addition, the twisted sectors

are also natural near-minimal representations. It is conceivable that one needs to have this

particular set of representations in order to have a consistent theory. This would suggest

that this structure is rigid and must be present at other tensionless points as well.

If this is indeed the correct answer, we can try to test this in a number of ways. We

could check that this subsector is closed (in the sense of OPEs) from the point of view of the

world-sheet theory. Note that the correspondence with the twisted sectors implies specific

fusion rules between the different spectrally flowed continuous representations. One may

also try to look for the HSS operating on the level of the world-sheet. This may shed some

light also on how this symmetry becomes unbroken (unhiggsed) at the special point k = 1.

Another interesting line of thought is that there is something topological about this

subsector (or at least the massless HSS generators), and that we can follow these states

even after deforming away from the pure NS-NS point. (Indeed, the ground states of the

continuous representations seem to correspond to some sort of world-sheet instantons since

they correspond to holomorphic maps from the world-sheet torus to the boundary torus (at

finite temperature), see the discussion around eq. (73) of [6].9) This would be very exciting

if true, and enable one to try to extrapolate in some sense from this point to the orbifold

point. In this context, we should note that the pure NS-NS background and the symmetric

orbifold behave somewhat asymmetrically. In particular, there are no deformations at the

symmetric orbifold point which correspond to turning on NS-NS flux — after all NS-NS

flux is quantised — while one can deform the NS-NS world-sheet theory with a R-R flux

deformation because the relevant parameter is λQRR (where λ is the ten-dimensional string

coupling constant) which one may take to be continuous, see the discussion in [26].10

Finally, assuming that the rest of the continuum of the continuous representations are

lifted once one goes away from the pure NS-NS flux case, there is still a question about the

role of the other physical states coming from spectrally flowed discrete representations, as

8At first sight the observation here seems to be similar to one made in [22]. However, there are some

key differences. The proposal in [22] is for generic k, while ours is restricted to the special value k = 1.

Their comparison is largely about the chiral primary states coming from the discrete representations (short

strings), while our result concerns the full symmetric orbifold spectrum and we are focussing on the subsector

sitting at the bottom of the continuous representations. It will be interesting, nevertheless, to understand

any connection between the two proposals.
9See also [25] for an identification of a somewhat different topological sector in the AdS3 string theory.

10We thank Nick Dorey for discussions about this point.
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mentioned in section 2.2. Given that we know that the states from the symmetric product

orbifold gives rise to a modular invariant spacetime spectrum, it seems a little odd that

there is freedom to add in some additional states. In order to understand their significance

it may also be instructive to understand how they fit into representations of the HSS.

As a side product of our analysis we have also made a proposal for how to make

sense of the world-sheet theory for AdS3 × S3 × T4 at k = 1, where the decoupled bosonic

su(2) algebra appears at level κ = −1. It would be interesting to scrutinize this further;

in particular, it would be interesting to describe the symplectic boson representations in

terms of the su(2)−1 representation theory — since κ = −1 is not admissible in the sense

of [27], there is no natural class of representations that one may expect to appear — and

check that the resulting world-sheet theory is indeed modular invariant. Furthermore, it

would be interesting to confirm that the specific selection rules on the spectrum, see the

discussion before eq. (4.12), are a consequence of requiring spacetime supersymmetry.

Note added. A preliminary version of this work was presented by RG at [29]. It was

subsequently brought to our attention that related work has independently been done

in [30]. However, their description of the symmetric orbifold differs from ours in having

a (spacetime) GSO-projected theory. Since such a theory, see the original arXiv version

of [30], is not manifestly supersymmetric or consistent, it appears as if the only way to

consistently define such a theory would be to follow the construction in this work.
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A The zero point energy of the L-cycle sector

Let us begin by considering the symmetric orbifold of a single free boson. The chiral part

of the partition function then goes as

TrH(1)

(
qL0− 1

24

)
= q−

1
24
(
1 + · · ·

)
= χ(τ) , (A.1)

where q = e2πiτ . (For the case of the free boson we obviously just have χ(τ) = η(τ), but

this will actually not be very significant in the following.)

Now consider the N -fold product theory, whose space of states we denote by H(N).

Let σ be the cyclic permutation of length L, then the twining character, i.e., the character
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over H(N) with the insertion of σ, equals

TrH(N)

(
σqL0−N

24

)
= χ(Lτ)χ(τ)N−L . (A.2)

(This is just a consequence of the fact that only the totally symmetric states of the first L

copies contribute to this twining character.)

In order to obtain the character in the twisted sector, we now need to take the

S-modular transformation, which therefore goes as

ZT = χ
( τ
L

)
χ(τ)N−L = q−

1
24L q−

N−L
24
(
1 + · · ·

)
. (A.3)

The leading exponent equals the zero point energy in the twisted sector minus N
24 , i.e.,

we have

h0 =
L

24
− 1

24L
=
L2 − 1

24L
. (A.4)

The analysis for the fermions is essentially identical, except that one has to be careful

about whether L is even or odd. In the simpler case, i.e., when L is odd, the only difference

to the above is that the fermionic analogue of (A.1) goes as q−1/48 in the NS sector. Thus

everything for fermions is precisely halved. Thus for a theory consisting of B free bosons

and F free fermions, the ground state energy in the L-cycle twisted sector is given by

h0 = (2B + F )
L2 − 1

48L
L odd . (A.5)

For example, for the case of T4 for which B = F = 4, this leads to h0 = 1
4L(L2 − 1), in

agreement, for example, with eq. (2.11) in [28]. Incidentally, we also find the same result

for F = 8 and B = 2,

h0 =
L2 − 1

4L
(L odd) . (A.6)

For even L there is a subtlety in that the analogue of (A.2) is

TrH(N)

(
σqL0−N

24

)
= χ̃(Lτ)χ(τ)N−L , (A.7)

where χ̃ is the NS sector character with the insertion of (−1)F — this arises because under

the exchange by an even cycle permutation fermionic states pick up a sign relative to

bosonic states. The S-modular transformation then is of R-sector type, i.e., the leading

exponent is

q
1

24L q−
N−L
48 . (A.8)

Thus for L even we get instead of (A.5)

h0 = B
L2 − 1

24L
+ F

L2 + 2

48L
L even . (A.9)

For example, for the case of T4 for which B = F = 4, this leads to

h0 =
L

4
, (A.10)

cf., eq. (2.20) of [28]. However, for F = 8 and B = 2 we find instead

h0 =
L2 + 1

4L
(L even) . (A.11)
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