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Tensor-Based Algebraic Channel Estimation for

Hybrid IRS-Assisted MIMO-OFDM
Yuxing Lin, Student Member, IEEE, Shi Jin, Senior Member, IEEE, Michail Matthaiou, Senior Member, IEEE,

and Xiaohu You, Fellow, IEEE

Abstract—We consider the channel estimation problem in
multiple-input multiple-output orthogonal frequency division
multiplexing (MIMO-OFDM) systems assisted by intelligent re-
configurable surfaces (IRSs). To avoid the inherent estimation
ambiguities of the two-hop channels from mobile stations (MS)
to the base station (BS), we adopt a hybrid IRS architecture
composed of passive reflectors and active sensors, and establish
two independent subproblems of estimating the MS-to-IRS and
BS-to-IRS channels. By leveraging the sparse characteristics of
high-frequency propagation, we model the training signals as
multi-dimensional canonical polyadic decomposition (CPD) ten-
sors with missing fibers or slices. We develop algebraic algorithms
to solve the tensor completion problems and recover channel
multipath parameters, i.e., angles of arrival, time delays and path
gains. Our methods require neither random initialization nor iter-
ative operations, and for these reasons they can perform robustly
with a low computational complexity. Moreover, we investigate
the uniqueness condition of CPD tensor completion, which can
be utilized to inform both the physical design of hybrid IRSs
and the time-frequency resource allocation of training strategies.
Simulation results indicate that the proposed schemes outperform
the traditional counterparts in terms of accuracy, robustness and
complexity, especially for the case of low-complexity IRSs with
limited number of active sensing elements.

Index Terms—Channel estimation, CPD tensor completion,
intelligent reconfigurable surfaces, MIMO-OFDM.

I. INTRODUCTION

In the upcoming phases of the fifth generation (5G) wireless

communications, millimeter wave (mmWave) (30–300 GHz)

transmission technologies have been widely identified as a

promising solution against the increasing data traffic and

frequency spectrum shortage [1]. Moreover, extending the

spectrum to higher frequency bands, i.e., terahertz (0.1–10

THz), appears to be a significant evolution direction of the

future beyond-5G (B5G) and sixth generation (6G) devel-

opment [2]. High-frequency radio systems avail of strong
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beam directivity, high spatial resolution and robust anti-

interference characteristics, while their small wavelength en-

ables the miniaturized implementation of massive multiple-

input multiple-output (MIMO) antenna arrays to compensate

for the exacerbated free-space losses [3]. However, the quasi-

optical mmWave and terahertz waves inherently suffer from

limited coverage caused by the higher probability of line-

of-sight (LoS) propagation obstruction. In order to maintain

the communication link and broaden the signal coverage area,

wireless systems need to exploit the sparse scattering non-

LOS (NLoS) paths of high-frequency channels. One feasible

choice is to integrate the massive MIMO transceiver within

an intelligent reconfigurable surface (IRS), which can help

establish controllable supplementary links [4].

An IRS has been considered as a revolutionizing technology

for assisting the implementation of broadband connectivity

in future 6G wireless systems [5]. It can be utilized to

improve the propagation conditions by introducing additional

scattering with controllable characteristics to achieve desirable

beamforming gains and suppress co-channel interference [6].

Ideally, an IRS can pave the way to realizing a smart and

reconfigurable wireless propagation environment, which brings

extra degrees of freedom to the transceiver design, as well as,

the network optimization [7]. Typically, an IRS is made of

a programmable metasurface, which comprises of a massive

number of unit cells that can independently interact with the

incident signals [8]. The reflection amplitudes or phase shifts

of the IRS elements can be predefined or adjusted by a smart

digital controller to realize real-time manipulation on the elec-

tromagnetic responses of the reflected waves [9]. Based on the

considerable capability of optimizing the transmission links,

the IRS technology can be integrated into numerous wireless

applications, e.g., physical layer security, simultaneous wire-

less information and power transfer, cognitive radio and non-

orthogonal multiple access [10]–[13]. Nevertheless, in order to

fully reap the potential of IRS in communication services, it

is necessary for the IRS controller to obtain accurate channel

state information (CSI) of the channel matrices or multipath

parameters. This critical exercise relies on feasible channel

estimation strategies.

There have been numerous works researching the channel

estimation problem of IRS-assisted systems. A binary reflec-

tion controlled least squares scheme was proposed in [14],

enabling the IRS switch function to element-wisely estimate

the cascaded channel. A joint bilinear factorization and matrix

completion scheme was proposed in [15], combining the ap-

proximate message passing technology and Riemannian gradi-
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ent algorithm. A two-stage sounding method with atomic norm

minimization optimization was designed in [16] to recover

the cascaded channel parameters. Compressed sensing (CS)

tools were adopted by [17] to exploit the row-column-block

sparsity of the cascaded multipath channel. Hierarchical beam-

forming codebook as well as cooperative search strategies

were proposed in [18]. A deep learning framework containing

a twin convolutional neural network was applied in [19] to

jointly estimate the direct and cascaded channels. Tensor signal

processing methods were also leveraged in [20], [21] to solve

the bilinear channel recovery problem. An anchor-assisted

method was proposed in [22] to efficiently reduce the channel

training overhead with one-antenna anchors. Most works aims

to directly estimate the cascaded two-hop channel, which

inherently causes scaling ambiguities between the MS-to-IRS

and IRS-to-BS channels. Moreover, they commonly consider

flat-fading channel models, which, unfortunately, cannot be

directly applied to the dynamic time-varying channel links.

In this paper, we precisely address the channel estimation

problem of an IRS-assisted MIMO orthogonal frequency di-

vision multiplexing (OFDM) system operating at mmWave

frequencies. We propose a hybrid IRS structure composed of

passive reflectors and active sensors, which can simultaneously

reflect the signal waves and sense the channels [23], [24].

This architecture can be equivalently regarded as a hybrid

layout consisting of one or multiple IRS planes and antenna

anchors/arrays connected to radio frequency chains (RFC),

where the reflecting/sensing modules jointly formulate a reg-

ular planar topology. The main contributions of this paper are

summarized as follows:

• For the hybrid IRS structure, we factorize the cascad-

ed channel estimation problem into two subproblems

of recovering the MS-to-IRS and BS-to-IRS channels.

The downlink/uplink training can be simultaneously per-

formed through non-overlapping frequency bands.

• For the narrowband channel estimation with single train-

ing subcarrier, we leverage the sparsity of high-frequency

propagation to formulate the received signals as a third-

order canonical polyadic decomposition (CPD) tensor

[25]–[27]. We transform the channel estimation task to

complete a partially-observed tensor [28]–[30], and devel-

op an algebraic algorithm to jointly recover the channel

matrix and multipath parameters.1

• For the wideband channel estimation with multiple train-

ing subcarriers, we formulate the received signals as a

fourth-order incomplete CPD tensor. By leveraging the

structural information of training signal in the frequency

domain, we propose two different algorithms to solve the

tensor completion problem.

• We analyze the uniqueness conditions of the third/fourth-

order CPD tensor completions, and propose practical

suggestions on the hybrid IRS configuration and channel

training design.

1The algebraic tensor method does not restrict the IRS array structure
and the pilot symbol arrangement, requiring neither statistical derivation nor
optimization procedure. Also, most involved operations are supported by
ready-made toolboxes/libraries.

Simulation results indicate that the proposed schemes out-

perform the traditional methods (e.g., those proposed in [23],

[28]–[30]) in terms of accuracy, robustness and complexity,

especially for the case where the number of active IRS

elements are extremely limited.

The rest of the paper is organized as follows. Section II

presents the IRS-assisted MIMO-OFDM system model and

the high-frequency channel model. Section III develops the

narrowband channel estimation algorithm with single training

subcarrier. Section IV proposes the wideband channel estima-

tion algorithms with multiple training subcarriers. Section V

presents the numerical results of the estimation algorithms.

Section VI draws the most important conclusions.

Notations: a, A and A denote a vector, a matrix and

a tensor, respectively; AT , A∗, AH , and A† denote the

transpose, conjugate, Hermitian transpose and pseudo-inverse

of A, respectively; [a]m:n, [A]m:n,: denote the subvector of

a from the mth to the nth entries and the submatrix of A

from the mth to the nth rows, respectively; Diag(a) denotes

the diagonal matrix formed by a; ∥a∥0, ∥a∥2 and ∥A∥F
denote the 0-norm, 2-norm of a and Frobenius norm of A,

respectively; ⊗, ⊙, ∗ and ◦ denote the Kronecker, Khatri-Rao,

Hadamard and outer products, respectively; I(m) denotes the

set {1, 2, . . . ,m}; 0m×n, Im and e
(m)
n denote the m×n zero

matrix, the mth-order identity matrix, and the nth column of

Im respectively; range(A), ker(A) and dim(A) denote the

range, kernel subspaces and dimensionality of A, respectively;

vec(·) denotes the vectorization operation; C2
n , n(n− 1)/2,

and C2(A) ∈ C
C2

m×C2
n denotes the 2nd compound matrix

containing determinants of all 2×2 submatrices of A ∈ C
m×n.

In addition, all the relevant tensor definitions and lemmas in

the text are presented in Appendix A.

II. SYSTEM MODEL

We consider an IRS-assisted MIMO-OFDM system as illus-

trated in Fig. 1(a), where one base station (BS) equipped with

NB antennas and MB RFCs communicates with U single-

antenna mobile stations (MS). The IRS is a programmable

metasurface composed of NI regularly arranged unit cells,

forming a two-dimensional artificial structure [6]–[8]. The

OFDM scheme occupies Ks subcarriers, where the carrier fre-

quency and bandwidth are denoted by fc and fs, respectively.

We suppose that one transmission frame contains Q time

slots, where the channel remains constant within each frame

but varies across different frames. By assuming that the

channel reciprocity holds, the uplink/downlink transmission

within the qth time slot of the pth frame at the kth subcarrier

can be respectively expressed as

yul
p,q,k = WT

p,q,kH
BI
p,kΨp,q,kH

IM
p,ks

ul
p,q,k + nul

p,q,k, (1a)

ydl
p,q,k = (HIM

p,k)
TΨp,q,k(H

BI
p,k)

TFp,q,ks
dl
p,q,k + ndl

p,q,k, (1b)

where yul
p,q,k(n

ul
p,q,k) ∈ C

MB ,ydl
p,q,k(n

dl
p,q,k) ∈ C

U denote the

uplink and donwlink received signals (noise), respectively;

sulp,q,k ∈ C
U , sdlp,q,k ∈ C

MB denote the transmitted symbol-

s. Also, Fp,q,k,Wp,q,k ∈ C
NB×MB denote the precoding

and combining beamformer, respectively, whilst Ψp,q,k ,

Diag(ψp,q,k) ∈ C
NI×NI denotes the IRS coefficients, where
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(a) Uplink MS-to-IRS-to-BS transmission.
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(b) Hybrid passive/active IRS structure.

Equivalent Reflecting/Sensing Layout
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(c) Equivalent reflecting/sensing layout.

Fig. 1. An IRS-assisted mmWave MIMO-OFDM system. (a) The U MSs transmit signals through the MS-to-IRS channels {hIM
p,k

}Uu=1 to the IRS, which

are reflected to the BS through the IRS-to-BS channel HBI
p,k

with controlled phase shifts Ψp,q,k . (b) The passive reflectors reflect signal waves with phase

shifts designed by the IRS controller; the active sensors transfer training signals to baseband units. (c) The equivalent reflecting/sensing layout of the hybrid
IRS architecture is formulated by reflector and antenna modules with virtual entries occupying the module spacing and irregular areas.

[ψp,q,k]n = ηn,p,q,ke
jψn,p,q,k with ηn,p,q,k ∈ [0, 1] and

ψn,p,q,k ∈ [0, 2π] [31], [32]; HBI
p,k ∈ C

NB×NI and HIM
p,k =[

hIM
1,p,k, . . . ,h

IM
U,p,k

]
∈ C

NI×U denote the IRS-to-BS and MS-

to-IRS channels, respectively.

Many existing works, e.g., [14]–[21], seek to estimate

the cascaded BS-IRS-MS channel from (1). This approach,

however, experiences the following problems: (i) The training

signal suffers from exacerbated propagation loss along the

two-hop cascaded channel at higher frequencies; (ii) The

required training time of cascaded channel estimation is pro-

portional to the number of IRS units, such that large-scale

IRSs with massive passive elements will result in extremely

heavy training overhead; (iii) The most serious problem is

that there inherently exist unavoidable ambiguities in the

cascaded channel estimates, i.e., for any nonsingular diagonal

Υ ∈ C
NI×NI , the scaled channels HBI

p,kΥ, Υ−1HIM
p,k do not

affect the received signal y
dl(ul)
p,k . In multiuser communications,

training ambiguities from multiple users lead to inaccurate

estimates of the BS-IRS channel. Moreover, these estimation

uncertainties will undermine the integration of IRS in many

wireless services. For example, the IRS-based modulation of

[33] can only broadcast properly modulated symbols to the re-

ceivers after equalizing the distortion effects of the transmitter-

IRS channel; the environment mapping of [34] manages to

determine the object surfaces and scatter points based on exact

measurements of the received signal strength (RSS), time of

arrival (ToA) and angle of arrival/departure (AoA/AoD); the

user localization and the mobility tracking of [35], [36] also

require precise estimation of the propagation distance and

azimuth/elevation angles from the MSs. Unfortunately, without

any a priori information, the one-hop channels, as well as,

the path parameters cannot be properly recovered from the

cascaded channel estimation.

In order to overcome these shortcomings, we develop a

hybrid IRS architecture composed of NP passive reflectors

and NA active sensors to simultaneously reflect the signal

waves and sense the one-hop channels, as illustrated in Fig.

1(b). The IRS-assisted system is able to directly sense the

one-hop channels by observing the training signal at the IRS

end. This design can also be equivalently viewed as a hybrid

layout consisting of one or multiple IRS planes and a few

B B B B B B B B B

1 2 3 4 1 2 3 4 1 2 3 4

P
th

 frame 2
nd

  frame 1
st
  frame 

Q  time slots 

UL

DL

QB QM =1

Fig. 2. Diagram of the training pilot allocation during P frames. Each MS
sends pilots in QM = 1 time slot of each frame; the BS sends pilots in
QB ≥ 2 time slots of each frame. Pilots at different subcarriers can be
arranged in identical time slots.

antenna nodes/arrays, which are located closely (relative to

the signal wavelength) to formulate a regular Nx ×Ny-planar

topology as illustrated in Fig. 1(c). For far-field propagation,

the active/passive modules can be assumed to share wireless

channels with identical multiple parameters.2 Since the passive

entries do not contribute to the training signals received by

the sensors, the number of reflectors supported by a given

amount of active sensors can be theoretically extended without

limitations, and virtual unit cells with no circuit can be

employed to fill the module spacing and occupy the irregular

areas of the layout topology.3 The proposed design can support

hundreds or even thousands of IRS elements with NA RFCs,

achieving superior spectral and energy efficiency than an NA-

antenna relay [6], [37], [38]. We note that [22] also deploys up

to two single-antenna anchors, such as controllers or idle users,

near the IRS to assist the cascaded channel estimation. These

anchors can help separate and recover the constant channels up

to element-wise ± sign uncertainty via multiple training steps

with a total training overhead proportional to the size of IRS

and the number of users. By deploying more sensing antennas

around the IRS, our method is able to precisely recover the

dynamic channels, as well as, the multipath parameters with

less training overhead independent of NI, NB or U .

As illustrated in Fig. 2, the uplink/downlink training occu-

2If the antenna arrays are placed further away from the IRS, the multipath
parameters of channels experienced by the passive/active blocks may be
different. Then, the sensor modules become anchors near the IRS as in [22].

3The proposed scheme offers considerable design freedom of the hybrid IRS
structure or the equivalent layout. The reflectors and antennas can be arranged
on identical or different substrate boards and individually implemented by
existing printed circuit board techniques. They are only required to jointly
formulate a regular planar topology along with virtual entries.
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pies P frames, where the uth MS sends xu,p,k in QM = 1
time slot of the pth frame; the BS periodically sends precoded

pilots {Fq,kxq,k}
QB

q=1 in QB ≥ 2 time slots of each frame. The

training signals partially observed at the IRS are expressed as

zulu,p,k = w ∗ yul
u,p,k = w ∗

(
hIM
u,p,kxu,p,k

)
+w ∗ nul

u,p,k,
(2a)

zdlp,q,k = w ∗ ydl
p,q,k = w ∗

(
(HBI

p,k)
TFq,kxq,k

)
+w ∗ ndl

p,q,k,
(2b)

where yul
u,p,k,y

dl
p,q,k ∈ C

NI denote the arrived pilot signals;

zulu,p,k, z
dl
p,q,k ∈ C

NI denote the observed incomplete data;

nul
u,p,k,n

dl
p,q,k ∈ C

NI are the noise vectors. Also, w ∈ {0, 1}NI

is a binary indicator, where “0/1” indicates the passive/active

entry state. The Hadamard products represent the “filtering”

process of effective signals by the hybrid layout.

We consider IRS-assisted systems working at the mmWave

frequencies. By leveraging the sparse scattering feature of

high-frequency waves, HBI
p,k and {hIM

u,p,k}
U
u=1 can be charac-

terized by the Saleh-Valenzuela model with L0 and {Lu}
U
u=1

signal propagation paths respectively as4

HBI
p,k =

L0∑

ℓ=1

αℓ,pe
−j2π

(k−1)fsτ0,ℓ
Ks

︸ ︷︷ ︸
αℓ,p,k

aB(ϕB,ℓ, θB,ℓ)a
T
I (ϕI,ℓ, θI,ℓ),

(3a)

hIM
u,p,k =

Lu∑

ℓ=1

βu,ℓ,pe
−j2π

(k−1)fsτu,ℓ
Ks

︸ ︷︷ ︸
βu,ℓ,p,k

aI(ϕu,ℓ, θu,ℓ), u ∈ I(U),

(3b)

where αℓ,p, βu,ℓ,p denote the complex path gains in the

pth frame; τ0,ℓ, τu,ℓ denote the propagation time delays;

ϕB,ℓ(θB,ℓ), ϕI,ℓ(θI,ℓ) denote the azimuth (elevation) AoA and

AoD of the IRS-to-BS paths, respectively; ϕu,ℓ(θu,ℓ) denotes

the azimuth (elevation) AoA at the IRS from the uth MS.

The array response vectors of the BS and IRS are denoted by

aB(ϕ, θ) ∈ C
NB and aI(ϕ, θ) ∈ C

NI , respectively. The IRS

elements are assumed to form an uniform planar array (UPA),

while the BS can employ either a UPA or a uniform linear

array (ULA) of antennas. We represent the response vector as

aI(ϕ, θ) , ax(ϕ, θ)⊗ ay(ϕ, θ), where

ax(ϕ, θ) =
[
1, ej2π

d
λc

sinϕ cos θ, . . . , ej2π
d
λc

(Nx−1) sinϕ cos θ
]T
,

(4a)

ay(ϕ, θ) =
[
1, ej2π

d
λc

sinϕ sin θ, . . . , ej2π
d
λc

(Ny−1) sinϕ sin θ
]T
,

(4b)

denote the azimuth and elevation array response vectors,

respectively, whilst d and λc denote the adjacent spacing and

wavelength, respectively.5 Based on (3), (4), the cascaded

channel in (1) can be equivalently viewed as a channel with

4We assume that the path angles and delays remain constant, while the path
gains vary across different frames [39], [40].

5The steering vectors only determine the operation of angle parameter
recovery. The proposed tensor completion scheme can apply to arbitrary 2D
layout with array responses aI(·) = ax(·)⊗ ay(·).

L0Lu scattering paths. One can verify that the traditional

cascaded channel estimation methods cannot recover precise

path parameters but only L0Lu sets of equivalent parameters,

i.e., sinϕI,ℓ0 cos θI,ℓ0 + sinϕu,ℓu cos θu,ℓu , sinϕI,ℓ0 sin θI,ℓ0 +
sinϕu,ℓu sin θu,ℓu , τ0,ℓ0 + τu,ℓu and αℓ0,pβu,ℓu,p, ∀ℓ0 ∈
I(L0), ℓu ∈ I(Lu) [16], [36].

Combining (2)–(4), we can rewrite the partially observed

training signals as

zulu,p,k =w ∗

(
Lu∑

ℓ=1

βu,ℓ,p,kaI(ϕu,ℓ, θu,ℓ)xu,p,k

)
+w ∗ nul

u,p,k

=w ∗
(
Aul

x,u ⊙Aul
y,u

)
gul
u,p,k +w ∗ nul

u,p,k, (5a)

zdlp,q,k =w ∗

(
L0∑

ℓ=1

αℓ,p,kaI(ϕI,ℓ, θI,ℓ)a
T
B(ϕB,ℓ, θB,ℓ)Fq,kxq,k

)

+w ∗ ndl
p,q,k

=w ∗
(
Adl

x ⊙Adl
y

)
gdl
p,q,k +w ∗ ndl

p,q,k, (5b)

where Aul
x(y),u ∈ C

Nx(y)×Lu collects the steering vectors

{ax(y)(ϕu,ℓ, θu,ℓ)}; gul
u,p,k ∈ C

Lu contains the equivalent gains

{βu,ℓ,p,kxu,p,k}. Also, Adl
x(y) ∈ C

Nx(y)×L0 and gul
p,q,k ∈ C

L0

are similarly defined. In the following sections, we will

leverage the concept of tensor completion to address the

fundamental channel estimation problem by recovering (5).

III. TENSOR COMPLETION-BASED NARROWBAND

CHANNEL ESTIMATION

We first consider a particular training mode such that

the pilot symbols are arranged on a single subcarrier, i.e.,

k = 1. This mode is compatible with narrowband systems,

which can be extended to the wideband OFDM systems. By

concatenating P and QBP training time slots of (5a), (5b)

respectively, we can derive6

Zul = Wul ∗Yul = Wul ∗
(
(Aul

x ⊙Aul
y )GT

β +Nul
)
, (6a)

Zdl = Wdl ∗Ydl = Wdl ∗
(
(Adl

x ⊙Adl
y )GT

α +Ndl
)
, (6b)

where Wul , w ⊗ 11×P ,W
dl , w ⊗ 11×QBP denote

the indicators; Gβ ∈ C
P×L,Gα ∈ C

QBP×L0 denote the

equivalent gains, where [Gβ ]p,ℓ = xpβℓ,p, [Gα](q−1)P+p,ℓ =
xTq F

T
q aB(ϕB,ℓ, θB,ℓ)αℓ,p. Since (6a), (6b) are in similar forms,

we mainly focus on the uplink channel estimation, whose

solution similarly applies to the downlink case.7

A. Space-Time Signal Tensor

According to (41), Y(Z) in (6a) can be regarded as a tensor

matricization, i.e., Matr(Y(Z); [2, 1], 3), where

Y =
L∑

ℓ=1

ax,ℓ ◦ ay,ℓ ◦ gβ,ℓ +N = [[Ax,Ay,Gβ ]] +N ,

(7a)

Z = W ∗Y = W ∗
L∑

ℓ=1

ax,ℓ ◦ ay,ℓ ◦ gβ,ℓ +W ∗N , (7b)

6The subscripts “u”, “k” are temporally omitted for notational simplicity.
7The superscript “ul” is omitted hereinafter. All the following variables

correspond to the uplink case unless otherwise stated.
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with ax,ℓ , ax(ϕℓ, θℓ), ay,ℓ , ay(ϕℓ, θℓ), gβ,ℓ , [Gβ ]:,ℓ;
W ∈ {0, 1}Nx×Ny×P and N ∈ {0, 1}Nx×Ny×P are the

tensorial forms of W , w ⊗ 11×P and N, respectively.

Recovering the signal tensor Y , or equivalently its CPD factors

{ax,ℓ,ay,ℓ,gβ,ℓ}
L
ℓ=1, from the observation Z is referred to

as a tensor completion problem [28]–[30]. These existing

methods, however, resort to iterative operations with empir-

ical termination threshold, yielding unpredictable overhead

and complexity. They were designed to deal with discretely

sampled tensors, and cannot efficiently handle data with a few

regularly sampled entries. Moreover, they are not supported by

theoretical uniqueness analysis, and they are not guaranteed

to return the exact solutions. In order to obtain a straight-

forward solver as well as an intuitive guidance of hybrid

reflecting/sensing design and training resource allocation, we

need to fully exploit the distribution pattern and structural

information of the training data.

We note that the (i, j)th passive entry leads to an all-zero

frontal (mode-3) fiber wi,j,: = 0P×1, which filters out the

corresponding signal yi,j,: ∈ C
P of Y . Therefore, solving (7)

is referred to as a fiber sampling tensor completion problem

[41], [42]. It can be verified that the (i, j)th all-zero fiber of

W corresponds to the ((i− 1)Ny + j)th all-zero row of W.

Then, one can obtain an effective observed signal submatrix

Zsub ∈ C
NA×P as

Zsub = SWY = Ξ(Ax,Ay)G
T
β + SWN, (8)

where SW ∈ {0, 1}NA×NI is a row-selection matrix that

selects the NA rows of Y that have not been zeroed by W;

Ξ(Ax,Ay) , SW(Ax ⊙Ay) ∈ C
NA×L.

B. Uniqueness Condition of Tensor Completion

In order to accurately recover the signal tensor, as well

as, the channel parameters, it is necessary to explore the

uniqueness condition of CPD tensor completion with fiber

sampling.8

We define a binary diagonal matrix Dsel = Diag(dsel) ∈

{0, 1}C
2
Nx
C2

Ny
×C2

Nx
C2

Ny with dsel ∈ {0, 1}C
2
Nx
C2

Ny lexico-

graphically defined as

dsel =
[
d(1,2),(1,2), d(1,2),(1,3),

. . . , d(Nx−1,Nx),(Ny−1,Ny)

]T
,

d(i1,i2),(j1,j2) =





1, if yi1,j1,:,yi1,j2,:,yi2,j1,:,yi2,j2,:

are observable fibers,

0, otherwise,

(9)

where 1 ≤ i1 < i2 ≤ Nx, 1 ≤ j1 < j2 ≤ Ny. Physically,

d(i1,i2),(j1,j2) indicates whether the corresponding 2 × 2 ele-

ment submatrix of the hybrid layout can observe the complete

effective signals. We define a matrix P(ℓ) ∈ C
Nx×Ny with

indeterminate entries as

p
(ℓ)
ij =

{
[ax,ℓ ⊗ ay,ℓ](i−1)Ny+j

, if wi,j,: = 1P×1,

indeterminate, if wi,j,: = 0P×1.
(10)

8All the theoretical analysis presented in the following content applies to
noiseless signals. That is, for the sake of clarify, the noise terms in the received
signals are temporarily omitted unless otherwise specified.

(a) Suboptimal configuration (b) Worst configuration

Fig. 3. Diagram of specific hybrid IRS designs. The gray squares denote
the passive entries; the red squares denote the basic active sensors ensuring
the graph connectivity; the green squares denote the extra active sensors
contributing to ∥dsel∥0; the blue wireframes mark the effective 2 × 2-
submatrices. (a) Suboptimal distribution, where N extra active entries yield
∥dsel∥0 = C2

N+1. (b) Worst distribution, where N extra active sensors yield

∥dsel∥0 = N .

By leveraging the graph theory, this incomplete matrix P(ℓ)

can be related to a bipartite graph denoted by P(ℓ), whose two

groups of vertices are I(Nx) and I(Ny). Now, P(ℓ) denotes

the edge set, or supports, associated with P(ℓ), where the edge

weight of (i, j) ∈ P(ℓ) is p
(ℓ)
ij . We derive a restricted bipartite

graph P̃(ℓ) with an edge set P̃(ℓ) =
{
(i, j) ∈ P(ℓ)

∣∣p(ℓ)ij ̸= 0
}

.

Now, a uniqueness condition of fiber sampling CPD-tensor

completion is presented as follows:

Theorem 1 [41]. Consider a tensor Y ∈ C
Nx×Ny×P with

factor matrices {Ax,Ay,Gβ}, partially observed by Z in (7).

Let Dsel = Diag(dsel) as defined in (9), and let P̃(ℓ) be the

restricted bipartite graph of P(ℓ) as defined in (10). If




rank(Gβ) = L,

rank (Dsel (C2(Ax)⊙C2(Ay))) = C2
L,

P̃
(ℓ) is a connected graph, ∀ℓ ∈ I(L),

(11)

then the rank of Y equals L, and its CPD is unique up to

scaling and permutation ambiguity.

In the generic case, the first two conditions in (11) become

P ≥ L and ∥dsel∥0 ≥ C2
L, respectively. A necessary condition

to ensure the graph connectivity of P̃(ℓ) is that every row

and column of P(ℓ) get sampled at least once with nonzero

values. Physically, this condition indicates that the active

sensing network, i.e., W:,:,p, cannot partition the received

signal ax,ℓa
T
y,ℓ into “disconnected” submatrices. In our system,

the graphs {P̃(ℓ)}Lℓ=1 share the identical topology. Compared

with the anchor-based method [22] with a training overhead

of 2NI +U +max
(
U,
⌈
UNI

NB

⌉)
, the proposed method reduces

the overhead to the order of L.

Remark. According to the uniqueness analysis, one can ar-

range the active IRS entries to obtain as many effective 2×2-

submatrices as possible, provided the graph connectivity is

satisfied. As illustrated in Fig. 3, the basic configuration is to

completely sample one row and one column of the IRS with

(Nx+Ny−1) active sensors. Fig. 3(a), (b) show a suboptimal

and the worst sampling distribution cases of totally (N+Nx+
Ny−1) active elements, which respectively provide C2

N+1 and

N effective 2×2-submatrices. Therefore, the minimal number

of active sensors that ensures the uniqueness condition is (a)

NA ≥ Nx +Ny + L; (b) NA ≥ Nx +Ny + C2
L − 1.

We present in Table I the statistical mean of ∥dsel∥0
versus the number of randomly distributed extra sensors, i.e.,
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NA − (Nx + Ny − 1). The table indicates that to estimate a

sparse channel with 3–5 scattering paths, i.e., C2
L+1 ≤ 15,

NA ≥ Nx +Ny + 7 can statistically guarantee the feasibility

of estimation; NA ≥ Nx + Ny + 14 can strictly ensure the

validity of each training trial.

C. Proposed Algorithm

We need a preliminary step to determine the tensor rank

if it is unknown. Given the effective signal Zsub with i.i.d.

Gaussian noise SWN in (8), we adopt a minimum description

length (MDL) method to estimate the number of signal path

components L [43]. We compute the eigenvalue decomposition

of the approximated covariance matrix of Zsub as

ΣZsub
=

1

NA
ZHsubZsub = VΛVH , (12)

where Λ , Diag([λ1, . . . , λP ]
T ) contains the eigenvalues

in descending order; V ∈ C
P×P denotes the corresponding

eigenvectors. The rank of Zsub is estimated by the MDL

criterion as

L = argmin
ℓ

ℓ

2
(2P − ℓ) log(NA)

−NA(P − ℓ) log



∏P
p=ℓ+1 λ

1
P−ℓ
p

1
P−ℓ

∑P
p=ℓ+1 λp


 . (13)

According to [41], [44], we develop an algebraic approach

to solve the problem (7). By capitalizing on the low-rank

feature of Z, we compress its effective part, i.e., Zsub in (8),

by the singular value decomposition (SVD) as

Zsub = UsubΣsubV
H
sub, Z , STWUsubΣsub,

Z = Tens(Z; [Nx, Ny, L], [2, 1], 3) (14)

where Usub ∈ C
NA×L, Σsub ∈ C

L×L and Vsub ∈ C
P×L;

Z ∈ C
NI×L and Z ∈ C

Nx×Ny×L denote the compressed

signal matrix and tensor, respectively. When min(NA, P ) ≥ L
holds, range(Zsub) = range(UsubΣsub), and there exists a

nonsingular matrix F ∈ C
L×L such that

UsubΣsubF
−T = Ξ(Ax,Ay), V∗

subF = Gβ . (15)

We define Q2(Z) ∈ C
C2

Nx
C2

Ny
×C2

L+1 as a tensor-to-matrix

transform, whose ℓth column is given as

vec(CT
2 (Z:,:,ℓ1 + Z:,:,ℓ2)−CT

2 (Z:,:,ℓ1)−CT
2 (Z:,:,ℓ2)), (16)

where ℓ , 1
2 (ℓ1 − 1)(2L − ℓ1) + ℓ2, 1 ≤ ℓ1 ≤ ℓ2 ≤ L.

Let Ssel ∈ {0, 1}∥dsel∥0×C
2
Nx
C2

Ny denote the row-selection

matrix that selects the effective parts of Q2(Z) indicated by

dsel. Then, the effective rows SselQ2(Z) can be equivalently

rewritten by invoking [44, Lemma 2.17, 3.11] as

SselQ2(Z) = Ssel (C2(Ax)⊙C2(Ay))Ω
T
2 (F)TS , (17)

with Ω2(F) ∈ C
L2×C2

L , TS ∈ C
L2×C2

L+1 being defined as

Ω2(F) = 2
[
πS(f1, f2), πS(f1, f3), . . . , πS(fL−1, fL)

]
, (18a)

TS =
[
πS(e

(L)
1 , e

(L)
1 ), πS(e

(L)
1 , e

(L)
2 ),

. . . , πS(e
(L)
L , e

(L)
L )

]
, (18b)

where πS(x,y) , 1
2 (x⊗ y + y ⊗ x) is the symmetrization

mapping of vec(yxT ); TS denotes an orthogonal basis set

of range(πS) with {e
(L)
ℓ1

⊗e
(L)
ℓ2

}1≤ℓ1≤ℓ2≤L being a canonical

basis of CL
2

. By combining (17), (18), we derive the following

subspace relationship [44, Proposition 2.13]:

TSker
(
SselQ2(Z)

)
= ker

(
ΩT

2 (F)
)
∩ range(πS)

= range
(
F−T ⊙ F−T

)
. (19)

We denote the basis of the L-dimensional subspace (19) by

M = [m1, . . . ,mL] ∈ C
L2×L. If Ssel (C2(Ax)⊙C2(Ay))

in (17) has full rank, there exists a nonsingular B ∈ C
L×L

such that

M = (F−T ⊙ F−T )BT , (20a)

M = Tens(M; [L,L, L], [2, 1], 3) = [[F−T ,F−T ,B]]. (20b)

One can solve the CPD M ∈ C
L×L×L in (20) by the

generalized eigenvalue decomposition (GEVD) method [44],

i.e., M:,:,ℓ1FDiag([B]Tℓ2,:) = M:,:,ℓ2FDiag([B]Tℓ1,:), 1 ≤ ℓ1 ̸=
ℓ2 ≤ L. Once the nonsingular F has been derived, one can

directly compute Ξ(Ax,Ay) and Gβ by (15).

Now, the remaining problem is to determine Ax, Ay given

a partial observation Ξ(Ax,Ay). Recall that P(ℓ) in (10) can

be obtained by reshape
(
STW [Ξ(Ax,Ay)]:,ℓ ; [Ny, Nx]

)T
. We

suppose that the jth column of P(ℓ), i.e., p
(ℓ)
j ∈ C

Nx , contains

N c
j,ℓ < Nx indeterminate entries, indexed by {u1, . . . , uNc

j,ℓ
}.

Let p̄
(ℓ)
j ∈ C

Nx denote the column vector with indeterminate

entries of p
(ℓ)
j being replaced by zeros. Then, the columns of

P
(ℓ)
j =

[
p̄
(ℓ)
j /∥p̄

(ℓ)
j ∥, e(Nx)

u1
, . . . , e(Nx)

uNc
j,ℓ

]
∈ C

Nx×(1+Nc
j,ℓ),

(21)

constitute a basis of range(P
(ℓ)
j ). By denoting the basis

of ker
(
P

(ℓ)H
j

)
by Q

(ℓ)
j ∈ C

Nx×(Nx−1−Nc
j,ℓ), the following

relationship holds [41]

ax,ℓ ∈
∩

j∈I(Ny)

range
(
P

(ℓ)
j

)

⇔ Q
(ℓ)H
j ax,ℓ = 0(Nx−1−Nc

j,ℓ
)×1, ∀j ∈ I(Ny). (22)

Hence, Ax can be column-wisely derived as

a⋆x,ℓ = arg min
∥ax,ℓ∥2

2=Nx

∥∥∥aHx,ℓ
[
Q

(ℓ)
1 , . . . ,Q

(ℓ)
Ny

]∥∥∥
2

2
, ∀ℓ ∈ I(L).

(23)

Since dim
(
ker
([

Q
(ℓ)
1 , . . . ,Q

(ℓ)
Ny

]H))
= 1, one can uniquely

recover ax,ℓ by solving (23). Now, we suppose that the

Nj,ℓ , Nx − N c
j,ℓ determinate entries of p

(ℓ)
j are indexed

by {v1, . . . , vNj,ℓ
} = I(Nx) \ {u1, . . . , uNc

j,ℓ
}. Define āx,ℓ ,

[ax,ℓ]{v1,...,vNj,ℓ
} ∈ C

Nj,ℓ and p̄
(ℓ)
j ,

[
p
(ℓ)
j

]
{v1,...,vNj,ℓ

}
∈

C
Nj,ℓ as the observed parts of ax,ℓ and p

(ℓ)
j respectively. Then,

the nonzero entries of ay,ℓ can be computed as

[ay,ℓ]j = ā
†
x,ℓp̄

(ℓ)
j =

āHx,ℓp̄
(ℓ)
j

∥āx,ℓ∥22
, ∀j ∈ I(Ny). (24)

After obtaining the estimation of the CPD factor matrices

Âx, Ây, Ĝβ , the complete signal Y, or equivalently the MS-

to-IRS narrowband channel [h1, . . . ,hP ], can be estimated as
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TABLE I
STATISTICAL MEAN OF ∥dsel∥0 VS. NUMBER OF ACTIVE SENSORS

E [∥dsel∥0]
NA − (Nx +Ny − 1)

2 4 6 8 10 12 14 16 18 20

Nx, Ny

16 3.4 7.9 13.5 20.3 28.2 37.5 47.9 59.6 72.7 87.3
24 3.2 7.3 12.0 17.5 23.8 30.8 38.6 47.3 56.6 66.7
32 3.2 6.9 11.3 16.1 21.6 27.6 34.2 41.3 49.0 57.5

(
Âx⊙Ây

)
ĜT
β . Furthermore, the multipath AoAs {ϕℓ, θℓ}

L
ℓ=1

can be estimated by leveraging the rotational-invariance fea-

ture of Âx, Ây as

ω̂x,ℓ , sin ϕ̂ℓ cos θ̂ℓ =
λ

2πd
∡([âx,ℓ]

†
1:Nx−1[âx,ℓ]2:Nx

),

ω̂y,ℓ , sin ϕ̂ℓ sin θ̂ℓ =
λ

2πd
∡([ây,ℓ]

†
1:Ny−1[ây,ℓ]2:Ny),

θ̂ℓ = tan−1 ω̂y,ℓ

ω̂x,ℓ
, ϕ̂ℓ = sin−1 ω̂x,ℓ

cos θ̂ℓ
= sin−1 ω̂y,ℓ

sin θ̂ℓ
, (25)

where ∡(·) denotes the phase angle extraction operator. Final-

ly, one can determine the scaling ambiguity of factor matrices

and estimate the complex gains β̂ℓ , [β̂ℓ,1, . . . , β̂ℓ,P ]
T as9

β̂ℓ = Diag(x)−1ĝβ,ℓ

(
a†x(ϕ̂ℓ, θ̂ℓ)âx,ℓ

)(
a†y(ϕ̂ℓ, θ̂ℓ)ây,ℓ

)

= Diag(x)−1ĝβ,ℓ[Λx]ℓ,ℓ[Λy]ℓ,ℓ, ∀ℓ ∈ I(L), (26)

where x , [x1, . . . , xP ]
T concatenates the pilot symbols;

{Λx,Λy} ∈ C
L×L are the diagonal scaling ambiguities.

Note that for the downlink case, we particularly design a

set of precoded pilots as
{
Fqxq , Q

− 1
2

B e
(NB)
q

}QB

q=1
with at

least MB ≥ QB + 1 RFCs [45]. Then, the ℓth column of

Ĝα ∈ C
QBP×L0 equals gα,ℓ = [aB(ϕB,ℓ, θB,ℓ)]1:QB

⊗αℓ with

αℓ , [αℓ,1, . . . , αℓ,P ]
T . One can jointly estimate the entries

of aB(ϕ̂B,ℓ, θ̂B,ℓ) and the complex gains α̂ℓ as

[aB(ϕ̂B,ℓ, θ̂B,ℓ)]q+1 = [ĝα,ℓ]
†
(q−1)P+1:qP [ĝα,ℓ]qP+1:(q+1)P ,

α̂ℓ = [ĝα,ℓ]1:P , ∀q ∈ I(QB − 1), ℓ ∈ I(L0),
(27)

where {ϕ̂B,ℓ, θ̂B,ℓ}
L0

ℓ=1 can be recovered according to the

specific structure of BS antenna array.

We summarize the Fiber Sampling Tensor Completion-

based channel estimation scheme as Algorithm 1, abbreviated

as FS-TC. The algorithm only harnesses standard linear al-

gebra and avoids iterative runs and random initialization, and

equally importantly, it guarantees to return the exact solution

in the noiseless case.

Remark. In practice, the calculations of kernel subspaces

included in (19), (23) will suffer from the environment noise

N in (7). Hence, in Step 4, we alternatively take the sin-

gular vectors corresponding to the smallest singular values

of SselQ2(Z) ∈ C
∥dsel∥0×C

2
L+1 as its kernel subspace basis.

Similarly, in Step 7, we take the left singular vector corre-

sponding to the dominant singular value of
[
P

(ℓ)
1 , . . . ,P

(ℓ)
Ny

]
∈

C
Nx×(Ny+NP) as the estimation of ax,ℓ. Note that SselQ2(Z)

9In this procedure, the factors {ax,ℓ,ay,ℓ,gβ,ℓ}
L
ℓ=1 are automatically

paired with each other. One can ignore the column permutation ambiguity
since it is identical for all the factor matrices.

Algorithm 1 FS-TC Algorithm (Uplink)

Require: observation signal Z ∈ C
Nx×Ny×P , indicator W ∈

{0, 1}Nx×Ny×P , rank L.

1: Determine the binary indicator dsel as well as the selection

matrix Ssel by (9).

2: Perform SVD of Zsub = UsubΣsubV
H
sub, and derive the

compressed tensor Z by (14).

3: Compute the transform Q2(Z) by (16). Perform SVD of

SselQ2(Z) = UQΣQVH
Q .

4: Derive the basis TS of πS by (18). Compute the basis

M = TS [VQ]:,C2
L
+1:C2

L+1
by (19).

5: Derive the tensor M by (20). Solve this CPD as a simul-

taneous diagonalization problem by the GEVD method

[44] or the extended QZ method [46], obtaining F.

6: Derive Ξ(Ax,Ay) = UsubΣsubF
−T , Gβ = V∗

subF by

(15).

7: Derive P(ℓ) = reshape
(
STW[Ξ(Ax,Ay)]:,ℓ; [Ny, Nx]

)T
.

Derive Ax, Ay by (21)–(24).

8: Estimate the AoAs {ϕℓ, θℓ} by (25). Estimate the complex

path gains β̂ℓ by (26).

9: return channel matrix
(
Âx ⊙ Ây

)
ĜT
β , channel path

parameters {ϕ̂ℓ, θ̂ℓ, β̂ℓ}.

has a rank of C2
L, while the SVD algorithm returns up to

min
(
∥dsel∥0, C

2
L+1

)
singular values and the corresponding

singular vectors. In order to approximate the L-dimensional

kernel subspace by [VQ]:,C2
L
+1:C2

L+1
in step 4, the condition

∥dsel∥0 ≥ C2
L+1 requires to be satisfied, which is stricter than

the uniqueness condition ∥dsel∥0 ≥ C2
L in (11). Considering

the worst configuration as illustrated in Fig. 3(b), we suggest

to activate NA ≥ Nx +Ny + C2
L+1 − 1 sensors for practical

training to guarantee the validness of algorithms.

IV. TENSOR COMPLETION-BASED WIDEBAND CHANNEL

ESTIMATION

In this section, we generalize the narrowband channel

estimation approach to solve the wideband OFDM channel

estimation problem, in which we can leverage the structural

information of training signals in the frequency domain to

relax the uniqueness conditions of tensor completion and

develop the corresponding algorithms.

A. Space-Time-Frequency Signal Tensor

We represent the concatenated received incomplete uplink

signal in (5) across K subcarriers in P time slots Z =
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[z1,1, . . . , zP,1, z1,2, . . . , zP,K ] ∈ C
NI×KP as10

Z = W ∗Y = W ∗
(
(Ax ⊙Ay) (Pτ ⊙Gβ)

T
)
+W ∗N,

(28)

where Y(N) ∈ C
NI×KP , W ∈ {0, 1}NI×KP denote the

training signal (noise) and indicator, respectively; Pτ =
[pτ,1, . . . ,pτ,L] ∈ C

K×L and Gβ = [gβ,1, . . . ,gβ,L] ∈

C
P×L with pτ,ℓ ,

[
1, . . . , e−j2π

(K−1)fsτℓ
Ks

]T
and gβ,ℓ ,

[βℓ,1, . . . , βℓ,P ]
T

. According to (41), Y(Z) can be regarded as

a tensor matricization, i.e., Matr (Y(Z); [2, 1], [4, 3]), where

Y =

L∑

ℓ=1

ax,ℓ ◦ ay,ℓ ◦ pτ,ℓ ◦ gβ,ℓ +N

= [[Ax,Ay,Pτ ,Gβ ]] +N , (29a)

Z = W ∗Y

= W ∗

( L∑

ℓ=1

ax,ℓ ◦ ay,ℓ ◦ pτ,ℓ ◦ gβ,ℓ

)
+W ∗N , (29b)

with W ∈ {0, 1}Nx×Ny×K×P and N ∈ {0, 1}Nx×Ny×K×P

being the tensorial forms of W and N, respectively. By

applying the row-selection matrix SW ∈ {0, 1}NA×NI in (8),

the effective observed signal submatrix Zsub ∈ C
NA×KP can

be similarly obtained as

Zsub = SWY = Ξ (Ax ⊙Ay) (Pτ ⊙Gβ)
T
+ SWN. (30)

One can verify that the (i, j)th passive unit cell corresponds

to an all-zero mode-(3, 4) slice Wi,j,:,: as well as an all-zero

row [W](i−1)Ny+j,:. Solving (29) can be referred to as a slice

sampling CPD tensor completion problem.

B. Uniqueness Condition of Tensor Completion

We define the incomplete matrix P(ℓ) following (10). Then,

by leveraging the structural characteristic of Pτ in (28), we

develop the following uniqueness condition of the fourth-order

CPD tensor completion in (29).

Theorem 2. Consider a tensor Y ∈ C
Nx×Ny×K×P with factor

matrices {Ax,Ay,Pτ ,Gβ}, partially observed by Z in (29).

Let P̃(ℓ) be the restricted bipartite graph of P(ℓ) as defined in

(10). If




rank (Ξ (Ax,Ay)) = rank
(
P(K−1)
τ ⊙Gβ

)
= L,

τℓ1 ̸= τℓ2 , ∀ℓ1 ̸= ℓ2 ∈ I(L),

P̃
(ℓ) is a connected graph, ∀ℓ ∈ I(L),

(31)

where P
(K−1)
τ , [Pτ ]1:K−1,:, then the rank of Y equals L,

and its CPD is unique up to scaling and permutation ambiguity.

Proof: See Appendix B.

In different cellular communication scenarios, some signal

propagation paths with different AoAs coincidentally expe-

rience identical time delay. In this case, Theorem 2 is no

10One default configuration is to insert identical pilots, e.g, xp,k = 1,
into consecutive subcarriers. Actually, all the common comb-type pilot
arrangements are permitted, which only cause a minor variation of the

algorithm. Moreover, one may use rotational-invariant pilots, e.g., {xp,k ,

e(k−1)δ}K
k=1, to better control the peak-to-average power ratio.

longer applicable. Fortunately, we can leverage the concept of

virtual space-frequency array to develop another uniqueness

condition. Define

Ãx , P(Kx)
τ ⊙Ax, ãx,ℓ = p

(Kx)
τ,ℓ ⊗ ax,ℓ, (32a)

Ãy , P(Ky)
τ ⊙Ay, ãy,ℓ = p

(Ky)
τ,ℓ ⊗ ay,ℓ, (32b)

where Kx + Ky = K + 1, p
(Kx)
τ,ℓ =

[
P

(Kx)
τ

]
:,ℓ

, p
(Ky)
τ,ℓ =

[
P

(Ky)
τ

]
:,ℓ

. Then, we determine the binary indicator d̃sel ∈

{0, 1}C
2
KxNx

C2
KyNy as

d̃sel =
[
d̃(1,2),(1,2), d̃(1,2),(1,3), . . . ,

d̃(KxNx−1,KxNx),(KyNy−1,KyNy)

]T
,

d̃(i1,i2),(j1,j2) =





1, if ỹi1,j1,:, ỹi1,j2,:, ỹi2,j1,:, ỹi2,j2,:

are observable fibers,

0, otherwise,

(33)

where the fibers {ỹi,j,:} ∈ C
P are from Ỹ , [[Ãx, Ãy,Gβ ]] ∈

C
KxNx×KyNy×P . Now, another new uniqueness condition of

CPD tensor completion is presented as follows:

Theorem 3. Consider a tensor Y ∈ C
Nx×Ny×K×P with factor

matrices {Ax,Ay,Pτ ,Gβ}, partially observed by Z in (29).

Let D̃sel = Diag(d̃sel) as defined in (33), and let P̃(ℓ) be the

restricted bipartite graph of P(ℓ) as defined in (10). If




rank(Gβ) = L,

rank
(
Dsel

(
C2(Ãx)⊙C2(Ãy)

))
= C2

L,

P̃
(ℓ) is a connected graph, ∀ℓ ∈ I(L),

(34)

with Ãx, Ãy defined as in (32), then the rank of Y equals

L, and its CPD is unique up to scaling and permutation

ambiguities.

Proof: See Appendix C.

Remark. In the generic case, the first condition of (31)

becomes min(NA, (K − 1)P ) ≥ L. On the other hand, as

illustrated in Fig. 4, each of the NA determinate entries of

P(ℓ) in (10) corresponds to a Kx × Ky effective submatrix

in the virtual array planes ãx,ℓã
T
y,ℓ, which significantly in-

creases ∥d̃sel∥0 in (33). Therefore, Theorem 2 and 3 indicate

that introducing structural information of training signals in

the frequency domain, i.e., Pτ , helps relax the uniqueness

condition of CPD tensor completion.

C. Proposed Algorithms

The Slice Sampling Tensor Completion-based wideband

channel estimation scheme is summarized as Algorithm 2,

abbreviated as SS-TC. This approach contains two schemes

respectively derived from Theorem 2 and 3.

Remark. If Kx ≈ Ky, one can define Km , min(Kx,Ky)
and compute

Ãxy ,

[
[Ãx]

T
1:Nx,:, [Ãy]

T
1:Ny,:, . . . ,

[Ãx]
T
(Km−1)Nx+1:KmNx,:

, [Ãy]
T
(Km−1)Ny+1:KmNy,:

]T

= P(Km)
τ ⊙

[
AT

x AT
y

]T
, (35)
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(a) Virtual array–type I (b) Virtual array–type II

Fig. 4. Diagram of a virtual space-frequency array plane of hybrid IRS
with Kx = Ky = 2. The gray/red/green squares denote the passive/basic
active/extra active entries; the solid/dotted boxes denote the physical/virtual

IRS elements. (a)
{
p
(Kx)
τ,ℓ

⊗ ax,ℓ

}
×

{
p
(Ky)

τ,ℓ
⊗ ay,ℓ

}
-plane. (b) Equivalent

{
ax,ℓ ⊗ p

(Kx)
τ,ℓ

}
×

{
ay,ℓ ⊗ p

(Ky)

τ,ℓ

}
-plane.

Algorithm 2 SS-TC Algorithm (Uplink)

Require: observation signal Z ∈ C
Nx×Ny×K×P , indicator

W ∈ {0, 1}Nx×Ny×K×P , rank L.

Scheme 1 following Theorem 2:

1: Derive the generators {ω̂τ,ℓ} of Pτ by (42)–(44). Derive

Gβ by (45).

2: Compute Ξ(Ax,Ay) by (42). Derive Ax, Ay by (21)–

(24).

3: Estimate the AoAs {ϕ̂ℓ, θ̂ℓ} by (25).

4: Determine the scaling ambiguities {Λx,Λy,Λτ} ∈ C
L×L

to derive β̂ℓ.

Scheme 2 following Theorem 3:

1: Choose (Kx,Ky) with Kx+Ky = K+1. Compute Z̃ss ∈
C
KxNx×KyNy×P by (46)–(49).

2: Solve the CPD tensor completion of Z̃ by (14)–(24).

3: Estimate the AoAs {ϕ̂ℓ, θ̂ℓ} and time delays {τ̂ℓ} by (50).

4: Determine the scaling ambiguities {Λx,Λy,Λτ} ∈ C
L×L

to derive β̂ℓ.

return channel matrix
(
Âx ⊙ Ây

)(
P̂τ ⊙ Ĝβ

)T
, channel

path parameters {ϕ̂ℓ, θ̂ℓ, τ̂ℓ, β̂ℓ}.

to estimate {ωτ,ℓ}
L
ℓ=1 by leveraging the rotational-invariance

property of (35).

Moreover, if the system adopts a common comb-type pilot

arrangement that does not satisfy the rotational-invariance

property, neither Theorem 2 nor 3 applies. In this case, we

can directly solve the third-order CPD [[Ax,Ay,Pτ ⊙ Gβ ]]
of (29) according to Theorem 1, and solve a set of L rank-1

factorization subproblems as

{p⋆τ,ℓ,g
⋆
β,ℓ} = arg max

∥pτ,ℓ∥2
2=K,gβ,ℓ

∥∥Ω(ℓ) − pτ,ℓg
T
β,ℓ

∥∥2
F
, (36)

where Ω(ℓ) = reshape([Pτ ⊙Gβ ]:,ℓ ; [P,K])T ∈ C
K×P .

One can take the dominant left/right singular vectors of Ω(ℓ)

as the solution of (36).

V. NUMERICAL RESULTS

A. Computational Complexity

In Algorithm 1, the complexity is dominated by the con-

struction of SselQ2(Z) and the computation of the CPD

M, which are of the order O(∥dsel∥0C
2
L+1) and O(L3)

respectively. In Algorithm 2, the complexity of Solution 1

is dominated by the derivation of Pτ , Gβ , which is of the

order O(KPL2); the complexity of Solution 2 is dominated

by the computation of the CPD Z̃ , which is of the order

O(∥d̃sel∥0C
2
L+1+L

3). As a comparison, the CS method [23]

has a complexity of the order O(NxNyP (Nx + Ny)); the

Alternating Least Squares (ALS) [28] has a complexity of the

order O(3L2NA+L3(Nx+Ny+P )) per iteration; the Tensor

completion by parallel Matrix fACtorization (TMac) [29] has

a complexity of the order O(LNxNyP+L2(Nx+Ny+P )) per

iteration; the optimization-based nonlinear least squares (NLS)

[30] has a complexity of the order O(L2NA+L3NxNyP ) per

iteration.

B. Simulation Results

All the typical simulation parameters are listed here: Nx =
Ny = 16 or 32; NB = 32 (ULA), MB = 3; QM = 1,

QB = 2; Ks = 128, fc = 28GHz, L0 = L = 4, U = 1;

the AoD/AoAs {ϕB(I,u),ℓ, θB(I,u),ℓ} follow the uniform distri-

bution U(−π
2 ,

π
2 ); the complex gains {αℓ,p, βu,ℓ,p} follow the

normal distribution CN (0, 1); the time delays {τ0(u),ℓ} follow

the uniform distribution U(0, 102ns). The proposed FS-TC and

SS-TC schemes are compared with the CS [23], ALS [28],

TMac [29] and NLS [30].11

1) Uplink Narrowband Training: Table II tabulates the

algorithm computational complexity quantified by the single

running time (milliseconds) as well as the effective channel

estimation performance evaluated by the normalized mean

square error (NMSE).12 It shows that the proposed FS-TC

can achieve enhanced performance with the lowest complexity,

and the running time is inversely proportional to the number

of missing signal fibers, or equivalently the missing ratio

(MR) NP/NI. The performance and complexity of the iterative

counterparts suffer from either the MR/noise level or the

IRS scale, respectively. On the contrary, the FS-TC performs

robustly against those hardware and system factors.

Fig. 5 plots the NMSE curves of channel matrices versus

the received SNR, i.e., ∥Y − N ∥2F /∥N ∥2F . It indicates that

the FS-TC outperforms the ALS/TMac and CS when the SNR

increases to 15 dB and 22.5 dB, respectively, while it can also

achieve performance close to that of the NLS in the high-SNR

region with much faster speed. Moreover, the performance

of FS-TC is exponentially improved against the increasing

SNR, while the CS and ALS cannot benefit much from the

SNR. It can also be observed that even with a higher MR, the

performance of the second configuration is better than that of

the first one. This indicates that the number of effective signal

measurements is more significant than the sampling ratio for

the recovery of partially observed signal tensors.

11To better evaluate the estimation performance of channel parameters, the
tensor rank L0, L is assumed to be known or perfectly estimated a priori for
all the approaches. The angle resolution of CS method is 2π

8Nx
× 2π

8Ny
.

12The NMSE metrics for narrowband and wideband uplink training are

defined as ∥(Ax ⊙Ay)GT
β
− (Âx ⊙ Ây)ĜT

β
∥2F /∥(Ax ⊙Ay)GT

β
∥2F and

∥(Ax⊙Ay)(Pτ⊙Gβ)
T −(Âx⊙Ây)(P̂τ⊙Ĝβ)

T ∥2F /∥(Ax⊙Ay)(Pτ⊙
Gβ)

T ∥2F , respectively. The NMSE of downlink training is similarly defined.
The simulation laptop configuration is Intel(R) Core(TM) i7-8750H CPU
2.20GHz, 8.00 GB RAM; the notation “—” means that the algorithm cannot
return effective estimates with NMSE < 1.0.
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TABLE II
PERFORMANCE COMPARISONS OF TENSOR COMPLETION APPROACHES

Approaches CS [23] ALS [28] TMac [29] NLS [30] FS-TC

MR
(%)

SNR
(dB)

err time err time err time err time err time

[[Nx, Ny, P ]]L = [[16, 16, 6]]4

75
25 1.1e-2 3.0e+1 4.6e-1 4.2e+1 1.3e-2 2.3e+2 4.8e-3 4.0e+3 5.4e-3 3.3e+1
40 1.0e-2 3.0e+1 3.7e-1 4.2e+1 2.2e-3 2.2e+2 1.4e-4 3.9e+3 1.6e-4 3.2e+1

80
25 1.2e-2 2.8e+1 — 3.9e+1 3.0e-1 2.3e+2 6.4e-2 4.7e+3 8.9e-3 2.6e+1

40 1.1e-2 2.7e+1 — 3.8e+1 2.8e-1 2.4e+2 2.7e-3 4.5e+3 2.5e-4 2.5e+1

[[Nx, Ny, P ]]L = [[32, 32, 6]]4

85
25 8.5e-3 4.6e+2 3.3e-1 2.9e+2 6.5e-3 5.3e+2 3.1e-3 4.1e+3 3.8e-3 1.1e+2
40 8.2e-3 4.4e+2 2.4e-1 3.0e+2 1.1e-3 5.2e+2 1.2e-4 4.1e+3 1.3e-4 1.2e+2

90
25 9.3e-3 3.4e+2 — 2.3e+2 5.4e-1 5.0e+2 — 5.5e+3 7.6e-3 8.6e+1

40 9.2e-3 3.2e+2 — 2.3e+2 4.6e-1 5.1e+2 9.2e-1 5.4e+3 1.7e-4 8.7e+1

10 15 20 25 30 35 40

SNR (dB)

10
-4

10
-3

10
-2

10
-1

10
0

N
M

S
E

CS [23]

ALS [28]

TMac [29]

NLS [30]

FS-TC

Fig. 5. Channel NMSE performance vs. SNR, P = 6.

Fig. 6 plots the NMSE curves versus the MR of hybrid

IRS. It illustrates that the performance of all the approaches,

especially that of the ALS, TMac and NLS, deteriorates

against the increasing MR. For the case where the number of

effective signal samples is extremely limited, the FS-TC shows

its superior performance. Concretely, when the MR exceeds

75% for the 16× 16-layout and 85% for the 32× 32-layout,

the FS-TC evidently outperforms most of the counterparts.

The robustness and short running time make FS-TC perfectly

suitable for low-complexity IRSs with limited number of

active elements, which can efficiently reduce the hardware

complexity and power consumption.

Fig. 7 plots the NMSE curves versus the number of training

frames. It shows that except the CS method, all the other

methods can achieve enhanced estimation accuracy against

the increasing P . This is due to the fact that more training

time slots extend the depth of observation signal fibers to

improve the performance of tensor completion approaches,

which corroborates the analysis of uniqueness condition, while

the performance of CS mainly depends on the resolution of

sensing codebook. Furthermore, it can be observed that as

P increases, the rate of performance enhancement gradually

decreases.

Fig. 8 plots the number of training frames versus the

67.5 72.5 77.5 82.5 87.5 92.5

MR (%)

10
-4

10
-3

10
-2

10
-1

10
0

N
M

S
E

CS [23]

ALS [28]

TMac [29]

NLS [30]

FS-TC

Fig. 6. Channel NMSE performance vs. MR, P = 6, SNR = 30 dB.

4 6 8 10 12 14 16

Training Frames (P)

10
-4

10
-3

10
-2

10
-1

10
0

N
M

S
E

CS [23]

ALS [28]

TMac [29]

NLS [30]

FS-TC

Fig. 7. Channel NMSE performance vs. training frames, SNR = 30 dB.

received SNR, given a target NMSE. It shows that the as the

SNR gradually increases, the minimal number of measure-

ments P required to achieve desired performance decreases

exponentially by orders of magnitude. Concretely, given an

objective NMSE, the maximal SNR gap that can be compen-
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10
1

10
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T
ra
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 F
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 (
P

)

ALS [28]

TMac [29]

NLS [30]

FS-TC

NMSE = (5.5 0.2) 10
-3

NMSE = (3.7 0.2) 10
-3

Fig. 8. Training frames vs. SNR given a target NMSE.

sated by adjusting the quantity of measurements is 10 dB, 15

dB and 20 dB for ALS, TMac and NLS/FS-TC respectively,

whilst this considerable gap narrows down as the number of

effective samples NA reduces.

2) Downlink Wideband Training: Fig. 9 plots the NMSE

curves of downlink wideband training versus the SNR.13 It

demonstrates that the SS-TC schemes achieve exponential-

ly improved performance against the increasing SNR, and

systematically outperform the other counterparts at the high-

SNR region. Moreover, as the bandwidth increases, the SS-

TC-1 returns significantly enhanced results, while the SS-

TC-2 is relatively insensitive to fs. This can be explained

as follows: an increasing fs (or decreasing Ks) enlarges the

subcarrier interval, as well as, the statistical phase distances of

{e−j2πfsτ0,ℓ/Ks} to improve the resolution of {τ0,ℓ, αℓ,p} in

the SS-TC-1, which directly determines the recovery accuracy

of Ax(y). In the SS-TC-2 method, the information of time

delays has been integrated into the virtual space-frequency

arrays and gets recovered after the AoAs, which contributes

much less to channel matrix estimation.

Fig. 10 plots the rooted mean square error (RMSE) curves

of multipath parameters, i.e., {ϕI,ℓ, θI,ℓ, ϕB,ℓ, τ0,ℓ} versus the

SNR.14 One can observe that the recovery accuracy achieved

by the SS-TC methods exponentially improves against the

increasing SNR. It also shows that the increasing bandwidth

improves the RMSEs of all the parameters, especially the time

delays, in the SS-TC-1, whilst those of AoA/AoDs in the

SS-TC-2 remain relatively stable. This phenomenon conforms

with the previous frequency analysis of Fig. 9. Combining with

the complexity analysis, we can infer that the SS-TC-1 is suit-

able for large bandwidths with numerous training subcarriers,

while the SS-TC-2 is oppositely suitable for the case with

small values of K and fs. By contrast, the CS method returns

13The scheme 1 and 2 in Algorithm 2 are denoted by SS-TC-1 and SS-TC-

2, respectively. The ALS method does not effectively work, and therefore, its
performance curve is omitted.

14The RMSE of parameter xℓ is defined as

√
1
L0

∑L0
ℓ=1(xℓ − x̂ℓ)2. The

CS method cannot factorize the frequency and time parameters, and the TMac
method computes the whole tensor signal but cannot derive the factor matrices.
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Fig. 9. Channel NMSE performance vs. SNR, Nx = Ny = 16, MR =
82.5%, P = 6,K = 3.
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Fig. 10. Parameter RMSE performance vs. SNR, Nx = Ny = 16, MR
= 82.5%, P = 6,K = 3.

constant RMSE of AoA due to the fixed resolution of angle

codebooks; the NLS method yields considerable parameter

accuracy but worse channel NMSE, which indicates that it

lacks sufficient stability to simultaneously obtain accurate

estimation along the space/time/frequency domains.

Fig. 11 plots the NMSE curves versus the quantity of

training subcarriers. It shows that as K increases, the SS-

TC and NLS achieve evidently enhanced performance, while

the CS and TMac improve only marginally. Moreover, one

can observe that as the performance of SS-TC-1 continues

to improve, the result of SS-TC-2 gradually converges to a

threshold of 4× 10−4. This observation is consistent with the

earlier frequency analysis of Fig. 9, 10, which suggests that

there is no need to further increase the number of training

subcarriers when the structural frequency information has been

fully exploited. Furthermore, compared with Fig. 7, Fig. 11
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Fig. 11. Channel NMSE performance vs. training subcarriers, Nx = Ny =
16, MR = 82.5%, P = 6, SNR = 30 dB.

shows that the training subcarriers do not contribute as much

as the training frames to the tensor signal completion, which

can be explained that as K, P increase to large values, the

“regularly”-sampled Pτ does not provide as much effective

information as the randomly-sampled Gα.

Fig. 12 plots the ergodic spectral efficiency curves of the

IRS-aided system versus the MR, which is defined as [6]

1

PK
E




∑

p,k

log2

(
1 +

Pp,k
σ2
n

∥∥∥HBI
p,kDiag(hIM

p,k)ψ̂p,k

∥∥∥
2
)
 ,

(37)

where Pp,k, σ2
n denote the transmit power and noise variance,

respectively; the IRS coefficients ψ̂p,k are generated by search-

ing a codebook Dx ⊗Dy with [Dx(y)]m,n = e
−j(m−1) 2π

Nx(y)
n

based on the estimated ĤBM
p,k , ĤBI

p,kDiag(ĥIM
p,k) as in [23].15

The figure illustrates that when the MR is less than 85.0%,

the SS-TC methods, especially the SS-TC-2 version, can

achieve robust spectral efficiency close to that with perfect

CSI. Moreover, the CS method yields considerable spectral

efficiency thanks to its robust channel NMSE performance

shown in Fig. 5, 6. As the MR gradually increases, the spectral

efficiency performance of TMac and NLS dramatically dete-

riorates because the former cannot acquire effective channel

estimates, and the latter suffers from estimation instability with

a limited number of samples NA.

VI. CONCLUSIONS

We considered the channel estimation of an IRS-assisted

mmWave MIMO-OFDM system. We divided the cascaded

channel estimation problem to the MS-to-IRS and BS-to-

IRS subproblems to avoid the inherent estimation ambiguities.

We developed a hybrid IRS design composed of passive

and active modules, balancing the requirements of effective

15In the simulation, the transmitted SNR Pt,k/σ
2
n is approximated by the

quotient of the received SNR ρ and the maximal channel gain given the true
codeword ψ⋆

p,k
as ρ/∥HBM

p,k
ψ⋆

p,k
∥2.
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Fig. 12. Ergodic spectral efficiency performance vs. MR, Nx = Ny = 16,
P = 6,K = 3, SNR = 30 dB.

signal processing and hardware complexity. We modeled

the narrowband training signal as an incomplete third-order

CPD tensor and derived a fiber sampling-tensor completion

problem. We developed an algebraic solution that applies to

arbitrary valid design of hybrid layout. Then, we turned to the

wideband OFDM training case, and established a fourth-order

CPD tensor completion model. By leveraging the structural

characteristic of training signals in the space and frequency

domain, we proposed two different channel estimation and

parameter recovery solutions. The uniqueness conditions of

CPD tensor completion were also analyzed, which can inform

the hybrid IRS design and training configuration. Numerical

results showed that the proposed strategy outperforms the

traditional schemes in terms of accuracy and complexity. In

our future work, we are going to improve the algorithm

performance against regular sampling designs.

APPENDIX A

PRELIMINARIES OF TENSOR THEORY

We present here some basic concepts of tensor alge-

bra. Tensors are multi-dimensional data arrays. Vectors and

matrices are one-dimensional and two-dimensional tensors,

respectively.

Definition 1. X , [xi1,...,iN ] ∈ C
I1×···×IN denotes a N th-

order tensor. The vector xi1,...,in−1,:,in+1,...,iN ∈ C
In with all

indices along the nth dimension is called a mode-n fiber. The

matrix Xi1,...,in1−1,:,in1+1,...,in2−1,:,in2+1,...,iN ∈ C
In1×In2

with all indices along the n1, n2th dimensions is called a

mode-(n1, n2) slice.

Definition 2 [25]–[27]. A Canonical Polyadic Decomposition

(CPD) is a factorization of X into a sum of rank-1 terms:

X =

R∑

r=1

a(1)r ◦ a(2)r ◦ · · · ◦ a(N)
r

= [[A(1),A(2), . . . ,A(N)]], (38)

where R is the rank of X , i.e., the minimal number of rank-

1 tensors that yield X in a linear combination. The matrices
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A(n) =
[
a
(n)
1 , . . . , a

(n)
R

]
∈ C

In×R, ∀n are referred to as the

factor matrices of CPD in (38).

Definition 3 [47]. The matricization operation denoted by

Matr(X ; [k1, . . . , kP ], [kP+1, . . . , kN ]) unfolds X into a ma-

trix X ∈ C

∏P
p=1 Ikp×

∏N
q=P+1 Ikq as:

X̃ = permute (X ; [k1, . . . , kN ]) ,

X = reshape
(
X̃ ;
[∏P

p=1 Ikp ,
∏N
q=P+1 Ikq

])
, (39)

where X̃ ∈ C
Ik1

×···×IkN ; permute(X ; tTord) rearranges the

dimensions of tensor X in the order specified by tord;

reshape(X ; tTsize) reconstructs X into an array X with sizes

specified by tsize.

As an inverse transform, the tensorization operation de-

noted by Tens(X; [I1, . . . , IN ], [k1, . . . , kP ], [kP+1, . . . , kN ])
tensorizes X to a tensor X as:

X̃ = reshape(X; [Ik1 , . . . , IkN ]),

X = permute(X̃ ; tTreord), (40)

where [treord]kn = n, ∀n specifies the reordering indices.

The above functions share the identical definitions of their

counterparts in MATLAB.16

Lemma 1 [44]. Consider a CPD tensor X ∈ C
I1×···×IN with

factor matrices A(n) ∈ C
In×R, ∀n ∈ I(N). One can verify

the relationship between the matricization result of CPD model

and its factor matrices as

X = Matr(X ; [k1, . . . , kP ], [kP+1, . . . , kN ])

=
(
A(kP ) ⊙ · · · ⊙A(k1)

)(
A(kN ) ⊙ · · · ⊙A(kP+1)

)T
.

(41)

APPENDIX B

PROOF OF THEOREM 2

We perform the SVD of (29) as Zsub = UsubΣsubV
H
sub,

where Usub ∈ C
NA×L, Σsub ∈ C

L×L and Vsub ∈ C
KP×L.

If Ξ(Ax,Ay) and P
(K−1)
τ ⊙Gβ have full column rank, there

exists a nonsingular matrix F ∈ C
L×L such that

UsubΣsubF
−T = Ξ(Ax,Ay),V

∗
subF = Pτ ⊙Gβ . (42)

By leveraging the rotational-invariance characteristic of Pτ ,

we have

V∗
sub,1F = P(K−1)

τ ⊙Gβ , (43a)

V∗
sub,2F =

(
P(K−1)
τ ⊙Gβ

)
∆τ , (43b)

where Vsub,1 , [Vsub]1:(K−1)P,:, Vsub,2 , [Vsub]P+1:KP,:;

∆τ , Diag
(
[ejωτ,1 , . . . , ejωτ,L ]T

)
with ωτ,ℓ , −2πfsτℓ/Ks.

∆τ and F can be derived by the GEVD method as

F∆τF
−1 =

(
V∗

sub,1

)†
V∗

sub,2. (44)

If ∆τ contains distinct diagonal entries, Gβ can be column-

wisely computed as [48]

gβ,ℓ =

(
pHτ,ℓ

∥pτ,ℓ∥22
⊗ IP

)
V∗

subfℓ. (45)

16http://www.mathworks.com/help/matlab/ref/reshape(permute).html.

One can compute Ξ(Ax,Ay) by (42), and recover {ax,ℓ,ay,ℓ}
following (21)–(24).

APPENDIX C

PROOF OF THEOREM 3

We perform a matricization of Z in (29) as

Z̃ , Matr(W ; [1, 3], [4, 2]) ∗Matr(Y ; [1, 3], [4, 2])

= W̃ ∗
(
(Pτ ⊙Ax)(Ay ⊙Gβ)

T
)
, (46)

where W̃ ∈ {0, 1}KNx×PNy is the matricization result of W .

Then, we perform a spatial smoothing transformation of (46)

with Kx +Ky = K + 1 as

Z̃ss ,

[
J1Z̃ J2Z̃ · · · JKy Z̃

]
,

Jky ,
[
0Kx×(ky−1) IKx 0Kx×(Ky−ky)

]
⊗ INx . (47)

By leveraging the rotational-invariance feature of Pτ , we have

[45], [49]

Z̃ss = W̃ss ∗

((
P(Kx)
τ ⊙Ax

)(
P(Ky)
τ ⊙Ay ⊙Gβ

)T)

= W̃ss ∗
(
Ãx

(
Ãy ⊙Gβ

)T)
, (48)

where W̃ss ∈ {0, 1}KxNx×KyNyP is the spatial smoothing

result of W̃. The equivalent incomplete signal tensor Z̃ss ∈
C
KxNx×KyNy×P can be derived from (48) as

Z̃ss , Tens(Z̃ss; [KxNx,KyNy, P ], 1, [3, 2])

= W̃ss ∗ [[Ãx, Ãy,Gβ ]], (49)

where W̃ss ∈ {0, 1}KxNx×KyNy×P is the tensorization result

of W̃ss. This CPD tensor completion problem can be solved up

to scaling and permutation ambiguities via (14)–(24). One can

separate {Ax,Ay,Pτ} from {Ãx, Ãy} by leveraging their

rotational-invariance feature as

ejωx,ℓ = [Πxãx,ℓ]
†
1:(Nx−1)Kx

[Πxãx,ℓ]Kx+1:NxKx , (50a)

ejωy,ℓ = [Πyãy,ℓ]
†
1:(Ny−1)Ky

[Πyãy,ℓ]Ky+1:NyKy , (50b)

ejωτ,ℓ = [ãx,ℓ]
†
1:(Kx−1)Nx

[ãx,ℓ]Nx+1:KxNx

= [ãy,ℓ]
†
1:(Ky−1)Ny

[ãy,ℓ]Ny+1:KyNy , (50c)

where the phases ωx,ℓ , sinϕℓ cos θℓ, ωy,ℓ , sinϕℓ sin θℓ
and ωτ,ℓ , −2πfsτℓ/Ks are called the generators of Ax,

Ay and Pτ , respectively. Πx ∈ {0, 1}KxNx×KxNx and

Πy ∈ {0, 1}KyNy×KyNy are permutation matrices such that

ΠxÃx = Ax⊙P
(Kx)
τ and ΠyÃy = Ay⊙P

(Ky)
τ , respectively.
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