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Tensor-based Big Data Management Scheme
for Dimensionality Reduction Problem in Smart

Grid Systems: SDN Perspective

Devinder Kaur∗, Gagangeet Singh Aujla†, Student Member, IEEE, Neeraj Kumar‡, Senior Member, IEEE,

Albert Y Zomaya§, Fellow, IEEE, Charith Perera¶, Member, IEEE, Rajiv Ranjan‖, Senior Member, IEEE

Abstract—Smart grid (SG) is an integration of traditional power grid with advanced information and communication infrastructure for

bidirectional energy flow between grid and end users. A huge amount of data is being generated by various smart devices deployed in

SG systems. Such a massive data generation from various smart devices in SG systems may generate issues such as-congestion,

and available bandwidth on the networking infrastructure deployed between users and the grid. Hence, an efficient data transmission

technique is required for providing desired QoS to the end users in this environment. Generally, the data generated by smart devices in

SG has high dimensions in the form of multiple heterogeneous attributes, values of which are changed with time. The high dimensions

of data may affect the performance of most of the designed solutions in this environment. Most of the existing schemes reported in the

literature have complex operations for data dimensionality reduction problem which may deteriorate the performance of any

implemented solution for this problem. To address these challenges, in this paper, a tensor-based big data management scheme is

proposed for dimensionality reduction problem of big data generated from various smart devices. In the proposed scheme, firstly the

Frobenius norm is applied on high-order tensors (used for data representation) to minimize the reconstruction error of the reduced

tensors. Then, an empirical probability-based control algorithm is designed to estimate an optimal path to forward the reduced data

using software-defined networks (SDN) for minimization of the load and effective bandwidth utilization on the network infrastructure.

The proposed scheme minimizes the transmission delay occurred during the movement of the dimensionally reduced data between

different nodes. The efficacy of the proposed scheme has been evaluated using extensive simulations carried out on the data traces

using ’R’ programming and Matlab. The big data traces considered for evaluation consist of more than 2 million entries (2075259)

colecetd at 1 minute sampling rate having hetrogenous features such as–voltage, energy, frequency, electric signals, etc. Moreover, a

comparative study for different data traces and a real SG testbed is also presented to prove the efficacy of the proposed scheme. The

results obtained depict the effectiveness of the proposed scheme with respect to the parameters such as- network delay, accuracy, and

throughput.

Index Terms—Big data, Dimensionality reduction, Flow table management, Smart grid, Software-defined networks, Tensors.

✦

1 INTRODUCTION

SMART GRID (SG) is an intelligent power grid which
supports a bidirectional energy flow between users

and grid using advanced information and communication
technologies (ICT)-based infrastructure. It optimizes user’s
demand, energy generated, and network availability to

• D. Kaur is with the Computer Science & Engineering Department, Thapar
Institute of Engineering and Technology, Patiala (Punjab), India and also
with Lovely Professional University, Phagwara (Punjab), India
E-mail: kaurdevinder07@gmail.com and

• G. S. Aujla is with the Computer Science & Engineering Department,
Thapar Institute of Engineering and Technology, Patiala (Punjab), India
and also with the Computer Science & Engineering Department, Chandi-
garh University, Gharuan (Punjab), India.
E-mail: gagi aujla82@yahoo.com

• N. Kumar is with the Computer Science & Engineering Department,
Thapar Institute of Engineering and Technology, Patiala (Punjab), India
E-mail: neeraj.kumar@thapar.edu

• Albert Y. Zomaya is with School of Information Technologies, J12, Uni-
versity of Sydney, NSW 2006, Australia
E-mail: albert.zomaya@sydney.edu.au

• C. Perera is with Open Lab, NewCastle University, United Kingdom (UK)
E-mail: charith.perera@newcastle.ac.uk

• R. Ranjan is with Computer Science Department, Newcastle University,
United Kingdom (UK)
E-mail: raj.ranjan@ncl.ac.uk

provide reliability and efficiency using automated controls,
sensors, metering devices, and distributed energy sources.
It contains components such as smart meters and sensing
devices connected to one another using communication in-
frastructure. The delivery of various services such as energy,
voltage, and frequency regulations to the end users depends
upon the reliable, and real-time information about the data
flow between users and service providers (grid). For this
purpose, a reliable communication infrastructure is required
to manage the flow of data and information between sources
of data generation and smart meters. Advanced metering
infrastructure (AMI) and Phasor measurement units (PMU)
are the two main infrastructure units used for acquiring the
data generated from different smart devices in SG systems
and then pass the collected data to the utility which takes
decisions about energy flow. AMIs are the bi-directional
units which contain sensing devices, smart meters, control
and monitoring systems, and data management units. On
the other hand, PMUs are the energy measurement units
generally used to measure energy waves and signals [1].
Data acquisition systems are used for sampling or collecting
the analog data which is further converted into numeric val-
ues using computing technology. Moreover, sensors are the
main data acquisition components which convert the physi-
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cal parameters such as–temperature and voltage to electrical
signals in a discrete form. These devices are deployed in
different smart communities in large number across the
globe for effective power management generated from var-
ious distributed energy resources in SG environment. For
example, approximately 50,000 smart meters are deployed
by US department of energy and Los Angeles department
of water and power (LADWP) in the Los Angeles itself.
LADWP serves approximately 4.1 million consumers which
accounts to nearly 1% of total US power consumption [2].
Another report by energy information administration (EIA),
highlights the need of an efficient data management with
higher penetration of renewable energy sources (RES) to
manage demand and supply optimally [3].

The description of various data generation, transmission,
and distribution units in SG is as shown in Fig. 1. Handling
the large amount of data generated by smart devices in
different time intervals using AMIs and PMUs is one of the
biggest challenges in SG systems. The enormous amount
of data acquired at the SG level often leads to the prob-
lems related to QoS provisioning and demand response
management [1]. The data is generated at regular intervals
depending upon the deployment of smart devices across
different geographical regions. With the advent of smart
homes equipped with many smart devices, the frequency of
data generation increased many folds which in turn poses
challenges of data representation, data storage, and pro-
cessing at SG level. As most of the smart devices generate
data with high sampling rate so handling the volume and
velocity of the data need to be done in such a manner so that
efficient decisions with respect to demand response can be
taken on time [4]. Moreover, analyzing the SG big data may
play a vital role in an intelligent power distribution such
as–prediction of power patterns, demand response, fault
tolerance, and RES management.

Fig. 1: An overview of the smart grid

1.1 Related Work

The major issue with big data handling is its complexity
due to the presence of multidimensional and heterogeneous
attributes [5], [6]. Hence, the conversion of SG big data
into a simplified structure is required for faster processing.
In this direction, Souza et al. [7] presented a data com-
pression methodology in smart distribution systems based

upon the singular value decomposition (SVD) technique.
The methodology presented by authors is based on the
lossy data compression method. In lossy compression, the
new value of data is bound to lose its originality by a
certain value. Therefore, in order to reconstruct the orig-
inal data without losing valuable information, a trade-off
between compression ratio and the reduction rate needs to
be maintained. For this purpose, authors in [8] presented
a data compression technique using SVD in smart distri-
bution systems. Moreover, Ning et al. [9] proposed a data
compression technique based upon the wavelet function.
This technique compresses the size of noise signals, which
in turn affects data transmission. However, in order to
represent heterogeneous big data with reduced dimensions,
tensor representation is one of the emerging techniques
[10]. For example, Kuang et al. [11] proposed a tensor-
based unified model for big data representation and size
reduction. Yang et al. [12] introduced a similar technique
named as lanczos-based high order SVD algorithm to reduce
the dimensionality of unified data tensor model.

After effective storage and representation of big data,
another major task is to transmit the reduced data over
the underlying SG network efficiently [13]. In this context,
authors in [14], [15] reviewed the key aspects of smart
metering process with a focus on the type of data generated
and techniques required to process it. Authors highlighted
that the data processing at network level is a major challenge
faced by SG systems. This is due to the generation of data at
regular intervals from various smart devices leading to the
traffic congestion at the network infrastructure. Similarly,
Plaza et al. [16] presented the possibility of reception and
information broadcasting between smart meters and the
grid, in real-time through the cellular network using AMI.
Hence, after analyzing the aforementioned proposals, it is
evident that efficient data flow over the existing network in-
frastructure is required for handling the big data generated
from various smart devices in SG systems.

To mitigate these challenges, Software-defined network
(SDN) has emerged as a flexible platform for efficient traffic
flow. Authors in [17], [18] presented various features of SDN
such as- network capabilities, interfaces, and programming
languages used. They have highlighted that SDN makes the
network management tasks easier, due to the decoupling of
data plane with the central control plane. Mckeown et al. [19]
elaborated the use and deployment of the communication
protocol of SDN called as OpenFlow. Authors in [20]–[22]
highlighted the deployment of centrally controlled SDNs in
wireless sensor networks and network operating systems.
Kim et al. [23] highlighted various benefits of using SDN
explicitly in different environments. Due to the logic and
flexibility involved, it becomes very easy to reconfigure
the network changes dynamically. Similarly, authors in [24]
presented an SDN-based communication architecture for
microgrid. Moreover, authors in [25], [26] introduced the
SDN and cloud related prototypes for the SG communi-
cations in order to provide flexible and reliable services
to the end users. Cahn et al. [27] explored the benefits of
integrating SDN in the SG systems. The authors utilized
SDN to design a self-managed substation network for SG
systems. In an another work, Aujla et al. [28] utilized SDN
for energy management for sustainable DCs. Moreover, big



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2809747, IEEE

Transactions on Knowledge and Data Engineering

3

data and SDN are interrelated to each other and utilize the
properties of each other for mutual benefits. SDN benefits
the big data applications by improving the performance of
the network in the form of latency and throughput [29]. In
this regard, Kuang et al. [30] proposed a tensor-based big
data approach in SDN for effective QoS provisioning.

1.2 Motivation

After analyzing the aforementioned proposals, it is inferred
that a huge amount of big data is being generated by various
smart devices in the SG. However, handling this big data
in an efficient manner is one of the biggest challenges in
SG environment. An efficient data handling and processing
of big data at SG systems can lead to a better demand
response management, energy consumption prediction, and
effective communication among various devices. Various
techniques have been analyzed with respect to these issues
in the existing proposals [14] - [15]. But, none of the existing
proposals have focused on big data analytics in SG systems
for an efficient QoS provisioning. Moreover, the existing
proposals have not explored any unified model for data
representation. In recent times, tensors (apart from vectors
and matrices) have been effectively used for representation
and management of big data using SDN [11] - [12]. Also,
the big data represented by tensors could be reduced to a
simpler form by removing the redundant and ambiguous
dimensions. Moreover, to ease the burden of data flow
on the existing network infrastructure, SDN can play an
integral role in processing and forwarding the reduced data
in an efficient manner over the SG network infrastructure
[17]- [23], [29]- [30]. Hence, there is a need of an unified
and intelligent SDN model for big data management in SG
systems. Therefore, a tensor-based SDN model for efficient
big data management in SG systems has been designed in
the proposal.

1.2.1 Motivation examples

For better illustration of the proposed scheme, let us con-
sider an example as shown in Fig. 2. If a data frame of 20
Mbits is transmitted over traditional network channel, then
it takes 1 second to reach destination node at a data rate of
20 Mbps (refer Fig. 2 (a)). However, if the data is reduced (16
Mbits) in size omitting all invaluable and unwanted values,
then it takes 0.8 seconds to reach to the destination at the
same data rate (refer Fig. 2(b)). Hence, it is quite evident,
that the size of data has a strong impact on the transmission
time. Since, a huge amount of data is transmitted seamlessly
in SG systems so if such data is reduced then it may be
beneficial for the overall performance of the network.

Now, when the underlying networks follow a dynamic
network management scheme, then it can help to achieve
better utilization of network resources and thereby can
achieve enhanced throughput. For example, if a reduced
data frame is transmitted over traditional networks, they
may choose the shortest path using traditional network
protocols. In such a case, a data rate of 50 Mbps is achieved
along with a link utilization of 25% and throughput of
12.5 Mbps (refer Fig. 2(c)). However, if dynamic networks
such as SDN are deployed, then a data rate of 55 Mbps is
achieved along with a better link utilization of 25.2% and an

enhanced throughput of 13.7 Mbps (refer Fig. 2(d)). Hence,
it clearly shows that a better throughput, data rate, and link
utilization can be achieved by deployment of SDN based
network infrastructure for data management in SG systems.
The better utilization of link may also help in reducing the
energy consumption of network infrastructure.

1.3 Research contributions of this work

Based upon the above discussion, the major contributions of
this work are as given below.

1) A tensor-based data management scheme is
designed for representation and dimensionality
reduction of data acquired from various smart de-
vices in SG systems. Then, the Frobenius norm is
applied to optimize the reconstruction error of the
reduced tensor.

2) An empirical probability-based control algorithm
is designed for estimation of an optimal route to
forward the reduced data over SG networks using
SDN.

3) The proposed scheme is evaluated using extensive
simulations on data traces taken at per-minute sam-
pling rate for 4 years (December 2006 to November
2010) [31], PJM dataset [32], and a real SG test bed.

1.4 Organization

The remaining paper is organized as follows. Section II
represents the problem formulation. Section III elaborates
the proposed scheme. Section IV elaborates the mathemati-
cal case study for tensor representation and dimensionality
reduction. The results and discussions are presented in
Section V. Finally, Section VI concludes the paper.

NOMENCLATURE
Dac Acquired data
Dφ Unstructured data
Dψ Semi-structured data
Dω Structured data
T Tensor
an Orders of tensor
xn Attributes
Tφ Sub-tensors for unstructured data
Tψ Sub-tensors for semi-structured data
Tω Sub-tensors for structured data
Tuni Unified tensor
Mi Matrix of mode-i
U, V Urinary matrix
S Diagonal matrix
V ∗ Conjugate transpose of urinary matrix V
σ Singular values
r Lower rank
en Dimensional attributes of nth order tensor
Tred Reduced core tensor

T̂red Approximated tensor
M Multi-dimensional array
m,n Dimensions of array
ε Reconstruction error
ρ Reconstruction error ratio
N Number of nodes
L Set of links
c(l) Channel capacity
f(l) Traffic flow on link l
Nr Updated flow table entry

θ̂ Empirical distribution function
np New data packet forwarded to controller
op Older observations in a flow table
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Fig. 2: Tensor-based SDN model

2 PROBLEM FORMULATION

In this paper, three different types of datasets Dφ, Dψ ,
and Dω are used for unstructured, semi-structured and
structured data, respectively. These datasets are acquired
from various smart devices incorporated in SG systems. The
acquired data is represented in the tensor form. Tensors are
multi-way arrays which are used to represent the data hav-
ing multiple characteristics and high dimensions. A tensor
T of n-order is represented as follows.

T ∈ Ra1×a2×a3...×an (1)

where, a1, a2,.., an are the orders of tensor which define the
dimensionality of data characteristics.

In order to represent big data as tensors, data with n
number of characteristics is represented as a cross product
of various characteristics having multiple dimensions. The
representation of big data in tensor form is given as follows.

E[x1 ⊗ x2 ⊗ x3 ⊗ ..xn] = Ra1×a2×a3..×an (2)

Here, x1, x2, ..., xn represent different attributes present
in big data (for example, voltage, energy consumption,
meter/customer ID, and load can be described as various
attributes of SG big data data generated by smart devices).

Each attribute of big data is independent of the other and
can be represented as a cross product of each other. Hence,
using Eq. (2), the acquired heterogeneous big datasets are
converted into their respective tensors as given below.

Dφ → Tφ, Dψ → Tψ, Dω → Tω (3)

where, Tφ, Tψ , and Tω denotes sub-tensors for unstructured,
semi-structured, and structured data, respectively.

In order to reduce the data redundancy and duplicacy,

sub-tensors are converted into an unified tensor (Tuni) using
a unified data tensorization operation as a function given below
[12].

f : (Dφ ∪ Dψ ∪ Dω) → Tφ ∪ Tψ ∪ Tω (4)

f(x,y,z) = u (5)

where x ∈ Tφ, y ∈ Tψ, z ∈ Tω , and u ∈ Tuni
The union operator combines the similar characteristics

and reduces the redundancy from the acquired big data.
However, with the presence of higher dimensionality, the
complexity of big data remains high which leads to data
inconsistency and data processing problems in big data ana-
lytics. To overcome such problems, the unified tensor needs
to be transformed into a lower-order tensor having fewer
dimensions which can be represented as the reduced tensor.
The transformation of a nth order tensor into n number of
matrices is known as tensor unfolding or matricization [11].
For a given tensor, T ∈ Ra1×a2×a3...×an , the equation of
unfolding n-order matrix into a mode-i matrix is given as
below.

T ∈ Rai×(a1×a2×a3...×ai−1×ai+1....×an) (6)

The number of rows and columns of each mode-i matrix
are given by Eq. (7) and Eq. (8), respectively.

ai, 1 ≤ i ≤ n (7)
n
∏

j=1

aj , i 6= j (8)

Now, SVD is used to factorize a real or a complex matrix.
An unfolded mode-i matrix (Mi) which is to be decomposed
using SVD, can be represented as given below.

Mi = UiSiV
∗

i (9)
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where, U and V are unitary matrices and are orthogonal
to each other, S is a diagonal matrix, V ∗ is the conjugate
transpose of the unitary matrix V.

The diagonal matrix S, with non-negative entries has i
singular values denoted by σi. The singular values (σi) in
the diagonal matrix S are as given below.

S =











σ1 · · · · · · · · · 0
0 σ2 · · · · · · 0
...

...
. . .

...
...

0 · · · · · · σi 0











. (10)

S = diag(σ1, σ2, ....., σi, 0, ..., 0) (11)

where; σ1 ≥ σ2 ≥ ...... ≥ σi > 0 (12)

After applying SVD on each mode-i matrix, the rank
of a singular matrix is approximated to a lower rank r
(r ≤ n). The (r−k) values obtained from the singular matrix
are truncated and a low-rank approximation is achieved
by applying the SVD incrementally. Rank is approximated
based upon the threshold value of 30 percent rank reduction
depending upon the target dataset. Then, the reduced tensor
is obtained by projecting the orthogonal vectors obtained
from the results of truncated SVD, over the initial tensor
(Tuni). The dimensionality reduction is achieved by obtain-
ing reduced tensor which contains the lesser dimensions,
but valuable and core information as present in the initial
tensor. The dimensionality of the nth tensor is reduced using
n-mode product operation. The n-mode product operation
of a tensor (Tuni) by a matrix (U) is defined as follows.

(Tuni ×n U)e1e2....ek−1ekek+1....en (13)

where, e1e2....ek−1ekek+1....en are the dimensional at-
tributes of nth order tensor.

In order to calculate the reduced core tensor (Tred), n-
mode product is used for a nth order tensor as shown below.

Tred = Tuni ×
n
x=1 U

T
n (14)

Tred = T ×1 U
T
2 ×2 U

T
3 .....×n UT

n (15)

Moreover, from this reduced tensor, an approximated

tensor (T̂red) can be reconstructed as illustrated below.

T̂red = Tred ×1 U1 ×2 U2 ×3 U3.......×n Un (16)

The approximation can be further optimized using
Frobenius-norm on the tensor values obtained after tensor
product by a matrix. The Frobenius norm is one of the
important matrix norms which finds the size of a multidi-
mensional array M, by taking the square root of the sum of
the squares of its elements as given below.

||M ||F =

√

√

√

√

m
∑

i=1

m
∑

j=1

(Mij)2 (17)

Frobenius norm on M having two dimensions m, n
dimensions, is defined as below.

||M ||F =

√

√

√

√

min(m,n)
∑

i=1

(σi)2 (18)

The reconstruction error defines the approximation accu-
racy of the reduced tensor. It occurs due to the approxima-
tion of mode-i matrices. The reconstruction error for unified
tensor and approximated reduced tensor is given as below.

ε = ||Tuni − T̂red||F (19)

With an increase in reconstruction error ratio, the accu-
racy of the core data or reduced tensor decreases. The re-
construction error ratio, ρ can be analyzed using Frobenius-
norm of original unified tensor and final reduced tensor and
is defined as below.

ρ =

(

||Tuni − T̂red||F
||Tuni||F

)

(20)

Hence, the main objective function of the proposed
scheme is to minimize the reconstruction error and is de-
fined as below.

min (ρ) (21)

s.t. (22)

ρ ∈ [0, 1] (23)

Tuni > T̂red (24)

Tuni > 0 (25)

T̂red > 0 (26)

Srt ∝
1

ε
(27)

Trt ≤ Bch (28)

where, Srt is sampling rate, Trt is the transmission rate and
Bch is bandwidth of the channel.

3 PROPOSED SCHEME

Fig. 3 shows the work flow of the proposed scheme.

Fig. 3: Workflow of the proposed scheme

3.1 Tensor-based data management scheme

In this scheme, a tensor-based data management scheme
is presented to acquire raw data and reduce it to lower
dimensionality thereby optimizing the reconstruction error.
The acquisition of big data in SG environment involves
various challenges such as–missing values, inconsistency,
duplicate or redundant values, heterogeneity, different for-
mats, sampling rate, etc. However, the proposed scheme
handle these challenges in an effective manner. In this
regard, algorithm 1 is designed and described as below.



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2809747, IEEE

Transactions on Knowledge and Data Engineering

6

The acquired data (Dac) is sorted in structured, semi-
structured, and unstructured data (line 1-2). After sorting
the data, each type of data is converted into its correspond-
ing sub-tensors (Tφ, Tψ , and Tω) using Eq. (2) (line 3). Then,
all the sub-tensors are combined together to form a unified
tensor (Tuni) using Eq. (4). Now, the unified tensor (Tuni) is
unfolded into n matrices using Eq. (6) (line 5). Then, all the
unfolded matrices are decomposed using SVD. The matrices
are decomposed into a combination of unitary matrix U,
conjugate transpose of unitary matrix V (V ∗), and a diag-
onal matrix S (line 6-9). Now, lowest rank approximation
is applied to keep r largest singular values and replacing

other values by zero (line 10-13). Then, M̂i which is used

to obtain the approximated decomposed values (Ui, Ŝ,V ∗

i )
is calculated using Eq. (9) (line 14-17). The n-mode product
is applied to the left orthonormal column vectors with the
initial tensor to obtain the reduced tensor, Tred using Eq.

(15) (line 18-20). After this, T̂red is calculated using Eq. (16).
The Frobenius norm for minimizing the difference between
original and approximated reduced tensor is applied on the
reconstruction error ratio (ρ) to optimize the result. If (ρ) is
less than the threshold value of error ratio (ρth), then the
reduced tensor (Tred) is sent to the destination. Otherwise,
repeat the process till it satisfies the acceptable error ratio
(line 21-29).

Algorithm 1 Tensor-based data management algorithm

Input: Dac, Acquired raw data
Output: Tuni, Tred

1: Acquire Dac from various sources
2: Sort into Dφ, Dψ , and Dω

3: Dφ → Tφ, Dψ → Tψ , Dω → Tω
4: Unify Tφ, Tψ and Tω using Eq. (4)
5: Unfold Tuni into n matrices using Eq. (6)
6: for (i=1; i ≤ n; i++) do
7: Apply SV D(Mi)
8: Obtain Ui, Si and V ∗

i

9: Extract σi from Si
10: Calculate rank(Si) = n
11: while do(1 < r ≤ n)
12: Obtain (Ŝ) by pruning the smallest σi
13: Obtain rank(Ŝ)
14: Reconstruct (M̂i) using Eq. (9).

15: Extract new Ûi, Ŝi, andV̂
∗

i

16: end while
17: Store the left truncated orthonormal vectors, Ûi.
18: Perform n-mode product of Ûi with Tuni.
19: Calculate Tred using Eq.(15).
20: end for
21: Reconstruct T̂red using Eq.(16).

22: Apply Frobenius-norm on T̂red using Eq.(17).
23: Compute ε, using Eq. (19)
24: Obtain ρ, using Eq. (20)
25: if (ρ < ρth) then
26: Send Tred to destination.
27: else
28: Recalculate Tred to satisfy ρ.
29: end if

4 SDN-BASED CONTROL SCHEME

In this section, an emerging software-centric networking
paradigm called SDN is used in the proposed scheme to
provide dynamic network management in SG systems. SDN
is an open and programmable platform which controls the
network in an intelligent and dynamic way through well-
decoupled planes. It provides abstraction of underlying
infrastructure from network applications, which makes it
easy to manage and reconfigure according to the dynamic
changes int the network configuration [27]. The growing
rates of big data traffic at SG systems could be effectively
handled using scalability and efficiency of SDN. Hence, the
integration of big data technologies such as tensor models
with SDN can led to an extensible and efficient service
provisioning to the end users. In this context, a tensor-based
SDN model is designed in the proposed scheme using three
planes; (1) data plane, (2) control plane, and (3) application
plane as shown in Fig. 4.

Fig. 4: Tensor-based SDN model

In this model, data plane mainly consists of network
devices such as- switches and routers. Data is acquired from
various devices such as- appliances in smart homes, and
electric vehicles (EVs). This plane use open flow protocol
(OFP) as a communication standard to forward the gathered
data to the upper plane [27]. The acquired data is decom-
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posed into a reduced tensor of smaller rank and size at the
server located at the control plane. With the help of control
algorithms, core data is processed in an efficient manner. For
this purpose, an empirical probability-based control scheme
is designed to estimate the optimal route for transmission
of reduced data over SG networks. Finally, the application
plane provides various services to different users and SG.

4.1 Flow Table Management

The data plane consist of forwarding nodes (FNs) such as
openflow switches, routers, and gateways. At the control
plane, SDN controller is responsible for taking the forward-
ing decisions for FNs. These decisions are configured into
FNs using southbound interface. A set of flow tables and
group tables that are linked to each other by a pipeline
resides in the FNs [33]–[37].

OpenFlow 

switches

OpenFlow forwarding 
devices

pSwitch

vSwitch

Generation units

Renewable energy sources Electric vehicles

Industry

Office building

Smart home

Control and 

data center

Fig. 5: Data Plane Management

A flow table comprising of different fields such as–entry
id, instructions, priority, action, port number, etc follows the
instruction set provided by SDN controller. Fig. 5 shows the
flow matching process in SDN model. The major steps for
controller-switch communications are given as below.

• Step 1: Initially, the incoming packet is analyzed by
the parsing system to decide how it can be processed.
This involves three main steps, (1) header identifica-
tion, (2) field extraction, and (3) field buffer [38]. The
output is communicated to the lookup header after
analyzing the packet.

• Step 2: After receiving the output, the lookup func-
tion initiates with the ingress port and finishes with
the egress port. Generally, two types of lookup meth-
ods: 1) exact matching, and 2) wild-card matching are
used. Exact Matching uses a hash function for setting
the exact position of a particular item. Wild-card
Matching is a complex partial string matching for
multiple table lookup, designed to match the header
field of an entry.

• Step 3: Once the OF-switches receives the packet,
the matching system initiate the task of deciding
the routing decision. If a suitable match is found
in the table, then the corresponding action is per-
formed. In such a case, the packet is forwarded to
the concerned port and the OF-switch updates its
first counter, i.e., matched counter. On the contrary,
if the matching fails, then the packet is send back to

the controller. In such a case, the OF-switch updates
its second counter, i.e., mismatch counter field. Now,
the controller rebuilds a new flow rule and inserts
it at the OF-switch. A flow-driven rule caching algo-
rithm (FDRCA) [39] is used to replace the entries in
the flow table. FDRCA is a policy-based algorithm
which handles the limited cache size constraints and
unpredictable flows by pre-fetching and special re-
placement strategy.

• Step 4: A flow table pipeline is used to connect all the
tables (table 0 to table n). The group tables (contains
entries that are concerned with the variety of actions
that affects one or more flows) and meter table (con-
tains entries associated with the performance related
information) are also available.

• Step 6: A table manager uses a counter to record the
number of packets sent to the controller.

• Step 7: Finally, after matching the packet header field
successfully, the outgoing packet is directed through
egress switch port on the basis of the action set.

Table I shows the flow table entries maintained at each
OF-switch. Flow table entries such as–source IP, destina-
tion IP, priority, port number ingress port, and action are
some of the most important for taking decision about data
transfer between different entities. However, this may vary
dynamically according to the situation and requirements
of incoming flow. The list of various flow table entries are
given as below.

• Table no.: The number of a flow table, i.e, its relative
position in the flow table pipeline.

• Entry id: A unique id (primary key) is assigned to
each entry in the flow table of an OF-switch.

• Priority: Importance of each entry in the flow table.
• Ingress port: A physical/virtual port where the in-

coming packet arrives.
• VLAN id: It contains 13-bits virtual LAN id and 3-

bits VLAN type.
• Ethernet address: It contains 48-bit MAC address

for each flow entry. It can be an exact address or a
wildcard matching.

• IPv4/IPv6 address: It consists of a 32-bit IPv4 address
or an 128-bit IPv6 address.

• TCP/UDP port number: It contains a 16-bit
TCP/UDP source and destination port number.

• Action: The instructions to be followed once packet
matches with an associated rule are given here.

• Counter: It is assigned for various attributes such as–
byte counter, packet counter, flag, flow duration, and
number of dropped packets.

• Timeouts: It contains the expiry duration of a flow
rule. This can be of two types; 1) Hard timeout, and
2) Idle timeout.

• Cookie: It consists of flow statistics, deletion and
modification entries that are managed by the con-
troller [38].

4.2 Empirical probability-based control scheme

(EPCS)

As Tred needs to be transmitted over the underlined net-
work through optimal paths. Since, the incoming traffic flow
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TABLE 1: Flow table entries of an typical OF-switch

Table no Entry ID Priority Ingress Port VLAN id eth dst eth src eth type ipv4 dst ipv4 src tcp dst tcp src Action Counter
0 30 099 1 210 B A 0x0800,. 103.42.0.0/16 192.168.0.0/24 tcp dst:80 tcp src:83 encap, fwd:[2] 11
0 170 097 5 154 D A 0x0800,. 103.20.0.0/16 192.168.1.0/22 tcp dst:81 tcp src:83 send to controller 12
1 605 090 4 153 C A 0x0800,. 103.0.0.0/13 192.168.6.0/24 tcp dst:82 tcp src:83 drop 11
1 112 085 10 44 A B 0x0800,. 104.31.0.0/16 192.168.8.0/24 tcp dst:80 tcp src:0 send to controller 12
2 192 077 14 140 B C 0x0800,. 101.27.9.0/24 192.168.9.0/22 tcp dst:21 tcp src:0 encap, fwd:[2,4] 10
2 154 052 3 112 C D 0x0800,. 103.0.0.0/13 192.168.3.0/24 tcp dst:20 tcp src: 25 drop 11
. - - - - - - - - - - - - -
. - - - - - - - - - - - - -
n 175 007 13 74 E C 0x0800,. 100.24.3.0/24 192.168.81.0/24 tcp dst:23 tcp src: 123 tunnel to controller 15

is scheduled for different applications in SG environment.
So, different QoS requirements exist for each incoming traf-
fic flow. Hence, low latency queuing (LLQ) model is best
suited for the incoming traffic flow [40], [41]. So, laying
the foundation on traditional SDN routing algorithm an
empirical-probability based scheme is proposed in this sec-
tion to recommend routing paths with maximum likelihood
for scheduling or reduced data. It would tend to maxi-
mize the channel utilization and minimize the latency. This
scheme tends to shape the traffic coming from various smart
devices at real time, with respect to the resource availability
and given QoS constraints after the data reduction has been
performed. SDN switches interact with controller which
estimates the optimal routes. For this purpose, the link
characteristics such as-bandwidth, channel capacity, latency,
load, etc. are considered for selecting optimal destination
nodes. In order to keep the track of various network related
updates like path priorities, a flow table is maintained with
the help of programs or logic applied by the controller at
the control plane.

In this regard, a routing scheme for the SDN controller
is presented in order to forward the reduced data through
optimal paths with lower latencies and higher QoS. In this
scheme, all the FNs can be visualized as SDN FNs and non-
SDN FNs. Data which passes through at least one SDN FN
comes under controllable flow and which does not passes
through any SDN FN, is considered as uncontrollable flow
[42]. Now, consider a network Z(N,L), having N number of
nodes and L links, c(l) denotes the channel capacity and f(l)
refers to the traffic flow on link l. Now the flow table already
has old entries in it. Through our proposed logic, we tend to
update the flow table entry to a new one (Nr) The older flow
table entries are taken as the observation set which are to be
fed to the estimator at SDN controller. It further predicts or
estimates the optimal path (Np).

Empirical Probability is an estimation of the occurrence
of an event, happening in an actual environment. We can
estimate Nr using probabilistic approach. The empirical

distribution function (estimator) θ̂, can be given as.

θ̂ =
np

op
(29)

where, np denotes new data packet forwarded to the con-
troller, and op denotes the older observations in a flow table.

The optimality of the scheme can be checked using
the mean-square error (MSE) of the estimator. MSE of the

estimator θ̂, is defined as the function of the new routes
to be predicted as shown below.

MSE(θ̂) = f(nr) (30)

E[(θ̂ − θ)2] = E[(g(nr)− θ)2)] (31)

The algorithm for the proposed scheme is given as below.

Algorithm 2 Empirical probability-based control algorithm

Input: Z(N,L), np.
Output: Maximize channel utilization, u.

1: Split the Z(N,L) into SDN and non-SDN FNs.
2: Forward np to the SDN controller.
3: ∀ destination d ∈ N, apply OSPF on non-SDN FNs.
4: Obtain op.
5: while SDN FNs ⊂ N do
6: Feed the op to θ̂.

7: Compute θ̂ using Eq. 29.
8: Obtain Np.
9: Update flow table, Nr .

10: while MSE(θ̂) ≤ THRcrlb do
11: max u.
12: end while
13: end while

In the proposed algorithm, the network Z(N,l) is divided
into type of forwarding nodes called SDN FNS and non-
SDN FNs (line 1). Now, the data packets (np) are forwarded
to the controller (line 2). Further, using open shortest path
first algorithm, entries are updated in the flow table and
op is maintained (line 3-4). After updating flow table, the
empirical estimator is applied on SDN-FNs to estimate the
new path for the data at the controller. The new flow table
is then updated with new estimated values (line 5-9). The
accuracy of the predicted routes is checked using MSE of the
estimator. The MSE obtained is compared with the threshold
value (THRcrlb). If the value of MSE is less than or equal
to the THRcrlb, then the channel utilization is maximized
(line 10-11).

The value of THRcrlb is computed using CramrRao
lower bound (CRLB) method [43], [44]. CRLB states that
the variance of any unbiased estimator is at least as high as
the inverse of the Fisher information (I(θ)). If the estimator
reaches the CRLB, it is said to be efficient. The condition for
MSE using CRLB is given as below.

E[(θ̂ − θ)2] ≥
1

I(θ)
(32)

Here, the I(θ) is given as below.

I(θ) = −E
[ ∂2

∂θ2
logf(X; θ)

]

(33)

5 MATHEMATICAL CASE STUDY

The following section represents the exemplar case study
for tensor-based data representation and dimensionality
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reduction. The high-dimensional big data is represented
using tensors. Fig. 6, shows the visualization of a three-
order tensor R4×5×3 having 4, 5, and 3 instances at each
order, respectively.

Fig. 6: A visualization of a three-order tensor, R2×3×4

An n-order tensor can be unfolded into n different matri-
ces through the process of matricization. The transformation
of a high-order tensor into lower order matrices is known
as tensor unfolding or matricization. For a given tensor
R4×5×3, the process of unfolding into matrices can be done
using Eq. (6). Fig. 7 shows the tensor R4×5×3 that has been
unfolded into three different matrices named as M1, M2,
and M3, respectively. The row and column number of each
matrix is calculated using Eqs. (7) and (8), respectively. Now,
M1 has been unfolded by taking first order as row number
and the product of rest of the orders contribute to column
number. For example, in M1, there are four number of rows
and fifteen number of columns. In a similar manner, others
matrices (M2 and M3) can be expanded.

Fig. 7: Unfolding of tensor R2×3×4 into three matrices

After the matricization of a tensor into matrices, SVD
is applied on on each matrix truncated in order to obtain
singular values as shown in the Fig. 8. Each matrix gets
decomposed further into three matrices, i.e., two orthonor-
mal matrices (Ui and Vi∗) and a diagonal matrix (Si).
The diagonal matrix contains singular values in descending
order, i.e., a1 ≥ a2 ≥ ....ai ≥ 0.

After applying truncated SVD on each matrix (Mi), the
null values in the diagonal matrix can be pruned and top

largest values having rank r can be retained. Table 2 shows
various mathematical results obtained for each matrix. Col-
umn II shows the number of singular values obtained and
next three columns shows the top 3 largest singular values
optimized after truncating the null values. By spanning the
singular value space with orthonormal vectors of decom-
posed matrix, an approximate matrix with with rank (r)
is obtained. After this, in order to calculate the reduced
tensor Tred, n-mode product is used for n-order tensors as
shown in the Eqs. (15) and (16). The dimensionality of the
given tensor is reduced by incrementally applying n-mode
product on initial tenor with left orthonormal space. Now,
the reduced tensor can be approximated by optimizing the
error reduction ratio using Frobenius norm.

Fig. 8: Singular Values Decomposition

TABLE 2: Mathematical results

Matrix no. i σ1 σ2 σ3

M1 5 271.626 5.391 0.301
M2 4 271.646 4.267 0.000
M3 3 271.662 3.119 0.005

6 RESULTS AND DISCUSSIONS

In this section, the proposed tensor-based SDN model for
management of big data generated by SG devices using
proposed scheme is evaluated using data traces for in-
dividual household electric power consumption [31]. The
dataset consist of 2075259 measurements gathered with a
one-minute sampling rate for about 4 years (December 2006
to November 2010). The dataset contains some missing val-
ues along with various sub-metering and electrical quantity
values [31]. The results obtained after extensive simulation
are compared with HOSVD scheme using ’R’ programming
and Matlab. The objective of proposed scheme is to mini-
mize the reconstruction error ratio between unified tensor
and reduced tensor using Frobenius norm. To evaluate
the proposed scheme, a network topology is designed in
Mininet network emulator [45].

6.1 Evaluation parameters

The proposed scheme has been evaluated using following
parameters.

• Dimensionality reduction ratio (λ) is the ratio of the
non-zero values of the reduced tensor and orthonor-
mal vectors to the non-zero values of the initial
tensor. The λ for the initial tensor Tuni is given by
as below.

λ =
nz(T̂red) +

∑n
i=1 nz(Ui)

nz(Tuni)
(34)
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Fig. 9: Evaluation results for the proposed scheme

• Approximation accuracy is the trade-off between
the reconstruction error ratio (ρ) and dimensionality
reduction ratio (λ) and are inversely proportional to
each other.

• Delay (d) is the latency at a specific router and
comprise of processing delay (dpr), queuing delay
(dq), transmission delay (dt), and propagation delay
(dpg) [45].

d = dpr + dq + dt + dpg (35)

• Network throughput is the rate of successful deliv-
ery of message over a certain communication chan-
nel. It can also be called as the maximum rate at
which data can be processed.

6.2 Evaluation Results

The data acquired is converted into sub-tensors (using Eq.
(2)). Then, the sub-tensors are combined to form a unified
tensor (using Eq. (4)). The unified tensor is obtained by
applying unified data tensorization operation on the sub-
tensors. The unified tensor is reduced to obtain a lower
order tensor using F-HOSVD technique. The unified tensor
combines the sub-tensors to remove all the ambiguities,
redundancies to obtain a simplified combined tensor.

The reduced tensor is an approximation of the original
data which contains all the valuable information. The results
obtained show that the approximation ratio obtained using
the proposed scheme is more as compared to the existing
technique. The approximation ratio decreases from 99.5%
to 89.9% with respect to a decrease in reduction ratio from
83.4% to 5%. Hence, it is clear that the nearly 90% originality
of the data is maintained even after reduction up to 5%. Fig.
9(a) shows the approximation ratio obtained after perform-
ing experiments on the original data. Further, the reduction
ratio obtained using the proposed scheme is shown in Fig.
9(b). It shows that the original tensor is reduced to a higher

extent as compared to simple HOSVD. Hence, it clearly
depicts that the data is reduced to a higher ratio while
maintaining originality. The comparison of reduction ratio
with respect to the approximation ratio is shown in Fig.
9(c). The above results are obtained using Frobenius norm
which is applied incrementally on the singular matrix to
achieve a lower rank matrix. The above conclusion is further
supported by the results obtained for the reconstruction
error ratio. The reconstruction error ratio obtained for the
experiments using the proposed scheme is shown in Fig.
9(d). The results depict that reconstruction error ratio is
lower as compared to the existing technique. Therefore, the
proposed scheme shows higher level of originality while
achieving lower reconstruction error. The above results are
achieved using Frobenius norm which is applied incremen-
tally on tensors after n-mode product. Hence, the overall
objective of minimizing the reconstruction error ratio is
achieved using the proposed scheme. The trade-off between
reduction ratio and error ratio is shown in Fig. 9(e).

Once the data acquired from various SG devices has
been reduced into core data then it has to be processed and
transmitted over SG networks using SDN infrastructure.
For this purpose, an empirical probability-based control
scheme has been designed to estimate an optimal path for
the reduced data. After evaluation of the proposed scheme,
it is evident that the all the performance metrics shows a
suitable growth. Fig. 9(f) shows the throughput achieved for
the proposed route estimation scheme. The results obtained
shows a higher throughput is achieved by using empirical
probability-based control scheme. Also, the delay incurred
for transmitting the data to the destination is lower with
respect to standard SDN routing scheme. Fig. 10(a) shows
the delay incurred while transmitting the reduced data over
SG networks using the proposed route estimator along with
SDN. The proposed scheme is evaluated for the estimation
accuracy with respect to packet loss. The results obtained
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Fig. 10: Evaluation results for the proposed scheme

are evident that the optimal route estimation accuracy for
the proposed scheme is better that the standard open flow
scheme. It is also evident that the accuracy drop is less
for the proposed scheme with respect to increase in packet
loss. Fig. 10(b) shows the achieved estimation accuracy with
respect to packet loss. In this regard, Table II shows the
values of RMSE obtained for estimated routes.

TABLE 3: RMSE values for EPCS

Samples Data sent
(Mbits)

RMSE Bandwidth range
(Mbps)

S1 8 .06025 10-50
S2 16 .041472 100-150
S3 32 .18245 150-200
S4 64 .139355 200-250
S5 128 .1409 250-300

Finally, the proposed scheme is evaluated with respect
to the bandwidth usage. The results clearly depict that
the stability of bandwidth usage is maintained within the
upper bound and lower bound. Hence, it shows that no
congestion or bandwidth over/under utilization occurs. Fig.
10(c) shows the bandwidth usage for the proposed scheme
for route estimation. This strongly shows that the available
bandwidth is optimally utilized by the control scheme for
transmitting reduced data over SG networks. The above
discussed evaluation results depict the effectiveness and
efficiency of the proposed scheme with respect to various
performance metrics.

(a) Experimental SG testbed (b) Grid simulator and prototype

Fig. 11: SG testbed setup

6.3 Comparative study for different data traces

In this subsection, a comparative study for three different
data traces namely 1) original [31], 2) PJM [32], and 3) real
SG test bed is performed. Table 4 shows the comparative

analysis of these data traces with respect to different sam-
pling rates and parameters. For this purpose, a data traces
for a real SG test bed are collected at 1 second sampling rate
for 6 months. The SG testbed including various smart home
appliances, a prototype with STM8S microcontroller, SP1ML
RF transceiver, IC (MAX 232), and relays are deployed. Figs.
11(a) and 11(b) shows the experimental SG testbed along
with controller and grid simulator.
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Fig. 12: Comparative analysis of different data traces

After simulations, the results obtained for different
datasets are shown in Table 4. The impact of sampling rate
is clearly visible on the results obtained. The higher is the
sampling rate, the higher is efficiency. Fig. 12(a) shows the
dimensionality reduction ratio for all three data traces. The
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original and PJM datasets shows almost similar results for
reduction ratio. However, the results for SG testbed are
lower than others. Similarly, the approximation ratio for
original and PJM datasets shows similar trend. However,
the approximation ratio for SG testbed dataset is lower in
contrast to the other two. Fig. 12(b) shows the approxima-
tion ratio for all three datasets. From the above comparison,
it is evident that the proposed scheme performs efficiently
for different datasets. The average reconstruction error ratio
obtained for original (4.43 percent), PJM (4.98), and SG
testbed (6.12 percent) datasets shows the effectiveness of the
proposed scheme.

TABLE 4: Comparative analysis

Data Traces Srt RR (%) AR (%) ρ (%)
Original [31] 1 minute 38.23 96.33 4.43
PJM [32] 1 hour 39.11 96.93 4.98
SG testbed 1 minute 32.43 92.89 6.12

RR: Reduction ration, AR: Approximation ratio

7 CONCLUSION

In this paper, a tensor-based SDN model for dimensionality
reduction problem for big data acquired from various SG
devices is proposed. For this purpose, a F-HOSVD algo-
rithm is designed. The purpose of the proposed scheme
is to represent the bulk data generated by SG devices in
a tensor form. After tensor representation, the sub-tensors
are combined to form a unified tensor. Finally, the pro-
posed algorithm for dimensionality reduction is applied
on the unified tensor to reduce it. The proposed scheme
is validated using data traces for individual household
energy consumption. The results obtained show that the
proposed scheme achieves higher dimensionality reduction
while maintaining a high ratio of originality. Also, the recon-
struction error ratio of the data is minimal as compared to
the existing techniques. Moreover, a comparative study for
different data traces and a real SG testbed is also presented
to prove the effectiveness of the proposed scheme. Finally,
the proposed empirical probability-based control scheme for
SDN is used to estimate path for forwarding the reduced
data. The results show that the estimated path show low la-
tency and high throughput. Moreover, the proposed scheme
maintains a high route estimation accuracy with respect to
increase in packet loss. Finally, the bandwidth utilization re-
mains stable and the proposed scheme avoid any congestion
or under utilization of bandwidth. Hence, the overall results
obtained for proposed schemes related to data management,
dimensionality reduction, and route estimation shows better
performance than existing schemes.
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