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a b s t r a c t 

Traditional spectral-based methods such as PCA are popular for anomaly detection in a variety of prob- 
lems and domains. However, if data includes tensor (multiway) structure (e.g. space-time-measurements), 
some meaningful anomalies may remain invisible with these methods. Although tensor-based anomaly 
detection (TAD) has been applied within a variety of disciplines over the last twenty years, it is not 
yet recognized as a formal category in anomaly detection. This survey aims to highlight the potential of 
tensor-based techniques as a novel approach for detection and identification of abnormalities and failures. 
We survey the interdisciplinary works in which TAD is reported and characterize the learning strategies, 
methods and applications; extract the important open issues in TAD and provide the corresponding ex- 
isting solutions according to the state-of-the-art. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Those patterns in data that do not conform to expected behav- 
ior are called anomalies and the process of detection of such pat- 
terns is known as anomaly detection [1] . Anomaly detection is an 
essential component of many safety, monitoring and surveillance 
systems. The reason is that it uncovers significant and critical facts 
about the system’s behavior that leads to prevention of further es- 
calation and losses. Plenty of methods have been developed dur- 
ing the last two decades for anomaly detection in different do- 
mains, the majority of which are covered in the survey paper [1] . 
One group of methods that is mentioned in this survey is spectral 
methods. These approaches attempt to project high dimensional 
data onto a lower subspace in which anomalies can be identified 
more easily. The main assumption of these techniques is that nor- 
mal and abnormal instances appear significantly different in the 
projected subspace [1] . However, in many real-world applications 
we deal with data with tensor (multiway) structure which unfor- 
tunately is widely ignored. In such circumstances, anomalies may 
remain invisible with the matrix-based spectral methods. Besides, 
ignoring the tensor structure in data can cause some problems and 
result in wrong results. As an example some real failure case stud- 
ies of matrix-based solutions and superiority of tensor-based so- 
lutions over them are listed in Table 1 which can manifest how 

much tensors are required for anomaly detection. 
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Although authors in [1] discuss the matrix methods in their 
survey, they exclude tensors and their applications in anomaly de- 
tection. This is while over the last twenty years, since the work 
of Nomikos and MacGregor [12] , research related to tensor-based 
anomaly detection (TAD) has been exponentially growing. Further- 
more, many methods have been developed in multiple disciplines 
from chemometrics and environmental monitoring to signal pro- 
cessing and data mining. Despite the popularity of this research 
area (though with different terminologies), no comprehensive sur- 
vey on TAD is yet available. The most probable reason is that the 
TAD belongs to wide scopes and spans across different research 
fields. 

Our main objective in this survey is to bridge the gap be- 
tween two popular research areas of anomaly detection and ten- 
sors. We study the literature from all major disciplines where ten- 
sors are frequently applied and classify the contributions related 
to TAD based on some factors such as applications, learning types, 
methods and evaluation metrics. Moreover, we identify and clas- 
sify the important issues and proposed solutions in TAD research. 
We follow a motivational strategy in this survey, in the sense that 
we do not limit ourselves introducing only techniques that are 
already applied for anomaly detection. Rather, we include those 
methods that are used in the close applications, such as classifi- 
cation, regression and forecasting that may show a great potential 
for anomaly detection. Therefore, this survey can be regarded as a 
comprehensive complement for Section 9 of [1] and from the ten- 
sor point of view it can be considered as a focused complement 
for applications of tensors in data mining, i.e. survey paper in [13] . 
Our assumption is that the reader is familiar with basic concepts 
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Table 1 

Some empirical evidences in the literature indicating the superiority of tensor-based solutions over matrix solutions. 

Study Tensor method Matrix method Matrix method’s reported problem 

[2] Tucker3 PCA Difficult interpretation of score plots 
[3] PARAFAC PCA Difficult interpretation of score plots 
[4] Non-negative Multiway PCA PCA Lower classification accuracy 
[5] Incremental Tensor subpsace learning PCA Lower tracking performance 
[6] Multiway PCA PCA Higher error rate in damage detection 
[7] Multiway PCA PCA Lower recognition accuracy 
[8] HOSVD SVD Higher prediction error 
[9] Tucker3 SVD SVD fails on modeling tensor structured data 
[10] PARAFAC PCA Loss of multiway linkages plus over-fitting 
[11] PARAFAC PCA PCA fails to identify the right variance 

Table 2 

Tensor-based anomaly detection examples. 

Domain Typical tensor Application Ref. 

Process control Batch × Measurements × Time Detection of faulty batches [12] 
Environment Variables × Site × Time Detection of spatiotemporal source of pollution [18] 
Video surveillance ImgRow × ImgCol × Time Abnormal event/objects discovery [19] 
Network security OriginIP × DestIP × Time Abnormal traffic discovery [16] 
Social networks Person × Person × Time Event detection [20] 
Text-based systems Actor × Keyword × Time Event detection [21] 
Neuroscience Frequency × Channel × Time Seizure recognition [22] 
Remote sensing ImgRow × ImgCol × Wavelength Target detection [23] 
Sensors Measurements × Location × Time Anomaly detection [15] 
Transportation Origin × Destination × Time Detection of urban traffic problems [24] 
Metallurgy Eng. Coils × PSD × Frequency Fault detection in hot strip mill [25] 
Civil structures Location × Time × Frequency Detection of damages in civil structures [26] 
Mechanical systems Experiment × Sensor × Time Damage detection in aircraft wing flap [6] 
Power systems Experiments × Variables × Time Detection of voltage sags [27] 
Medical diagnosis Medication × Patient × Diagnosis Heart failure prediction [28] 
Epidemiology Space × Time × Indicators Disease outbreak prediction [29] 
Seismology Location × Time × Frequency Predicting earthquake ground motion [30] 
Criminology Lng × Lat × Time × Indicators Crime occurrence forecasting [31] 

in anomaly detection and tensor decomposition (or tensorial learn- 
ing). For this reason, we omit explanation of the straightforward 
concepts related to tensor decomposition, anomaly detection and 
spectral-based anomaly detection. Instead, we refer the reader to 
the recent surveys about anomaly detection [1] and tensor decom- 
position [13,14] that adequately cover essential technical materials 
for understanding the current review. 

The article is organized as follows. In Section 2 , we introduce 
the history of TAD and its applications. Section 3 presents learn- 
ing methods for TAD. Section 4 discusses the techniques for ten- 
sor decomposition. Section 5 outlines the issues in TAD along with 
the corresponding solutions. In Section 6 we discuss the evalua- 
tion metrics used in TAD and introduce the available software for 
tensor analysis. Section 7 concludes the survey. 

2. History and applications 

A tensor is a geometric object used in mathematics and physics 
for extension of concepts such as scalars, vectors and matrices to 
higher dimensions. The origin of the word ”tensor” is the Latin ten- 
dere ”to stretch” firstly appeared in anatomy in the seventeenth 
century to denote muscle’s stretch. It was later used in mid- 
eighteenth-century by William Hamilton to describe some con- 
cepts in quaternion algebra. Tensor calculus, which comes closer 
to the word’s current meaning, was introduced in 1900 by Italian 
mathematician Gregorio Ricci-Curbastro and his doctoral student 
Tullio Levi-Civita. In 1915, tensor was used by Albert Einstein in 
general relativity theory for explaining geometric and causal struc- 
ture of space-time and definition of concepts such as distance, vol- 
ume, curvature, angle, future and past. The first principles of ten- 
sor decomposition [14] were founded by American mathematician 
Frank Hitchcock in 1927. Complex and multiway structure of hu- 

man behaviors was probably the first motivation for use of tensors 
in data analysis. Psychologists such as Raymond Cattell, Ledyard 
Tucker and Richard Harshman were pioneers in extending ten- 
sor decomposition applications in psychology during three decades 
from 1940s to 1970s. In 1981, tensor decomposition was introduced 
by Appellof and Davidson to the Chemometrics community. The 
first applications of tensors in anomaly detection appeared in this 
community almost a decade later. The work of Nomikos and Mac- 
Gregor [12] about multi-way batch monitoring was a pioneer in 
motivating tensor (multiway) methods in the monitoring and fault 
detection problems. The modern application of tensors in anomaly 
detection appeared a decade ago in a series of articles from Ji- 
meng Sun and colleagues [15–17] who had a major contribution to 
the growth of TAD research. Nowadays, TAD’s application has been 
widespread in wider areas, including environmental monitoring, 
video surveillance, network security, social networks, text-based 
systems, neuroscience, remote sensing, engineering and other do- 
mains. In the following, some of these applications are discussed 
in more detail (See Table 2 for summary). 

2.1. Process control 

The first footprint of tensor(multiway) methods as earlier men- 
tioned can be seen in the monitoring of batch processes. The com- 
mon objective in operating batch processes is to achieve value- 
added products of high-quality with competitive prices. The goal 
of the batch process analysis is to understand the major sources of 
batch-to-batch variations [12] , real-time detection of faulty batches 
and use it to improve the operation policies. 

Tensors are very popular monitoring techniques in production 
of chemicals and other manufacturing applications. Examples are 
polymerization processes [32–35] , semiconductor etching process 
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[36–38] , manufacturing pharmaceutical materials [39,40] , wastew- 
ater treatment [41] , bioprocesses [42] , fed-batch fermentation pro- 
cess [40,43–45] , nuclear waste storage tank monitoring [46] and 
winemaking process [47] . 

In the majority of these applications, the typical tensor is a 
three-order tensor of I (batch) × J (measurement) × K (time) 
which usually is unfolded in batch or time mode. Therefore, usu- 
ally the matrix of I × JK or J × IK is processed which is called 
respectively batch-wise and time-wise unfolded matrix. The main 
goal of tensor-based batch processing is to identify the abnormal 
batches or time instants. 

2.2. Environmental monitoring 

Thanks to recent advances in sensor technologies, it is feasi- 
ble to analyze tens of ecological parameters through different lo- 
cations and times. The need for tensor analysis has emerged in 
this domain, mainly due to existing spatiotemporal variations in 
such data. Identification of locations or time periods related to ab- 
normal measurement is the main goal of this application. Tensors 
have recently been applied in water quality monitoring [2,48–52] , 
air pollution control [18,53] and monitoring of soil quality [54,55] . 

The multi-way data in these applications follows a general 
scheme of variables × sampling site × sampling time where the first 
dimension normally includes the chemical (e.g. oxygen rate), phys- 
ical (e.g. temperature) and biological parameters (e.g. faecal col- 
iforms) measured by the sensors. 

2.3. Video surveillance 

Identification of time instants in video surveillance cameras is 
of great interest in public security for the prevention of terror- 
ism/crime activities. Tensors are natural data models for video data 
and therefore can provide more accurate framework for abnormal 
activity discovery. Video data can be represented as a 4D tensor of 
RGB color × image row × image column × time or a 3D tensor of im- 

age row × image column × time . The most relevant works that use 
tensor model for anomaly detection are [19,56] which apply TAD 

in video surveillance cameras. [57] also model 3D video as tensor 
for human action recognition. A tensor-based approach is proposed 
in [58] for real-time tracking of moving points from infrared image 
sequences. Some other works [5,59,60] also use tensors for object 
tracking in video data so that these works are versatile enough 
to be adapted for anomaly detection purposes. Some methods like 
[61,62] exploit tensors respectively, for crowd density estimation 
and motion recognition that can be useful for anomaly detection 
as well. 

2.4. Network security 

Computer-based systems are at risk from various attacks and 
malicious activities. Anomaly detection in these networks has been 
for long years the center of attention by many researchers. Tensors 
are powerful tools for anomaly detection in these networks. The 
reason is that a tensor can easily model the dynamic of traffic ma- 
trices that requires extra dimension of time. Moreover, in network 
security application it is very difficult to obtain labels for abnormal 
situations. Usually only the history of normal operation is available. 
Therefore semi-supervised and unsupervised tools such as tensor 
decomposition can be adequate tools. 

There is no unique tensor data structure for analysis of net- 
work data. The majority of works use the origin × destination ×

time scheme. This format is used for analyzing a wide range of net- 
work data such as TCP/IP network, emails, phone calls, IP-TV and 
World Wide Web (WWW). For instance, in TCP/IP network, the two 

most popular models used are SourceIP × TargetIP × Time [16,63–
65,65,66] and SourceIP × TargetIP × Port × Time [16,20] . In email 
or phone call networks the tensor models are constructed in the 
scheme of Sender × Recipient × Time [16,63,67–69] . There exists 
another type of works that model the interaction of user with the 
system. Examples are IP × URL × User × Time [70] and Users ×
URL × Time [71] in web-access log data and User × TV Program ×

Time in IP-TV system [72] . Anomaly detection from Internet net- 
works are also addressed in [73] . The authors propose a method 
based on tensor decomposition for finding the source of distur- 
bances originated in the network elements in a large Internet net- 
work. A three-order tensor model of VP × AS × time is introduced 
where VP denotes the vantage point and AS refers to a network 
element. The built model is then used to track large earthquakes 
occurred during the network activity. 

2.5. Social networks 

Social networks are a special case of general networks where 
nodes of networks are mostly live agents (e.g. humans) and the 
edges show the interaction of these agents. Tensors are normally 
used for the detection of anomalous people, links and communi- 
ties which is obtained by taking into account their long term be- 
havior over time. The general tensor model for this task is person ×
person × time . One of the popular tensor-based practices is related 
to the analysis of anomalies in electronic discussion network data 
set such as ENRON [16,17,67–69,74,75] . Tensors are used in analysis 
of Facebook data [20] , phone calls [63] , location-based social net- 
works ( user × location × time ) [76] and analysis of physical social 
networks such as face-to-face contacts of individuals [77] . Apart 
from the traditional model, [78] proposed new tensor models such 
as nodes × measures × time and communities × measures × time 

for dynamic social networks where measures such as betweenness 
and degree closeness are computed from social network in each 
snapshot. 

2.6. Text-based systems 

Tensors are used for modeling the user/topic evolution in text- 
based systems. The constructed models are later applied to event 
and anomaly detection or co-clustering. The general tensor model 
for textual data analysis is user × keyword × time . Such model is 
used for anomaly detection from Twitter data [21] and analysis of 
chatrooms [9] and bibliographic data ( author × keyword × time ) 
[16,17,68] . The tensor-based topic modeling techniques such as [71] 
also show potential regarding text-based event detection. 

2.7. Neuroscience 

The brain is one of the complex systems that produces a rich 
source of multiway data. The reason is that every occurring ac- 
tivity in the brain is managed via different regions of the brain 
during a specific period of time. Therefore, brain data is inherently 
spatiotemporal. The two well-known tools for capturing the brain’s 
activities in a machine-readable format are Electroencephalography 
(EEG) signals or Functional Magnetic Resonance Imaging (fMRI). 
The data being generated from these tools is analyzed via ten- 
sor models to detect abnormal activities or patterns in the brain. 
For instance, tensors are used to find the responsible regions for 
generating the abnormal neural activity resulting in the initial 
seizure discharge [22,79] . The information obtained from this anal- 
ysis is very helpful for the success of an epilepsy surgery. Different 
from the above-mentioned application, tensors are used for men- 
tal workload monitoring of operators in safety-critical applications 
(e.g. controlling the Unmanned Air Vehicle (UAV) [80] ). 
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The general tensor model for EEG data is frequency × chan- 

nel × time [22,79–82] . If measurements are recorded across dif- 
ferent subjects or conditions, extra dimensions can be added to 
the simple model. These kind of higher-order data structures are 
mostly used for classification purposes. For instance, in [83,84] , 
multi-subject EEG data is modeled as a fourth-order tensor of fre- 
quency × channel × time × subject . Likewise, EEG data is mod- 
eled as a fifth-order tensor frequency × channel × time × subject 

× condition [82] . Note that the tensor models does not operate di- 
rectly on EEG raw signals, instead, a preprocessing step (usually 
via wavelet transformation) is required to transform the raw EEG 

signals to EEG tensors [82] . 
Tensors are also applied to fMRI data analysis. fMRI images 

can be used to detect brain regions that have been damaged by 
various neurodegenerative diseases such as Alzheimer and Parkin- 
son. A typical fMRI scan image may contain 6 4 × 6 4 × 14 voxels 
(3D equivalent of pixels) sampled at different consecutive time in- 
stants, producing a single matrix. Multiple scans on a given subject 
generate a higher-order tensor of voxel × time × runs which is usu- 
ally used in fMRI data analysis [10] . Scans can also be performed 
for multiple subjects resulting in voxel × time × subjects [10] . The 
tensor model can have extra dimensions such as trials (e.g. rest, 
finger tapping, etc.) resulting in a fourth-order tensor of voxel ×
time × trials × runs [85] . 

2.8. Remote sensing 

Nowadays, with the aid of hyperspectral imaging technology we 
are able to capture spectral images with a different range of spec- 
tra. We can create multiple images of a scene or object via light 
from different parts of the spectrum. Furthermore, these hyper- 
spectral images can be used for target and object detection and 
identifying materials from long distances and of course anomalies. 

The simplest tensor model used for hyperspectral images is 
a third-order tensor of spatial rows × spatial column × wavelength 

that is used for target detection and classification [23,86,87] or for 
space object material identification [88] . The more advanced ten- 
sor models are those used by [89] who add two extra dimensions 
to the hyperspectral tensor. The new model which is called multi- 
feature-tensor representation is a fifth-order tensor of spatial rows 

× spatial column × wavelength × scale × direction which scale and 
direction are the parameters of the Gabor function, chosen as con- 
stant numbers. The Gabor function is a popular technique for tex- 
ture representation and discrimination in image processing. 

The other dimension that can be added to the simple model 
is time. The majority of remote sensing techniques are based on 
the assumption that the spectral signature of objects is persis- 
tent and uniform over time, which might not be true. Therefore, 
a new model called multi-temporal hyperspectral tensor, denoted 
by spatial rows × spatial column × wavelength × time is proposed 
in [90] . This model is obtained by combining multiple hyperspec- 
tral images obtained at different time instances. It is considered 
as a new generation model of soft sensors in the remote sensing 
community. 

2.9. Sensors 

One of the potential applications of tensors is anomaly detec- 
tion in sensor networks which uses the same tensor model as 
environmental monitoring differing in the speed by which sensor 
gather data and are mostly used in real time monitoring. The sen- 
sor networks are modeled as third-order tensor of measurements ×

space × time in [15,17,91] . In some other circumstances, sensors 
may gather some information from people. The scheme of the ten- 
sor in this condition is persons × measurements × time . For in- 
stance, in [92] six measurements are gathered from 20 people dur- 

ing a period of 255 h in an office environment. Then via tensor 
decomposition, some meaningful events are detected which have 
been linked to some regular events such as lunch break or general 
meeting or a monthly seminar. 

2.10. Engineering 

Tensor decomposition has been used in civil engineering [26,93] 
for detection of abnormal changes in the structure vibration re- 
sponse. Different sensors are employed in different parts of the 
structures and their vibration responses are measured during a pe- 
riod of time. Therefore, the tensor model is represented as space ×
time × frequency . 

Application of tensors in metallurgy engineering can be seen in 
[25] where tensor decomposition is used for fault detection in the 
hot strip mill, specifically for damage on the surface of coils. The 
data generated from ASIS (automatic surface inspection system) is 
modeled as a third-order tensor of Coils × PSD × frequencies where 
PSD (power spectrum densities) and frequencies are obtained via 
autoregressive processes of several signals modeled by Fast Fourier 
transform (FFT). 

An example from the mechanical engineering domain can be 
observed in [6] where tensors are applied to detect damage in sen- 
sitive artefacts such as aircraft wing flap. The main problem in air- 
craft wing flap includes barely visible impacts on its surface. To 
deal this problem, the authors propose a new multiway model for 
detection of damages via monitoring multiple sensors. They sug- 
gest a tensor scheme of experiment × sensor × time for the analysis 
task. 

The electrical engineering community has also used tensors for 
voltage sag detection in power distribution networks [27] . The ten- 
sor model of experiments × variables × time is proposed which 
later is unfolded time-wise to detect sag points. 

The robotic engineers also used tensors for prediction of fall 
up in walking robots [94] . Inspired by the tensor-based batch pro- 
cess monitoring, they model the non-linear trajectory of walk- 
ing robots and suggest a third-order tensor of trajectory slices ×

scaled state variables ( e.g . position , angle ) × time for fault detection. 

2.11. Transportation systems 

Traffic data ( Origin × Destination matrix) is frequently used for 
traffic planning and management in intelligent transportation sys- 
tems. Tensor decomposition has been used on the tensor Origin ×
Destination × Time for discovery of spatiotemporal traffic structure 
[24,95] that has important applications to urban planning and traf- 
fic jam control. Sometimes the collected data might also be abnor- 
mal due to failures in the collection process and recording systems. 
This problem which is known as outlier recovery is addressed in 
[96] with tensors. Tensors also are used for prediction of missing 
values in traffic tensors (known as tensor completion) [97] . 

2.12. Medical applications 

Tensors are exploited for analysis of electronic medical records. 
In [98] a change detection system is developed for pain manage- 
ment decision making. A collection of medical forms completed at 
various treatment and recovery stages are modeled as a sixth-order 
tensor of initial pain × initial infusion × sex × surgery site × pain ×

month and based on that some interesting change patterns are de- 
tected. Tensor decomposition is also applied to electronic health 
records (EHR) for prediction of heart failure [28] . A tensor model 
of Medication × Patient × Diagnosis is used for this purpose. Ten- 
sors are also used in bio-informatics for modeling micro-array gene 
expression tensors ( gene × sample × time ) that can be used for 
diagnosing diseases [99] . Tensor decomposition has recently been 
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Table 3 

Existing and potential learning techniques for tensor-based anomaly detection. 

Model Category Examples 

Supervised Dimensionality reduction based Categorical target [26,93] 
Numerical target [30] 

Classification based Support tensor machines [89] 
Supervised tensorLearning [111] 
Tensor least square [112] 
Multilinear discriminant analysis [114] 
Factorization machines [115] 
Tensor subspace learning [116] 

Regression based Multiway PLS (N-PLS) [108] 
Tensor ridge regression [121] 
Support tensor regression [121] 
H-MOTE [123] 
Tensor regression [122] 

Time series based Multilinear dynamical systems [124] 
Greedy low-rank tensor learning [125] 
Tensor hidden Markov model [126] 
Tensor time series models [127,128] 
Tensor singular spectrum analysis [129] 
TriMine [71] 

Semi Supervised Monitoring of decomposition statistics (SPE, T2, etc.) [18,25,35,39,40,44,45,94,118,119,130–132,134–136] 
Eigenspace based [29,100] 

Un-supervised Analysis of score-plots 1D [32,76,77] 
2D [18,37,64,83] 
3D [64,100] 
Latent factors time series [48,67] 
Multivariate-SPC on multiple latent factors [95] 

Streaming residuals Dynamic tensor analysis [16,59,98,101] 
Window-based tensor analysis [15] 
Spatio-temporal tensor streams [91] 

Histogram based [133] 

exploited in epidemiology for detection and spotting disease out- 
breaks [29,100] . A third order tensor of Space × Time × Indicators 

is suggested for the monitoring task. 

2.13. Other applications 

Many other applications from tensor-based methods have ap- 
peared in recent years, in particular during the last five years that 
are inherently different from the traditional applications of tensors. 
In [11] spectral changes of substrates and products are monitored 
in real time via modeling temporal evolution of enzyme activity 
with third-order tensor of wavenumber × time × activity . Tensor 
analysis is applied for tracking the analysis of proteins. In [101] 
authors use tensor analysis to model the deviations of contacts be- 
tween residues and their environment with respect to each other 
(i.e., relative behavior) as well as with respect to time (i.e. tem- 
poral behavior). The tensor model used in this work is in scheme 
of contract matrix × time where the contact matrix A ij ( t ) represents 
the normalized value of the number of heavy atoms in residue i 
coming in contact with the heavy atoms in residue j at time t . 

A dynamic pattern of international trades and the asymmetric 
relations between countries is studied in [69] which can poten- 
tially be applied for anomaly detection (e.g. economic crisis). 

Tensor decomposition has applications in seismology. A third- 
order tensor of space × time × frequency is built in [30] for the pre- 
diction of ground motion after earthquake. Time-frequency com- 
ponents are obtained by transforming of acceleration records of 
earthquake ground motions with continuous wavelet transform. 

Tensor decompositions are used for analysing climate tensors 
climate indicator × grid × time [102–104] which makes them capa- 
ble techniques for prediction of climate changes. 

Tensors are used for crime forecasting [31] . A fourth-order ten- 
sor of longitude × latitude × time × measurements is used for this 

purpose where measurements refer to criminal activities such as 
residential burglaries, construction permits, motor vehicle larceny, 
offender data, etc. 

One of the recently emerged topics in anomaly detection is 
acoustic anomaly detection in which several acoustic sensors are 
monitored for event detection. Acoustic anomaly detection can be 
used, for instance, in safety monitoring of nuclear power plants 
[105] . Unfortunately, although tensor decomposition shows great 
potential, is not yet used for this purpose, whereas we can find 
works that model voice data as a third-order tensor of rate × scale 

× frequency [106,107] or rate × time × frequency [4] . These tensor 
models might be used for acoustic anomaly detection. 

3. Tensor-based anomaly detection: existing and potential 

methods 

Tensor methods are better known for unsupervised and semi- 
supervised learning. However, in recent years, many supervised 
tensor learning methods and tensor time series models have been 
developed. Some of these recent techniques are not yet used for 
anomaly detection, but might prove themselves useful for this pur- 
pose. Table 3 presents the summary of these methods with cor- 
responding references. In the following, these strategies are de- 
scribed in more detail. 

3.1. Supervised models 

Perhaps we can seek the first footprint of using tensors in su- 
pervised anomaly detection in Multiway PLS models [108] . The 
second important role of tensors is in dimensionality reduction for 
classification problems. Nowadays, more supervised tensor-based 
learning methods are developed. Some of these techniques, in spite 
of their potential for anomaly detection, are not yet applied for this 



H. Fanaee-T, J. Gama / Knowledge-Based Systems 98 (2016) 130–147 135 

application. The goal of this section is to provide a structured list 
of existing and potential approaches. 

3.1.1. Tensor decomposition for dimensionality reduction 

In this category of supervised models, tensor decomposition is 
used as a dimensionality reduction tool for feature extraction (a 
more advanced alternative for matrix-based dimensionality reduc- 
tion solutions such as PCA). Depending on the target value, meth- 
ods can be grouped in two categories. 

In the first group of methods [26,93,109] , it is assumed that we 
have two sets, train and test, where train set contains normal sam- 
ples. Tensor decomposition is applied on the normal tensor as a di- 
mensionality reduction tool. Then, one of the factor matrices (usu- 
ally time) is fed to a regular classifier (e.g. k-nearest neighbors or 
SVM) for making a model from the normal samples. 

The goal is to predict the labels of the observations in the test 
set. Therefore, the built model from train set is used to predict the 
label (normal or abnormal) of observation in the test factor matrix. 
For instance, in [26,93] , a PARAFAC decomposition with k number 
of components is applied on the space × time × frequency tensor 
corresponding to the normal samples and then the derived time 
factor matrix is trained via k-NN (features are the latent variables). 
The built model is then used for classification of time points in 
the arriving data. In other related work, a combination of PARAFAC 
and self-organizing map (SOP) is used [90] for classification of sig- 
natures of multitemporal-hyperspectral images. 

The second group of methods [30] follows the same procedure 
as the former, but instead of binary labels (abnormal/normal) a 
numeric target is given for prediction. Therefore, regression mod- 
els are replaced with categorical classifiers. Targets can be single 
or multiple variables. For instance, in [30] the authors propose to 
train a GRNN (generalized regression neural networks) on the ten- 
sor subspace latent variables for prediction of multiple seismolog- 
ical variables. They used this method for prediction purposes. This 
kind of approaches can be easily extended for anomaly detection. 
A further step, however, is required. For instance, the difference of 
predicted and actual values can be used along with a threshold to 
detect anomalies. 

Note that tensor decomposition is not necessarily used as di- 
mensionality reduction tool in classification tasks. Rather, it can 
serve along with various other tasks such as case-based reasoning 
[6] and clustering [72,110] . 

3.1.2. Tensor classifiers 

Tensor classifiers are those that adapt regular classifiers for ten- 
sorial data. In these methods, data is trained directly via tensor- 
based classifier and then the built model is used for prediction. 
A binary tensor classifier has a great ability for anomaly detec- 
tion from multiway data. A good example for this category is a 
method presented by Zhang et al. [89] where SVM (support vec- 
tor machines) is extended to STM (support tensor machines). The 
new tensorial classifier is trained directly with the tensorial data 
of specific objects and then the built model is used for target de- 
tection. In another work [111] , a general framework called Super- 
vised Tensor Learning (STL) is proposed that adapts many conven- 
tional machine learning methods to take higher order tensors as 
inputs. This model is successfully tested for binary classification 
problems which can be very useful for anomaly detection. In [112] , 
in addition to another version of STM a new method is also pre- 
sented called Tensor Least Square (TLS) which is the extension of 
least square classifier. A new type of STM is also presented in [113] 
which is applied for gait and action recognition. 

Multilinear discriminant analysis (MDA) [114] is also proposed 
for tensor-based image classification that is an extension of Linear 
discriminant analysis (LDA) for tensor data. Factorization machines 
[115] is another method for tensor-based classification that extends 

SVM for tensors using PARAFAC which is motivated for SVM diffi- 
culty in collaborating filtering problems. Tensor classifiers are also 
known as supervised multilinear subspace learning in image pro- 
cessing community. The recent survey paper [116] covers the ma- 
jority of advances for tensor subspace learning. 

3.1.3. Tensor regression 

The first tensor regression models emerged in the 1980s from 

the Chemometrics community as the traditional name of N-PLS or 
multiway PLS [117] . In these techniques which are widely used for 
anomaly detection [33–35,50,108,118–120] a model is built based 
on the relationship of the input tensor (X) to some quality mea- 
surements (Y). That model is then used for predicting the quality 
measurements of new tensors. Deviations of predicted target vari- 
ables from the normal reference are interpreted as abnormal be- 
havior. 

Apart from the traditional multiway regression models, some 
novel techniques have been recently developed in different re- 
search communities. One is [121] that proposes two tensor re- 
gression models called tensor ridge regression (TRR) and support 
tensor regression (STR) that respectively extend vector regression 
models such as ridge regression (RR) and support vector regression 
via some properties of PARAFAC model. The authors apply these 
methods to facial data for human-age estimation and head/body- 
pose prediction. These methods can be quite interesting for a cou- 
ple of problems in TAD. 

Another tensor regression model is proposed in [122] which is 
motivated by some problems in brain imaging where observed bi- 
nary diagnosis status (Y) is required to be modeled based on the 
fMRI images as an input tensor (X). The proposed tensor model is 
used to identify regions of interest in brains that are relevant to a 
clinical response with applications for detection of brain diseases, 
including Attention Deficit Hyperactivity Disorder and Alzheimer. 

Moreover, Zhu et al. [123] proposes a tensor-based regres- 
sion algorithm called H-MOTE that is capable to incorporate back- 
ground knowledge into the model. This model is used for predic- 
tion of wafer quality in semiconductor manufacturing. 

3.1.4. Tensor forecasting 

Tensor forecasting is an extension of vector time series models 
for multiway time series. The procedure for anomaly detection is 
the same as in univariate ones. A model is built for tensor time 
series and then based on that model, future tensors are predicted. 
In the subsequent moment, if the tensor has a considerable differ- 
ence with the predicted tensor, it is marked as an anomaly. Differ- 
ent methods are developed for tensor forecasting. In [124] a model 
called Multilinear Dynamical Systems (MDS) is proposed, which is 
a tensorial extension of linear dynamical system (LDS). Detection 
of the market collapse and climate change are introduced as ap- 
plications of this methodology. Another tensor forecasting method, 
named Greedy Low-rank Tensor Learning is proposed in [125] 
that is applied for forecasting tensor time series such as climate 
tensors. 

Some time series analysis tools are also extended for tensors. 
For instance, a tensor-based Hidden Markov Model (HMM) ap- 
proach is proposed in [126] and is used for fault detection and 
prediction. Some ideas in time series analysis, such as weighting 
and averaging are also extended for tensor analysis in [127,128] . 
The tensor version of singular spectrum analysis (SSA) is also pre- 
sented in [129] , replacing SVD with PARAFAC in regular SSA and is 
applied for a non-stationary source separation of seizure signals. 

An innovative approach called TriMine [71] is also proposed for 
tensor forecasting in the context of topic modeling. In the pro- 
posed methodology, a train tensor data is decomposed as a regular 
tensor decomposition and then based on the obtained time factor 
matrix, the next factor matrix is predicted with different scales. 
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Fig. 1. Left) Tucker3 Decomposition: the third-order Tensor X is decomposed to a smaller core tensor and three factor matrices. Right) CP/PARAFAC decomposition: a third- 
order tensor X is decomposed to three factor matrices. 

Later, the new predicted time factors are multiplied by other two 
dimensions to construct the tensor forecast for both short-term 

and long-term. This approach seems promising for multi-scale 
anomaly detection and prediction. 

3.2. Semi-supervised models 

Semi-supervised methods are twofold. The first group is origi- 
nated in online fault detection from batch processes where a train 
tensor model corresponding to normal operation condition (NOC) 
is usually constructed. Then, arriving data is monitored to detect 
deviations from NOC model using statistics such as Squared pre- 
diction Error (SPE) or Hotelling T 2 chart [12] . Examples of this cat- 
egory are explained in [12,44,45,118,130–132] . There exists another 
group of methods that instead of the above statistics monitor the 
angle between Eigenvectors or Eigenvalue magnitudes in the test 
set in comparison with the train set. Examples of this category are 
explained in [29,100] . 

As semi-supervised models impose less human intervention, 
they are more desirable comparing to supervised methods. In 
many applications such as process control or network security, la- 
beling data for each time instant is infeasible. Therefore, this model 
presents superior flexibility and simplicity. 

3.3. Unsupervised models 

Tensors are better known for unsupervised learning in problems 
such as co-clustering and anomaly detection. In this section, the 
popular unsupervised methods are described. 

3.3.1. Score plot-based 

The most traditional use of tensor decomposition in anomaly 
detection is with score plots obtained from the decomposition that 
are analyzed manually or automatically for anomaly detection or 
clustering. Score plots can be 1D (only one factor) [32,76,77] , 2D 

[18,37,64,83] and 3D [64,100] . If the latent factor is time, some 
factors might be presented as a multivariate time series [48,67] . 
Sometimes this multivariate time series may also be monitored 
automatically with multivariate SPC methods such as Hotelling T 2 

[95] . 

3.3.2. Streaming decomposition error-based 

This group of methods is composed by those streaming decom- 
position methods that operate on data incrementally without the 
requirement for a train set. They monitor the decomposition re- 
construction error for each tensor in each time instant. Anomalous 
time instant is the one which corresponding reconstruction error 
goes beyond a pre-defined threshold (e.g. twice standard deviation 
of errors so far). Examples are given in [5,16,17,56,59,91] . 

3.3.3. Histogram-based 

Fanaee and Gama [133] proposed an efficient multi-aspect- 
streaming tensor analysis approach called MASTA based on online 
histograms. In this approach, the whole tensor is vectorized and 

is simultaneously segmented into slices in each mode. Then the 
distribution of each slice is compared versus the vectorized tensor 
using a standard metrics such as Earth Mover’s Distance. The used 
logic is that tensor information is distributed over slices in each 
mode. By matching slices with the reference distribution, similar 
slices can be identified as well as anomalous slices. 

4. Tensor decomposition 

Traditional data analysis techniques, such as the PCA, clustering, 
regression, etc. are only able to model second-dimensional data 
and they do not consider the interaction between more than two 
dimensions. However, in several real-world phenomena, there is a 
mutual relationship between more than two dimensions, in par- 
ticular, when the time dimension is added to the problem. Ten- 
sor (Multi-way) data analysis considers all mutual dependencies 
between the different dimensions and provides a compact repre- 
sentation of the original data in lower dimensional spaces. The 
most common multi-way analysis techniques are that of Tucker 
[137] and CP/PARAFAC [138,139] , which are generalized versions of 
PCA or, more specifically, Singular Value Decomposition (SVD) for 
higher order matrices. 

Among many types of tensor decomposition approaches, Tucker 
and PARAFAC/CP models are the most used ones. Tucker decompo- 
sition approximates a large tensor by a product of a smaller ten- 
sor with predetermined dimensions (called core tensor), multiplied 
by factor matrices in each dimension (See Fig. 1 Left). Formally, the 
problem can be defined as an optimization problem [140] : Given 
a tensor X ∈ R n 1 ×n 2 ×... ×n d , find a core tensor G ∈ R r 1 ×r 2 ×... ×r d with 
pre-defined integers r i with 1 ≤ r i ≤ n i for i = 1,2,…, d. and factor 
matrices A 

(i ) that optimizes 

min 
∥

∥X − G ×1 A 
(1) 

×2 A 
(2) 

... ×d A 
(d) 

∥

∥ (1) 

Subject to: 
G ∈ R r 1 ×r 2 ×... ×r d , 

A 
(i ) 

∈ R n i ×r i , ( A 
(i ) ) T A 

(i ) 
= I, i = 1 , 2 , 3 . 

In the above model, d represents the dimension of the ten- 
sor (e.g. For three-dimensional tensor, d = 3) and r 1 , r 2 , ..., r d ( i = 

1 , 2 , ..., d) are model input parameters (core size). The simplest al- 
gorithm for finding matrices A 

(d) and G is a method called High- 
order SVD (HOSVD) [141] where firstly tensor is unfolded into 
lower-order matrices over all its modes(e.g. unfolding I × J × K 

tensor to I × JK or J × IK or J × IK matrices) and then SVD is inde- 
pendently performed on each matrix (e.g. I × JK matrix) . The more 
sophisticated approach is high-order orthogonal iteration (HOOI) 
[142] that uses alternating optimization to find better projection 
matrices iteratively. In the HOOI algorithm, HOSVD can used for 
better estimation of the initial elements of A 

(d) and G. 
PARAFAC/CP also is a special case of Tucker model where 

the core tensor is super-diagonal. Therefore, obtaining (1) for 
PARAFAC/CP is straightforward. Although, there exist other kinds of 
decomposition models, the algorithmic details of these kind of ap- 
proaches is out of the scope of this survey. However, the interested 
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Table 4 

Methods for tensor decomposition and applications to anomaly detection. 

Family Method Anomaly detection example 

Tucker Multiway PCA (Tucker1) [46] [25,25,27,27,39,39,44,47,94,110,134,135,147–149] 
GTucker2 [150] [150] 
Tucker3 [137] [2,2,3,9,4 8,4 9,53,72] 
Non-negative Tucker [151,152] [24,83] 
HOSVD [141] [8,29,61,153] 

PARAFAC PARAFAC [138] [3,10,11,26,30,49,63,73,76,80,81,90,154] 
Non-negative PARAFAC [143] [20,67,77,84,144] 
PARAFAC2 [145] [37] 
Dynamic PARAFAC [35] [35] 
CP-APR [146] [70] 

DEDICOM [155] [69,156] 

Bayesian EM-based (pTucker [157] , ETF [158] , InfTucker [75] ) [75,92,158] 
MAP-based (ARD [159] , FBCP [160] ) 
Gibbs sampling (Multi-HD [161] , BTA [162] , BPTF [163] , TriMine [71] , MGP-CP [164] , sp-PARAFAC [165] ) [71] 

LPP TLPP [166,167] [40,58] 
TGLPP [168] [168] 

ICA Tucker1-based ( MICA [45] , MKICA [169] , FS-MKICA [132] ) [45,132,169] 
Tucker3-based [104] [104] 
PARAFAC-based [85] 

readers are referred to [13,142] for more technical details about 
these models. 

In the following we list the six main categories of methods 
for tensor analysis that can potentially be used for anomaly de- 
tection, including PARAFAC-based, Tucker-based, DEDICOM-based, 
Bayesian, Locality Preserving Projection (LPP) based and ICA-based. 
Table 4 demonstrates the summary of existing techniques. 

4.1. PARAFAC-based 

4.1.1. PARAFAC 

PARAFAC/CP has been the most used decomposition model 
among other models. The reason is probably the similarity of im- 
plementation and interpretation, such that PARAFAC as PCA re- 
quires only one user input which is the number of components. 
PARAFAC model is applied in wide range of anomaly detection 
tasks in various domains. For example see [3,11,26,49,73,81] . 

4.1.2. Non-negative PARAFAC 

One of the important issues in tensor decomposition is that el- 
ements in factor matrices can get negative values. These negative 
scores cannot be justified with the our physical knowledge (e.g. 
fMRI tensors). This might not be a problem when we want to work 
directly on eigenspace, but might be a constraint when we want 
to perform our analysis on the obtained components. This problem 

is mostly motivated by the chemometrics and neuroscience com- 
munity where the output of tensor decomposition requires to be 
interpreted by a specialist. PARAFAC model with non-negative con- 
straint is called non-negative PARAFAC or non-negative tensor fac- 
torization (NTF) which was presented for the first time in [143] . 
Nowadays, NTF has become remarkably popular due to its mean- 
ingful and physical interpretation, especially in manual score-plot 
based anomaly detection [20,67,77,84,144] . 

4.1.3. PARAFAC2 

In some specific circumstances as occur in batch monitoring, 
a tensor with uneven-length slices appears. For instance, in batch 
monitoring with tensor of batch × measurement × time , the matrix 
measurement × time can be of different length for each batch due 
to different elapsed time for the batch. PARAFAC2 [145] which is 
an extension of PARAFAC provides a solution for such problems. It 
is used in [37] for fault detection from batch tensors with unequal 

time axis and its superiority over regular PARAFAC and Tucker is 
shown. 

4.1.4. Dynamic PARAFAC 

A procedure called DPARAFAC (dynamic parallel factor analysis) 
is introduced in [35] for online fault detection in process monitor- 
ing. This methodology includes two phases: learning and detection. 
In the learning phase, we are given the data of normal operation 
condition (NOC). Each slice of the NOC tensor (matrix measurement 

× time ) is segmented into different equal-length windows in the 
time axis. Then all the segments together form a new tensor ( mea- 

surement × window × time ). PARAFAC is then applied on this ten- 
sor for each batch and loadings are obtained. The average of factor 
matrices for each window is obtained for all batches. Later, some 
statistics such as T 2 and control limits are computed for each time 
point. In the detection phase, when new batches of data arrives, it 
is arranged as the previous procedure, and is then projected onto 
the previous under-control subspace to assess its degree of abnor- 
mality. 

4.1.5. Poisson tensor factorization 

Poisson tensor decomposition (PTF) [146] , also known as CAN- 
DECOMP/PARAFAC Alternating Poisson Regression (CP-APR) uses a 
new fitting algorithm based on Kullback–Leibler (KL) divergence 
instead of common ALS fitting algorithm in PARAFAC. The idea of 
such approaches is that count data can be better described by a 
Poisson distribution rather than Gaussian distribution. This model 
is suggested for anomaly detection from count data [70] . 

4.2. Tucker-based 

4.2.1. Tucker1 

Tucker1 or Multiway PCA (MPCA) is the first 
tensor model used for TAD in many applications 
[25,25,27,27,39,39,44,47,94,110,134,135,147–149] . Tucker1 is used 
when variance is only important in one dimension. Therefore, 
the tensor is usually unfolded through one dimension and then 
regular PCA is applied to the unfolded data. For instance, in batch 
monitoring, Tucker1 model is used on batch-wise or time-wise 
unfolded matrices. 
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4.2.2. GTucker2 

Tucker2 model is barely used for anomaly detection. Only very 
recently a generalized version of Tucker2 called GTucker2 was pro- 
posed [150] for fault detection from tensors with unequal slice 
lengths. GTucker2 is equivalent to PARAFAC2, such that PARAFAC2 
can be viewed as a constraint version of GTucker2. In [150] the 
superiority of GTucker2 is shown over Tucker1, PARAFAC, Tucker3 
and PARAFAC2 on this specific problem. 

4.2.3. Tucker3 

The other model which promises more flexibility is known as 
Tucker3. This model as is presented in the previous section is 
normally used when there is multiway variations in all modes 
[2,2,3,9,4 8,4 9,53,72] . For instance, for water quality tensors, we 
are interested in discovering abnormal locations, time instants and 
measurements that are more correlated to anomalies. Therefore, 
Tucker3 is the preferred model [2] . 

4.2.4. Non-negative Tucker 

There are some extensions of NTF for Tucker decomposition, 
called Nonnegative Tucker decomposition [151,152] . The NTF is 
used for modeling EEG tensors [24,83] performing better than NMF 
(non-negative matrix factorization) in some circumstances. 

4.2.5. HOSVD 

Higher-order singular value decomposition (HOSVD) is a gener- 
alization of SVD for higher-order tensors. HSOVD can be viewed as 
a special case of the Tucker3 model when ALS optimization is not 
performed, rather the tensor is unfolded across different modes 
and then regular SVD is applied on the unfolded matrices. There- 
fore, HOSVD does not provide the best approximation of a tensor, 
it is rather used as an initialization step in Tucker3 for reducing 
the number of iterations in ALS procedure [13] . 

4.3. ICA-based 

Independent component analysis (ICA) is a popular method for 
decomposing a multivariate signal into additive subcomponents. 
The basic assumption in ICA is that subcomponents are indepen- 
dent, non-Gaussian signals. Extension of ICA for tensors is available 
for Tucker1 (MPCA) [45,132,169] , Tucker3 [104] , and PARAFAC [85] . 
All these methods except the latter one are applied for anomaly 
detection. 

4.4. DEDICOM-based 

DEDICOM (DEcomposition into DIrectional COMponents) 
[145,155] is a generalization of PARAFAC2 for discovering asym- 
metric relationships between two modes that refer to the same 
type of object (e.g. transactional data). This model has been found 
to be effective in temporal analysis of social networks [69,156] . 
Therefore, it can be used for event detection goals in similar 
scenarios. 

4.5. Bayesian methods 

Traditional tensor decompositions are unable to handle is- 
sues such as missing values, outliers, noises and different data 
types. Recently, probabilistic methods started to be taken into 
consideration due to their flexibility and less restrictive assump- 
tions. They are successfully applied to anomaly detection problems 
[71,75,92,158] and is expected that the number of their applica- 
tions be increased in near future, especially when the majority of 
these approaches can estimate the tensor rank during the decom- 
position process. 

Bayesian approaches, based on the means of used statistical 
inference can be divided into three categories. The first group is 
based on the Expectation maximization (EM) algorithm, includ- 
ing pTucker [157] , Exponential Family Tensor Factorization (ETF) 
[158] and Infinite Tucker (InfTucker) [75] . The second group ex- 
ploits maximum a posterior (MAP) estimation, such as Automatic 
Relevance Determination (ARD) [159] and Fully Bayesian CP Factor- 
ization (FBCP) [160] . Finally, the third category uses gibbs sampling 
as an inference engine. Examples are Multi-HD [161] , Bayesian ten- 
sor analysis (BTA) [162] , Bayesian Probabilistic Tensor Factorization 
(BPTF) [163] , TriMine [71] , multiplicative gamma process based CP 
decomposition (MGP-CP) [164] and sp-PARAFAC [165] . 

4.6. Locality preserving based methods 

Tensor decomposition methods such as Tucker and PARAFAC 
do not consider the intrinsic local geometric structure of tensors. 
A recent group of techniques is developed for dealing with this 
problem on the basis of locality preserving projections (LPP). It 
has been shown in [40,170] that LPP-based approaches have bet- 
ter performance than conventional PCA-based methods which pre- 
serve only the global Euclidean structure. LPP-based approaches 
are more attractive when two dimensions of tensors are in a pair- 
wise relationship (e.g. image data). 

The most popular method for this family is Tensor Locality Pre- 
serving Projection (TLPP) [166,167] which is applied to detection 
problems [40,58] . A more sophisticated version of TLPP has been 
proposed very recently, called Tensor Global-Local Preserving Pro- 
jections (TGLPP) and is applied for the fault detection problem in 
batch processes [168] which is able to capture both global and lo- 
cal structures of tensors simultaneously. 

4.7. Tensor rank estimation 

The quality of the tensor model has a direct relationship with 
true model selection. Although estimation of tensor rank is an NP 
hard problem [185] , in the majority of cases, an optimal low-rank 
approximation is desirable. In the majority of works discussed in 
this survey, it is assumed that the number of components is known 
in advance via knowledge of the underlying phenomena. However, 
this might not be the case in many applications. Some approaches 
are developed for estimation of optimal number of ranks for both 
tensor decomposition approaches. Some of these approaches are 
listed in the below subsections (See Table 5 for summary). 

4.7.1. Cumulative sum of the percentage of eigenvalues or explained 

variance 

This is the most basic method for choosing the number of com- 
ponents. It is mostly used for MPCA (Tucker1) models. The number 
of principal components is chosen based on the cumulative per- 
centage of eigenvalues or cumulative percentage of the explained 
variance. If the cumulative percentage of first k components is over 
a threshold (e.g. 75%), k is selected as the adequate number of 
components. For instance, [43] uses the eigenvalue criterion and 
[33,47,171,172] use cumulative variance for anomaly detection in 
process batch tensors. 

Sometimes, instead of a threshold cut point, broken stick rule 
[173] is used. This approach assumes that percentage of explained 
variance (or eigenvalues) of a random data when is divided ran- 
domly amongst k components follows a broken-stick distribution 
G k = 

1 
p 

∑ p 
i = k 

1 
i . Therefore, the k- th principal component is valu- 

able if its value is greater than G k (i.e. a random PC). This rule is 
used for model order estimation of Tucker1 for anomaly detection 
[33,134] . 
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Table 5 

Methods for tensor rank estimation. 

Method Common use Fast Auto Application to anomaly detection 

Cumulative sum of percentage of eigenvalues [43] Tucker1 No Yes [43] 
Cumulative sum of explained variance [33] Tucker1 No Yes [33,47,171,172] 
Broken stick rule [173] Tucker1 No Yes [33,134] 
Cross-validation [174] Tucker1/ Tucker3/ PARAFAC No Yes [33,33,35,45,135,175] 
CORCONDIA [176] PARAFAC No Yes [3,18,22,26,49,77,154] 
DIFFIT [177] Tucker3 No Yes [83,84] 
FastDIFFIT [178] Tucker3 Yes Yes [95] 
Multiway scree plot [179] Tucker3 No No [2,37,49,51,53,72] 
Split-half analysis [180] PARAFAC No Yes [3,49] 
Maximum block improvement [140] Tucker3 Yes+ Yes [95] 
Convex hull [181] Generic No Yes Is not yet applied for anomaly detection but is 

used for tensor rank estimation [159] . 
Akaikes information criterion (AIC) [182] Generic No Yes 
Bayesian information criterion (BIC) [183] Generic No Yes 
Automatic relevance determination (ARD) [159] Generic Yes Yes 
Genetic algorithm [184] Tucker3 No Yes Used for noise removal [184] 

4.7.2. Cross-validation 

A popular method for finding the adequate model order in com- 
ponent analysis is cross validation [174] . This technique is applied 
for fault detection problem in [33,35,45,135] for estimation of num- 
ber of components in MPCA model and its extension is presented 
in [175] for Tucker3 and PARAFAC models. The basic idea of cross- 
validation is leaving out a single data element [175] , a slice [186] 
or random half of a slice [187] at a time, perform tensor decom- 
position and then compute the Predictive Residual Error Sum of 
Squares (PRESS) = 

∑ I 
i =1 

∑ J 
j=1 

∑ K 
k =1 ( ̃

 X PQR 
i jk 

− X i jk ) for the elements 

not included in the model building. Finally, the sum of PRESS val- 
ues for each principal component (p,q,r) is calculated for all elim- 
inated parts to compute PRESS pqr . Those (p,q,r) that give the min- 
imum PRESS are considered a good model dimension. The more 
sophisticated cross-validation approaches are developed based on 
w-statistics [175] which use F-test strategy to determine whether 
an additional component is worth to adding or not. 

4.7.3. CORCONDIA 

Core consistency test (also known as CORCONDIA) [176] is a 
heuristic method used for the determination of the number of 
components in PARAFAC model. It is widely applied in anomaly 
detection from tensors [3,18,22,26,49,77,154] . Assuming P as the 
number of components in PARAFAC model, CORCONDIA checks the 
superdiagonailty of Tucker3 model with a core size of ( P , P , P ). If 
all elements in the core tensor except those with same indices 
(i = j = k ) become zero, it concludes that the PARAFAC model fits 
perfectly. The procedure is as follows. First, core consistency cri- 
terion is defined as the similarity percentage of Tucker3 core size 
with superdiagonal array T of ones and only then is PARAFAC fitted 
for a series of models from P = 1 to F , computing core consistency 
for all these models. The last model in these series which corre- 
sponding Tucker3 core is similar to T is considered as the adequate 
number of components. 

4.7.4. DIFFIT 

DIFFIT (Difference in Fit) [177] is a residual-based heuristic pro- 
cedure used for the estimation of the number of components in a 
Tucker model. It computes the Tucker decomposition for all sensi- 
ble combinations of components ( i , j , k ) and computes the model fit 

as F it(m ) = 1 −
‖ X− ˜ X ‖ F 

‖ X ‖ F 
for each potential model where ‖ . ‖ is the 

Frobenius norm and m = i + j + k . Then the DIF(m) for m-th model 
is computed as F it(m ) − F it(m − 1) and accordingly, DIFFIT is com- 
puted as DIFFIT( m ) = DIF( m )/DIF( m +1). The model with the largest 
DIFFIT value is chosen as the most adequate model. The DIFFIT 
model has been used for estimating tensor model dimension in 

EEG tensors [83,84] . DIFFIT requires computing the Tucker fit for 
all combinations of components which is very time-consuming. 
[178] proposed a faster version of DIFFIT (so called Fast-DIFFIT) 
that requires performing a single computation of Tucker decom- 
position. [178] provide some evidence that this approach can be 
sufficient as the exact solution. Fast-DIFFIT is tested for anomaly 
detection purposes in [95] . 

4.7.5. Multiway scree plot 

Multi-way score plot [188] projects Tucker3 model onto the 
convex hull. The most adequate model is the one on the convex 
hull with less complexity and better fit. This method is used in 
[2,37,49,51,53,72] for tensor-based monitoring and anomaly detec- 
tion. 

4.7.6. Split-half analysis 

This technique was primarily introduced by Harshman and De 
Sarbo [180] for PARAFAC. The procedure splits the tensor into two 
(or more) parts and the model with the same number of compo- 
nents is built for two parts. The assumption of this method is that 
if the model is valid, both models on two separate sides should 
remain stable. A criterion called split-half stability coefficients is 
defined and if its value is lower than a threshold (e.g. 0.1), the 
model is considered stable. However, the main requirement for this 
method is that tensor must be splittable [188] which is restric- 
tive for non-stochastic systems. Limited works such as [3,49] use 
this technique to ascertain the number of components in tensors 
with application to anomaly detection. Extension of this method 
was later proposed by Kiers and Mechelen [189] . 

4.7.7. Other methods 

Some other approaches proposed for tensor rank estimation, 
which may not be used for anomaly detection applications, can 
be very useful to the area nonetheless. Some of these meth- 
ods include convex hull [181] , Akaikes information criterion (AIC) 
[182] , Bayesian information criterion (BIC) [183] and Automatic rel- 
evance determination (ARD) [159] . These four approaches are im- 
plemented for multiway models and compared in [159] in which 
the superiority of ARD is concluded against the other three ones. 
Bayesian-based tensor decompositions may also be a good solu- 
tion for tensor rank estimation since they automatically find the 
tensor rank in their inference procedure [160,164] . In [184] a dif- 
ferent approach named GAHNTD is proposed based on the Genetic 
algorithm for finding the optimal Tucker lower rank, but no com- 
parison is performed against other known approaches. Brockmeier 
et al. [190] proposed a greedy approach that builds the tensor 
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model iteratively, and uses the BIC criterion to identify the cor- 
rect number of components. A more efficient method based on 
maximum block improvement (MBI) is proposed in [140] that uses 
non-convex block optimization for finding the Tucker3 model rank. 
It is evident that this method outperforms DIFFIT and ARD (when 
the sum of dimension is predefined) both in terms of accuracy and 
runtime. This method is used in [95] for event detection from traf- 
fic tensors. 

5. Issues 

This section outlines some of the most important issues in TAD 

and the corresponding solutions extracted from the related works. 
Table 6 presents a summary of the issues and the corresponding 
solutions. 

5.1. Data pre-processing 

Data pre-processing is an important step in TAD. Tensor models 
are sensitive to the scale of data elements. If multiple scale data 
is going to be used in tensor, it must be scaled accordingly, such 
that all columns have the same scale [175] . This is usually done 
via z-score scaling [18,32] . In some cases, the input data is a con- 
tinuous signal and therefore must be converted to discrete values 
using tools such as wavelet transform [6,22,30,82] . 

5.2. Processing types: offline/online/streaming 

Depending on processing tensor offline or real time, TAD meth- 
ods are classified into three categories: offline, online and stream- 
ing. Offline processing model [48,50,54] is usually used in score 
plot based unsupervised detection ( Section 3.3 ). Online processing 
usually refers to semi-supervised methods ( Section 3.2 ). A tensor 
model is built from a normal operation condition of the system 

and is then used for matching with newly observed data to iden- 
tify abnormal items. Since the most expensive task is performed 
offline, the detection part processes only a small piece of data. For 
the majority of cases, the normal model does not update during 
the detection process. However, in some works, it is suggested to 
constantly update the model upon receiving a new normal batch 
of data [29,48] . Streaming processing uses mostly unsupervised 
methods that do not learn from a train set, instead they operate 
directly on the data [15,16,133] , therefore both learning and de- 
tection are performed simultaneously. They may use some mech- 
anisms such as forgetting to exclude the outdated data from the 
learning process [16] . 

5.3. Tensor dimensionality 

The dimensionality of tensors is usually chosen based on a prior 
knowledge. For instance, space and time are inherent modes of the 
tensor when system behavior is time-changing. Furthermore, data 
items are subject to change according to their spatial position. Dy- 
namic networks are also in principle three-way tensors, such that 
the first and second dimensions denote the interactions between 
nodes and the third mode models the time-changing factor. Due to 
higher cost of tensors comparing matrix methods, the use of ten- 
sors is justified if there is at least three-way interactions in data. 
Multiway ANOVA test is one of the approaches used for discov- 
ering multi-way interactions in the data. For instance, Three-way 
ANOVA test [189] is used in [72] for ascertaining tensor dimension- 
ality in anomaly detection application. The other approach might 
be correlation or comparison of model fits in different orders (e.g. 
2D vs. 3D) [10,100] . 

5.4. Nonlinearity 

Traditional tensor decompositions are unable to model complex 
nonlinear interactions between entities in each mode. Nonlinearity 
problem in TAD is reported in some works [43,94,126,132,191] . The 
solution to this problem is yet limited. Some propose to eliminate 
nonlinearity in a preprocessing step by segmentation of tensors to 
different linear parts [94] , while others such as [43,132,191] pro- 
pose the kernelized form of existing tensor decomposition meth- 
ods. The probabilistic non-parametric methods such as [75,126,157] 
are also suggested for dealing with this issue. A kernel non- 
negative Tucker decomposition is proposed in [192] . 

5.5. Seasonality 

Most of TAD’s approaches are based on the assumption that the 
behavior of a system is persistent and uniform over time. However, 
in systems that deal with human activities such as the Internet, so- 
cial networks, public health, etc. this assumption is valid only for a 
particular temporal period. For instance, we know that during the 
winter, rate of flu increases. Modeling epidemic data with tensors 
and not incorporating seasonality, we would probably signal many 
false alarms for winter season. 

When we apply tensors to such data, two objectives are usu- 
ally pursued. One is to discover periodic patterns of an unknown 
system. For instance, discovering what is the seasonal pattern of 
water quality or land surface changes [2,3,90] . The other and more 
practical target is to monitor the seasonal tensor for more accurate 
detection of anomalies and deviations. For the latter case, knowl- 
edge of periodic patterns is necessary for building a better tensor 
model. Although this issue is very important, it is not commonly 
addressed. For instance, the authors in [18] model the indoor air 
pollutants into four subsets of fall, winter, spring and summer and 
make a tensor model for each season. They compare this strategy 
to a global model in which all seasons are modeled together and 
show that the new strategy is more accurate. The other approach 
is proposed in [29] where separate tensor models are built for each 
environmental settings (e.g. Day = weekend, Weather = cold, Flu 
= high, Season = winter) and then use these tensor models in a 
real time setting for detection of disease outbreaks. 

5.6. Unequal-length slices 

A tensor with uneven slices is a known problem in process 
monitoring. It may exist in other disciplines but is rarely taken 
into account in other communities. This problem arises when pro- 
cess duration for each batch is different and thus measurement ×

time matrix for each batch has an unequal-length due to different 
length of time axis. Four scenarios lead to such a problem [193] : 1) 
the majority of measurement time series have equal length, but a 
minority of them despite overlapping in common time part, have 
shorter length; 2) all measurement time series have same length 
but some of them have small shift due to delay or acceleration 
in data collection; 3) the measurement time series have the same 
length, but appear in different shape; and 4) The time series of 
measurements have different lengths and shape. 

Two different groups of approaches exist for the above prob- 
lems. The first group of methods suggests performing a pre- 
processing step on the data before performing the decomposition, 
which is called trajectory synchronization/alignment. In this cat- 
egory, the first problem is solved by treating the absent part of 
shorter-length series as missing values. For the second problem, 
synchronization is carried out with a simple shift only on the mi- 
nority series. For the third and fourth scenario which are more 
general cases, the measurements are expressed against the other 
variable (known as indicator variable) other than time so that the 
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Table 6 

Important issues and solutions in tensor-based anomaly detection. 

Problem Solutions Reference 

Data pre-processing Scaling [18,32] , [188, Chapter 6] 
Continues to discrete transformation [6,22,30] 

Processing Offline [48,50,54] 
Online without updating [35,35,37,39,40,44,45,47,94,118,119,126,130–132,134,135] 
Online with updating [29,48] 
Streaming [15,16,133] 

Tensor dimensionality Prior knowledge Majority of methods 
Multiway ANOVA [72] 
Compare different ranks (e.g. 2D vs. 3D) [10,100] 

Tensor rank See Table 5 

Nonlinearity Eliminate nonlinearity in a preprocessing step [94] 
Kernel tensor decomposition [43,132,191] 

Seasonality Seasonal segmentation [18] 
Separated tensors for each environment setting [29] 

Unequal-length slices Treating the absent part of shorter-length series as missing values [193] 
Dynamic time warping [135] 
Phase division [194] 

Scalability Sparse-optimized methods [68,197,198] 
GPU-based [79,199] 
Distributed and parallel approaches [67,68,200–202,218] 

Adaptivity Incremental tensor analysis [15,16,59,59] 
Online probabilistic [158] 
Multi-aspect-streaming [133] 

Temporal scaling Prior knowledge (single scale) Majority of methods 
Multiple scale in data model [49,50] 
Multis-scale approaches [71] 

Data fusion Multiblock/multiway models [193] 
Coupled matrix and tensor factorization (CMTF) [213–216] 

Noise removal Preliminary phase removal [188, Chapter 12] 
Two-step decomposition [70] 

shape of time series overlap for all measurements. Dynamic time 
warping [135] and phase division [194] techniques are also sug- 
gested for this purpose. However, these approaches are criticized 
in the sense that they distort the anomalous patterns and reduce 
the anomaly detection accuracy [193] . 

The second group, and more sophisticated methods are those 
that model uneven-length tensors in its natural form. One of the 
tensor models that can operate directly on uneven-length ten- 
sors is PARAFAC2. This model is proposed for fault detection [37] 
and its superiority has been shown over synchronization tech- 
niques. PARAFAC2 is able to directly model the original uneven- 
length tensor without performing further data unfolding or tra- 
jectory synchronization. However, it inherits the restrictive con- 
straints of its equivalent model, PARAFAC. The authors in [150] pro- 
pose GTucker2, a generalized version of PARAFAC2, that does not 
have these limitations and at the same time it can be used to 
model both even-length and uneven-length tensors. The authors 
show that GTucker2 has a better anomaly detection performance 
than PARAFAC2 for both even-length and uneven-length batch 
tensors. 

5.7. Scalability 

Scalability of tensor decomposition techniques is a hot and 
young research area in data mining, machine learning and signal 
processing community. The important problem is that the decom- 
position of big tensors is not computationally affordable by tradi- 
tional techniques. Therefore, it is necessary to extend tensor meth- 
ods for processing large data sets. Three major groups of solutions 

have been presented for this purpose, including sparse-optimized 
methods, GPU-based solutions and both parallel and distributed 
techniques. 

The need for sparse-optimized methods arises from the fact 
that the majority of tensors in data mining applications is in prin- 
ciple sparse. For instance, density of Email, Web and network ten- 
sors barely exceeds 0.1%. Some works like [68,195–198] attempt to 
optimize the traditional tensor decomposition for large sparse ten- 
sors, in particular with operations on nonzero elements. 

GPU-based techniques attempt to use new computing 
paradigms such as graphics processing unit(GPU) instead of 
CPU for speeding up the decomposition process. It is proved that 
GPU substantially outpaces CPU in dealing with computation- 
ally demanding and complex problems. Two examples from this 
category are G-PARAFAC [79] and GPUTENSOR [199] . 

Distributed and parallel approaches have received more at- 
tention by researchers due to the current progresses in paral- 
lel, distributed and cloud computing. The general objective of 
these methods is reducing the intermediate data explosion prob- 
lem [68,200] and improving the runtime of tensor decomposition 
by splitting tensors into different sub-tensors and processing each 
smaller sub-tensors in a distributed, parallel or cloud environment 
(e.g. MapReduce). Examples of this category include GigaTensor 
[200] , ParCube [67] , PARACOMP [201] and HaTen2 [202] . 

5.8. Adaptivity 

Standard tensor decompositions have been developed for oper- 
ation in offline settings. It means that when new data is received 
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they are unable to update the model and therefore they have to 
rebuild the model from scratch. Normally, due to the large volume 
of data in many applications, rebuilding the model is not feasible. 
Also keeping the whole data in memory is not possible. There ex- 
ist some streaming approximation solutions for this problem for 
either classical tensor decomposition, subspace analysis or proba- 
bilistic tensor decomposition. 

The most popular framework for incremental tensor analysis is 
ITA [17] consisting of three algorithms called Dynamic tensor anal- 
ysis (DTA), streaming tensor analysis (STA) [16] and window-based 
tensor analysis (WTA) [15] . DTA decomposes the tensor incremen- 
tally by maintaining only the covariance matrix for each arriving 
tensor. Then, via diagonalization it outputs the principal eigen- 
vectors of the updated covariance matrix as projection matrices. 
STA attempts to approximate DTA. Instead of maintaining a covari- 
ance matrix for all arriving tensors, it directly updates the principal 
eigenvectors using SPIRIT algorithm [203] which does not require 
diagonalization. The other algorithm WTA, instead of processing 
individual tensors uses a sliding window strategy for handling time 
dependency between consecutive tensors. It decomposes the slid- 
ing window with a regular Tucker or PARAFAC and then as well as 
DTA and STA keeps some statistics from the window in the pro- 
cessing of next windows. 

ITA restricts the tensor growth only in time, which is a 
huge constraint in scalability and adaptability of other modes. 
In fact, ITA is only useful for large, but slender tensors. More 
recently a new TAD approach based on multi-aspect-streaming 
tensor analysis (MASTA) was proposed [133] that relaxes this 
constraint and allows tensor to concurrently evolve through all 
modes. 

Incremental extensions of locality projection based methods 
( Section 4.6 ) have also been developed that are typically created 
for object tracking in video tensors (i.e. spatialrow × spatialcolumn 

× frame ). The motivation of these methods is to model the ap- 
pearance changes of objects in video data. A more recent approach 
from this category is DTAMU [59] that extends DTA for subspace 
learning. The objective of this work is to take into account the ge- 
ometric structure of the image object, which is ignored in DTA. The 
similar ideas are used in [5,204] . 

Incremental version of probabilistic methods ( Section 4.5 )has 
also been presented in some works such as [158] . 

5.9. Multi-scale anomalies 

In the discrete space, determination of the right scale (or sam- 
pling rate) for temporal dimension requires a prior knowledge 
about the scale of fluctuations. The sampling rate, depending on 
the application, can be per second [81] , minute, [11,15,20,32,73,77] , 
hour [17,18,18,64,72,91,158] , k-hours [39,119] , day [17,20,29] , k-days 
[63] , month [48,50,98,102,205] and year [17,69,95,133] . If there is 
no precise knowledge about scaling, multiple tensor model with 
different temporal scale may be built from data (e.g. see [96,144] ). 
As is demonstrated in [144] the smaller scale (day) may provide a 
similar interpretation to a bigger scale (month), but with finer res- 
olution. However, this might not be the case for all applications. 
If multiple scales have different influences on the data, a combina- 
tion of more than one temporal scale may be used. For instance, in 
[49,50] a multi-scale scheme of Sites × variables × year × month 

is proposed for modeling of soil and water quality data. In this 
case, year and month, even though both refer to temporal dimen- 
sions, affect data in a different manner. Therefore, some meaning- 
ful patterns might be hidden if we lean to only-month or only-year 
scales. Recently, a multi-scale probabilistic tensor analysis frame- 
work called TriMine has been developed in [71] that accounts for 
several time granularities. 

5.10. Data fusion 

Coupled matrix and tensor factorization (CMTF) [206] are an 
emerging group of techniques that attempt to formulate a data 
fusion model based on joint factorization of matrices and higher- 
order tensor. In many applications, jointly analysis of an ensem- 
ble of data sets from multiple sources (also known as multi-block, 
multi-view, multi-set, multi-source data analysis) results in the en- 
hancement of knowledge discovery. 

The first use of data fusion based tensor and matrix decom- 
position in anomaly detection appeared in the work of Kourti 
[193] who proposed the use of multiblock/multiway PLS model 
for batch processes. The authors proposed that if we incorporate 
prior knowledge such as initial conditions for batches, raw mate- 
rial properties, initial ingredient charges or operation conditions in 
the original tensor model, the accuracy of anomaly detection will 
be improved. 

Nowadays, the application of CMTF has been extended to wider 
areas such as location-based recommender systems [207,208] , neu- 
roscience [209–212] , and sensory data analysis [213] . CMTF has 
also been used in applications related to anomaly detection such 
as social networks [214,215] and metabolomics [213,216] . For in- 
stance, in the metabolomics case, many heterogeneous data sets 
are generated via different analytical techniques for measuring bi- 
ological fluids (e.g. blood). These complementary data sets if an- 
alyzed jointly may improve the understanding of the underlying 
biological processes corresponding to specific diseases. 

A complete list of bibliography related to data fusion based on 
coupled matrix/tensor factorizations is gathered in [217] . 

5.11. Noise removal 

Noise is a disturbing phenomenon in data that is disregarded 
by the analyst and it only negatively affects data analysis task [1] . 
Sometimes it can be difficult to distinguish anomalies from noises 
in tensor models due to their similar nature. Noise removal is 
usually undertaken as a preliminary phase in tensor-based mod- 
eling (See [188, Chapter 12] ). However, in some works such as 
[48,70,110] , a two-step decomposition is proposed for handling this 
issue. For instance, Maruhashi and Yugami [70] propose a two-step 
tensor decomposition framework. The first decomposition accounts 
for noise removal and the second decomposition that operates on 
the first step’s output takes into account the meaningful anomalies. 

6. Practical issues 

In this section we introduce the fundamental tools for conduct- 
ing research in TAD, mainly, software tools and evaluation met- 
rics. The first section lists the available software and toolboxes for 
working with tensors and the second subsection presents a list of 
common evaluation metrics used in the various works. 

6.1. Tensor software 

Various open source toolboxes have been developed for tensor 
analysis in the recent decade. The most popular ones are MAT- 
LAB toolboxes like Tensor toolbox ( http://www.sandia.gov/ ∼tgkolda/ 
TensorToolbox ) and N-way toolbox ( http://www.models.life.ku.dk/ 
nwaytoolbox ) which are widely used by many disciplines for 
tensor analysis. More recently, two toolboxes, TensorBox ( http:// 
www.bsp.brain.riken.jp/ ∼phan ) and Tensorlab ( http://www.esat. 
kuleuven.be/sista/tensorlab ) have also been developed. TensorBox 
is more focused on advanced fitting algorithms for Tucker and 
PARAFAC, while Tensorlab offers a wider range of algorithms for 
more complex tasks in tensor decomposition such as coupled 
tensor factorization, sparse and incomplete tensor decomposition, 

http://www.sandia.gov/~tgkolda/TensorToolbox
http://www.models.life.ku.dk/nwaytoolbox
http://www.bsp.brain.riken.jp/~phan
http://www.esat.kuleuven.be/sista/tensorlab
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and new fitting algorithms such as quasi-Newton and nonlinear- 
least squares optimization, etc. NFEA toolbox ( http://www.bsp.brain. 
riken.jp/ ∼phan/nfea/nfea.html ) ia s tensor toolbox specifically de- 
veloped for processing EEG tensors. CMTF toolbox is also developed 
for coupled matrix and tensor factorization ( http://www.models. 
life.ku.dk/ ∼acare/CMTF _ Toolbox ). Hierarchical Tucker toolbox ( http: 
//anchp.epfl.ch/htucker ) was developed for hierarchical Tucker de- 
composition. Apart from above MATLAB toolboxes, some R pack- 
ages also exist for tensor decomposition, including ThreeWay, rTen- 

sor and PTAk . 

6.2. Evaluation 

Evaluation of TAD methods is usually similar to classical 
anomaly detection techniques [1] . The typical metric used in- 
cludes precision/recall [70,77,91] , accuracy [4,27,47,61,90,126,126] 
and area under ROC curve (AUC) [26,70,92] . For semi-supervised 
and unsupervised techniques, true and false positives (or false 
alarms) are also assessed [26,43,65,126] . For regression based ten- 
sor models and tensor forecasting methods, prediction error met- 
rics such as root mean square error (RMSE) or mean absolute error 
(MAE) is normally used [50,59,71,90,92,124,136,154] . Detection de- 
lay has also been exploited in some works [40] . The more sophis- 
ticated metric that takes account the detection of both delay and 
false alarm rate is the Activity Monitoring Operating Characteris- 
tic (AMOC) curve that is used in [29] . Visual inspection of score 
plots with visual inspection is another evaluation method used in 
[11,18,20,61,64,67,76,84] . 

7. Conclusion 

We provided the conceptual classification of many existing 
techniques, applications and issues for tensor-based anomaly de- 
tection. In the majority of works that we surveyed, the superior- 
ity of tensor-based methods has been shown over matrix meth- 
ods. This exhibits the importance of tensors as new category in 
spectral-based anomaly detection. We classified the tensor-based 
learning into three categories of supervised, semi-supervised and 
unsupervised. Despite of the great ability of supervised methods, 
their application is not yet well-established for anomaly detec- 
tion problem. We hope this survey could draw the attention of 
researchers to this new category of methods and their capabilities, 
especially tensor time series models [71,124,127,128] . Moreover, ap- 
plication of semi-supervised methods has been limited so far to 
monitoring of batch processes, although these kind of approaches 
can be very effective for other applications such as epidemiology 
and traffic data analysis. 

We categorized tensor decomposition methods used in TAD into 
six main categories of Tucker-based, PARAFAC-based, Bayesian, LPP- 
based, DEDICOM-based and ICA-based and provided some exam- 
ples for each branch. Among all, we found LPP-based and DEDI- 
COM quite interesting which are unfairly less attended. DEDICOM, 
for instance, has a very good potential for the analysis of data in 
social networks and traffics (computer networks and transporta- 
tion systems). LPP-based approaches are also very helpful for video 
and spatial data since they preserve the geometric structures in 
the data. Specially, the recently proposed method, TGLPP [168] 
seems a promising method for TAD, since it captures both local 
and global structure in data. Bayesian approaches are also emerg- 
ing techniques with a huge contribution for anomaly detection. 
However, their appeal is limited due to their high computational 
costs. Fortunately, some new scalable methods have been proposed 
to deal this issue (e.g. [164,219] ) and it is anticipated that we wit- 
ness more works in this area in upcoming years. 

We identified some important issues in TAD and suggested the 
possible solutions for each category, according to the state-of-the- 

art. We devoted a considerable portion of the survey to the prob- 
lem of tensor rank estimation. Because, during the surveying of 
the literature we noticed that this issue has not received suffi- 
cient attention from the community. We could not find any work 
that studied the effect of tensor rank determination on the quality 
of anomaly detection or comparison of different automatic tensor 
rank estimation methods in accuracy of anomalies. Another prob- 
lem about this issue is that the majority of methods are compu- 
tationally expensive and hence infeasible for automatic purposes. 
Perhaps, the work of Chen et al. [140] is the most efficient method 
for this purpose which needs to be researched further for anomaly 
detection applications. However, still a need for a fast, accurate and 
adaptive method for tensor rank estimation is deeply felt. Probably 
new effort s in Bayesian tensor factorization research, for instance 
the recent work of Hu et al. [219] should receive more concern 
from researchers. 

It seems that scalability, which is a quite important problem is 
receiving enough attention and is almost a hot topic in tensor liter- 
ature. On the other side, it appears that less quantity of research is 
devoted to the adaptivity issue which is as important as the scal- 
ability. After the work of Sun et al. [16] we have not witnessed 
a serious contribution for this kind in the literature. Some recent 
works such as [29] propose the use of sketching techniques for 
coping this problem but this kind of approaches still require more 
research and development. Seasonality issue is also less noted in 
the TAD literature. In many phenomena we have the prior knowl- 
edge of seasonality that can be incorporated in TAD for more ac- 
curate anomaly detection. The recent work of Fanaee and Gama 
[29] might be a good starting point for further research. Data fu- 
sion based tensor approaches [217] are also predicted to be the hot 
topic in the near future due to the increasing number of heteroge- 
neous data sources in modern digital systems. 
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